WWW.SoftGozar.Com www. | rPDE. com
M

Delphi7 49 solaiw! sloiad!y o

Farhad.Dehdaran@gmail.com

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com
M

WWW.SoftGozar.Com

Farhad.Dehdaran@gmail.com

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

2ol 9y sads 53 SQL whhgiws 5l oslaswl @y bogs o Slpisjgol plozan Sl ol s
i NEPVE LY

Gt o—po 059)— > oslasi_wl 5,60 yuwl iy g9 sql whgiws , =S Sl esleiwl sl -
(paradox,ado,interbase,...)
Sl hsiaws 5| 03lakasl L @iira 5, 252 2oka0 cocssi @sliyy SOV > @S WSk yidsa-
38 J> el b
ao3V Ul S,85L Ly s oslaiwl LB pd aZus (awwgi a0l Sleil; 5> SQL

19w Sy GSH L

dSliio 83,05l aoly U osls ol wsls bLa,l 5y ubicwgs aS cowd oul u uo,9 lesissgol plod H>-
5l

(5,16 58,8 SELECT U select) asiown pwlas> S, 9 S>65 Wg,> a4 Sql wlygiws -

Gt 00 Gt Ao isS il 55 aS (silgiws (swolod -

o 8,5 LS a4 ADO e wisigeolS 5 wljgiws -

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: SQL (Structured Query Language) s Sl anaso

9 03w >,laslewl ANSI (American National Standards Institute) lbowgs aS cowd (sug> 9 gww WL;SQL
Aol (oo e uleMbl sla SGL s W osls update g (sulsb (b uwslios) Kws sy

o, 9 MS Access, Paradox, DB2, Informix, MS SQL Server, My SQL, Oracle, Sybase slpuwulius ,5SQL
oo o3laswl

(SQL/PSM, SQL PL, T-SQL, MySQL, PL/SQL, PL/pgSQL , 5,15 59>9 UL ol 5l stdizo S U3, Wlewlio
osleiwl 5> UlwSy SadS WledS 1 LU aiesl ails &,B8;5Lw ANST 5l ubow! b sl aes asil sl bl...)
(o,a& 9 SELECT, UPDATE, DELETE, INSERT, WHERE auslo) .auuS (ol awliw Sla

€ SQL >

il ansls Csowsiws B Guwlos a4 ulwl @ U adawe o5l>] lowi @ SQL
S slal 9> 9 pun B b sl lsie SQL

LS bbb gl 51 L W osls wlgiuo SQL

AS 2,5 oo > Saa> 5565, wlgiue SQL

S Bi> Luwlios 5l 1 5,685 Milgie SQL

S 5 b pawlius slassS, wlsie SQL

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: SELECT
o Select jgiws oS plaxao aS g, SHgiwd sl

Dgiws S Ui

SELECT column name (s) FROM table name

no , name , cost, color , sald Shyls asS pu,ls VIS wlaziw @ bes o inventory ob U (sJoa> auS (5,9
owaweight

select name,cost from inventory

03u0 Ugwin bo @4 9, NAMe,cost Ugiw @ bogi o SdALS (swoloj
AU Sls ay adlS pungi 9, BaLd aed oL aS coww S5l puinn o) @ald swlos aS pulgsw S V>
RGN VR VR FUE SR V- RV I

select * from inventory

aS g S adlol o8 & ADOQuery wisgaolS @y ADO 5 5l SousS oslaswl (s>)5 jgla> o, wlhgiws il Vs
T 55 Wyge @ button @y s o,

ADOQueryl.Close;

ADOQueryl.SQL.Clear;

ADOQueryl.SQL.Add('select * from table name');
ADOQueryl .Open;

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: WHERE

5l L Gul Sy Seuy Giwlod susie Hlade a4y puwlwl g, olezds ulis Lo aS Al s el aS (Jlgw
.5, oslewl where jgiws

SELECT column FROM table WHERE condition

paiS oslewl wlizo Sl b,w 5l pwsiue condition coauwd >
Uwlos g, auiwe aiwg edit S > Lpigl U aS (uldVIS pulszo YIS wlaxiiw Jei> Ugod 55 1uS [o,9
SRS

ADOQueryl.Close;

ADOQueryl.SQL.Clear;

ADOQueryl.SQL.Add ('select * from inventory where name=:param');
ADOQueryl .Parameters.ParamValues|['param'] :=Editl.Text;
ADOQueryl.Open;

oauw oslaiwl "ol b" 5l el awss sw aS glaiged
(oS oslaiwl condition caouwd > walizo S b i Sl pwgine aS) sql > Sl Awwlin S ,Slec

owd Sgbwwo U Sliee a4 <>
S oslaiwl wlizo SlpysLw o3ly Ly OR g AND (séhio Sla,Sloc 5l augive Guizod

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: ORDER BY

a8 ay wlwl L, 2ulo Sibw wise Sl aS cowd ORDER BY o,ls select 5> sl 5,08 aS sl als Hgiws
o oslaiwl Lol

Deiws IS JSew

SELECT * FROM table name ORDER BY column

iwlos pd Azt 5y aS auiul Sald pwlwl . LU Silw Wise S oslaiwl 308 oU 5l * Sls @ Sl asgi
o ol

Slaso 95 sdgl ald 5SS aS cd ol LIS Gl cuse. 5,5 oslaiwl ALd 1> oU ;I order by caonwd 5> Ao
it o od Sl aSus s wlwl o suslée Uged ALl ails 39>9 UL,

select * from inventory order by name,weight

U0 o U9 uul_w|).g ‘Cl_wl.; ol >9>9 ul_uuS.J pl.i lJ VIS 9>)§| l.qu)_s

NGO 53 9 Lakird aixo 93 W90 A gulis ey 18 9, DESC 31 order by waowwd 55 lpigiw oU 5l asy
wasaiao 9 S;bw iy s loww aS (siloj)y 2,9 Ui wlls . Sxges WHgw 4 Al acuwls H1L,8 ASC as
o d 5)92.0 ‘U.A.ASJ

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: BETWEEN
S8 pisS Liusgol sl 5> aS inventory Jga> wgad U gy Lo «opunin a>gio ips 9, whgiws aSiul Sy

Yo 5l Lesgl wie aS Syuslao Wio il aiwls) pazuiw Hlado 95 Gu Luslan plod ulezuo Lo 1uS Lo)9
Ao and ,Sloc g where 5l oslaiwl b oauiw aisS Vs U aS (sulpiojenl @ asgi b il 5508 Vo 5l 9 i
s plil s wso g, L8 Wil

select * from inventory where weight>15 and weight<75

1S oslaiwl between 5l wlizo Sa by iig S @ Guigias wd od a5y ol @y Lol

with ADOQueryl do begin
close;
sgl.Clear;
sgl.add ('select * from inventory where weight between 15 and 75'");
open;
end;

oud VO 910w Lpigl U9 aS aig5,500,50 95 suldVS ol wlasiw YU a5

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

:IN
5,5 oslaiwl wlizo by T L 05l 30U Leulg=ao g, A LS a5l Lols Slabe i aS sk G Ludy suasy
asS puicud uldVIS JLos auS (6,9) owsS oslaiwl select _94_~u>)b in Q.u)s 5l u.u_g.uw LQ.A.AJ WU|_9>

with ADOQueryl do begin
close;
sgl.Clear;
sgl.add ('select * from inventory where color in
("j—{-w"r ";r.’T"r "
open;
end;

", M ey 3"

5l 9 s> 390 Hlade aiiw j9bax aS pan oyl @ between |, i 590 55 aS) pdb (s oy Sy
-uAS usl.))))J)ls

L.OJ}' M)J)LSLO SCI| Ul)_g.»._uJ)).».Sl » (S))ISS)).bJ)90)J)LQDS S O)LSLL.MJI ed't_)l _)J_)lS q_J.\JLJ)I).9_)SI
s " " @ S50 55ac prolin by s ("rasin”) sy 1 ™ wpnr 1L

puiSan o> Sxac ald)y aS ulo; between sl Jlio

with adoqueryl do begin

close;

sgl.clear;

sgql.Add ('select * from inventory where weight between '+Editl.Text+' and
'+Edit2.Text) ;

open;

end;

L puiSuo 9> (i) wsuso A9 s aS (siloj in ol Jlie

ADOQueryl.Close;

ADOQueryl.SQL.Clear;

ADOQueryl.SQL.Add ('select * from inventory where name in
("'"+Editl.Text+'",""'+Edit2.Text+"'",""+Edit3.Text+'"'", " "'+Editd.Text+'") ") ;
ADOQueryl.Open;

S oslaiwl 56l 5l i i, b alal Saxac Slaso aS o5l (68,9 i jgiws > ta>gi

Farhad.Dehdaran@gmail.com ' VYAV olo caingus)

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

:AS

whgiws 5> aS cowd suldald oU dbgrid @, by, ;e title atius oslaiwl W query 5l aS (sudg Sole wll> s
> coud sau,B UL @ aS b S Al y W dSi puy »cowd oSl 0L a4 Veoso 9 0 osleiwlsql
Towd) Wygo A giewd S JShi S eslaiwl Alias 5l asgiue JSeie oul J> Sl

SELECT column AS column alias FROM table

bg o title 9 0ai Ll name,color ald 95 aS aiu osls Wil (sd90 4 dbgrid > zulu aS eulgao V>
ranl "S5, 9 pU" Lpisl

with ADOQueryl do begin
close;
sgl.Clear;
sgl.add('select name as plj, color as &, from inventory');
open;
end;

Sw09i AS W00 Suod 4 Alias ;| asgine o>§qsu59)wgw@w\bbd\lk>p@~d3»,ob)s|w
S L @ ugings Aol s olgzds pU b g, Jga> 9 3uuS oslaiwl Jga= ol ws,S oligS Sl oasi osl>

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: DISTINCT

3381 S ouil asiwls afus Jga> au L combobox «Sgi g, alid S suslin ploi (ulgs aS os0gl Giuw V> U
> USow cowd Juols> azais 5y adid s 39>90 SHLST Hunlee oled aS augaue loi> 039) S350 uxod
o=l J= ol caiwl oaniw adlol lowiw Hbby 5590 cwd a0 s (v 9 @l assils 99 ad S > LS lase

.owd SQL > DISTINCT 5l oslaswl JStiwe

D d 5 Opge U 9w (IS JSow

SELECT DISTINCT column FROM table

Al acils g, A9 S5 3,9 A azio slie ASue SwS load A dy90 cul IS Leb @

Lisoloo «owud 39>90 (suldVS ax aS puwigds U oulgsao g, Agos Jga> ;5 s9>90 SV wuwnd AuS (o,9
ol LSS s ol @) s5le

with adoqueryl do begin

close;

sgl.clear;

sgl.add ('select distinct name from inventory'):;
open;

end;

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: LIKE
oslaiwl Where olod @ aS cowd LIKE jg5ws ccowd 1ol)lS (sl gz Uloj aS (silygiws 51 aSos oSy
b Qi 5l s> Bgine 9> i ol > b g e polod b 9 Ao g9,

Dgiw> IS Y

SELECT column FROM table
WHERE column LIKE pattern

Aol sewlwl ax 5 Jols azw aS ewuSao paxuiw pattern couwd >

12wS a>gi Jbo @

with ADOQueryl do begin

close;

sgl.Clear;

sgql.Add ('select * from inventory where name like "'+Edit6.Text+'$"');
open;

end;

Sle "eile" Hlase editl ;s 31 VU Jln s . aicwd S,)159] cew wlahd name aLd ,usléo aS ouwiSao (5,9
a "... g BenQ ,giulo LG jgiulo « Samsung,giile” Juso 03w g9,mi" jeiwle" L aS S uslso ploi cauw
Slo s Giwlos

s3lio ploi "o" Mio B> ool Gl b jeuay 518 wusl S, OnChange slayg, 5> 95 3S ol SSI wudMs S L
o 5> Giwlod @ aie g9, "p" b aS Spuslio ausy g ">y oo (pwsle giilo”

Aaraiggis Miid 5550w oo 5l b aS (suld byt 3gine Ugisgs (auuS @ds "%" 5,08 Jxo @y 3

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: JOIN

query Su s od U gy Jgas 1> wleMbl aigiuwe select as aul 0% select 5,90 55 03,5 Lvgol,d aS sl asss
S Ol Joax aix b 9> 5l culeso aS o) (sileMbl awigino ooy gy w020 Giwlos ooy @

SELECT table 1.columnl, table 1.column2, table 2.column
FROM table 1, table 2
WHERE condition

w29 a5l bl s b audS ok S pwlwl o lpdoa> aS cuwd i master/detail Jgla> s join 5,0,
2L a4 o)ls 39>9 od Sl aS,s Jga> 9 .cowd 1S VIS aS @ bgy o N0 aLd inventory Jga> uod 55 3uS
JS inventory ;s aS no ald Lun) dino 0,435 Wl H5 VIS aS bl o polsesl Giv,lew asS orders Jga>
"agiw orders Joa> Saald (diwo oslaiwl (s>l aldS Ulgic a, orders > ccowd slool
..ol " no — fname — Iname - (Lol adS)person_id

15l Givylew 55 culdVIS ax SsLdl as pwisn pulszs o Vs

with adoqueryl do begin

close;

sgl.Clear;

sql.Add ('select orders.fname, orders.lname, inventory.name from orders,
inventory where inventory.no=orders.no');

open;

end;

owd inventory Jea> 51 VIS oU g orders Jga> 5l polxasl (5Ssleils ob 9 o Jols Juol> axuws

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: LEFT JION — RIGHT JOIN - INNER JOIN
w0 2oy AS 0,15 o, INNER JOIN , LEFT JOIN , RIGHT JOIN s,ls0 sql ,>JOIN

INNER JOIN 5,5 ,eiws (IS JSi

SELECT fieldl, field2, field3

FROM first table

INNER JOIN second table

ON first table.keyfield = second table.foreign keyfield

. LEFT JOIN ,5 ,giws sdS JSow

SELECT fieldl, field2, field3

FROM first table

LEFT JOIN second table

ON first table.keyfield = second table.foreign keyfield

: RIGHT JOIN L5 ,giws (S JSiib

SELECT fieldl, field2, field3

FROM first table

RIGHT JOIN second table

ON first table.keyfield = second table.foreign keyfield

Inner Join :usly Jlo

with adoqueryl do begin

close;

sgl.Clear;

sgql.Add ('select inventory.name, inventory."cost", orders.fname,
orders.lname') ;

sgql.Add ('from inventory'):;

sqgql.Add ('inner join orders');

sgql.Add ('on inventory.no=orders.no');

open;

end;

inner, left, right :wglai

Joa=> 5,5 ;31 g aiwe o3l Giwlos auil acwls casllbo by aS s 48 (Jga> 95 Slds,eS, oloi Inner join s
iwles ulp aseis > @b anly walls p9> Jgax> 5l 53,55, gud L aS auul acils 399 S3)55, Jol
. Aiaaod 031>

cislao o> Jga> 5l 53,85, aud U ,31 (sui> i 03l Giwlos Jgl Jgas> 5l Lavs,gS, plod Left join s
ool acswl

cilbo pod U 58] (s> c0au0 Giwlos 95 095 Jga> Sas g8, ploi 9 S Joc left join jusSceuRight join
ool awl

od 5 Whigiws (il LB aS G azgio By uigine blizo Slplio g Uas 9 Ugesl Livg, U

b awls walaos bo byi U aS asius cowd (sulds)55, plod atiue oslaswl inner join ;l aS silo;
Aawud d9>90 iNventory Jea> 5> aS oauw o3l Giu,lew VIS orders Joa> 55 (susy

Joi> Sles 68, ausy s wilbo bys b aS sulds,68, Uasi o 3 09Me oS oslaiwl left join 51 31
o0l Giuslew g5 Logl sawS aS (suldVIS Gsus vowd (sulps aseis 5> o Jol

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

Aol cesyllbo by b aS (sulds 65, waiw wowyd 1 0gMe ob 5L owsS oslaiwl right join 5l aS (3,90 55 9
Joa> 5 Uiwylew 3550 SYLS aS ol lew (s wownd (sulps a5 od 09> Joi> Slas 68, auiby
00U (89 =oinventory

1000 05lol DIXOX 556 g Jawgi caouwd ol Jlio :puogi
Aol we> oS LS8 5y S wlbae Jipy S)s sl

Tahlel
D Matne

i
Ly
Az e

Tahled
(B City
il gl

|
2
4

g
(gl

Select Mame, City From Tablel nner join Table2 On Tablel ID = Table2 ID

Inner Join
Mame City
(= ol e

L g dum

select Hame ., City From Tablel Left join Table2 On Tablel ID = TableZ I

Left Join
Mame City
S ol
L gl
dasa Hull

select Mame , City From Tablel Fight join Table 2 On Tablel ID = Tabled 1T
Right join
Matme City
(S ol
Ly s
HMull (hpaeal

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: IS NULL
owd IS NULL alil suso digiue aS ssilgi 51 aus oS
o5 1 5, (L)1) NUll Slaald plos Slzmo Loss aS oyl 51 (ilos &b

Dgwd IS S

SELECT Column FROM table WHERE column IS NULL

cowd (sJs Lpigl name s asS @ig>,30,0 95 csulds,95,5 plod 5 S

with adoqueryl do begin

close;

sgl.Clear;

sgql.Add ('select * from inventory where name is null');
open;

end;

01> welasi space (" ") L null aS 1uS a>gi

salb 5y sald S usy A Sl 5,908 space 2SS Us, i b aS cowd I Slad SIS "l slhie
ies as-bow null vlgie a4 aLwl aswls sg>9 wgl > LSLIS (il (o Ll >
0,10 39>9 a9 > Sl osls L SLuSLES gud aS cwd (solo; @ bgs,o Null

P e 05 0y A 9, sgiwd IS 1y o) 03 sy SeseS, Liwles S

select * from table where FieldName is not null

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

towoly Uluwlxo ;1 odlaiuwl

4y 9 pudoguo AL ay Luslso ploi Sg, Wlowlxe Sy (Ao oslawl W table 5l aS suid g Sxle > s
L LSl owiniigino aS b3 dix> Joa> @, bgy e OnCalcFields > g 005,800 wow,)s calculate gos 5l 30> 2L
owd) osledl Bgd sql wlygiws 5l oslaiwl

Dgw> IS Y

SELECT fieldl, field2,field3 <arithmatic operation> AS AliasName FROM table

.0,:50 51,9 (silbwlxo w,le @, <arithmatic operation> couwd Sls @

: (0,:50 ,1,8 NEW_Cost Wgiw ,> 9 Ao go> Yo v+ L cost ald ,uslao plod) 1uS asgi Jlio @

with adoqueryl do begin

close;

sgl.Clear;

sgl.Add ('select name,cost+2000 as new cost from inventory'):;
open;

end;

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: Scalar function g Aggregate Functions

95,5 &lgi ol LAl aube (wlus wigie aS o,l> ALY Sy, wldec pll Shy ause s> U Syrw 254
: Scalar functions ¢ Aggregate Functions @i, ;1,8 (sJS aiws
: Aggregate gilgi

SUM (column)
s joolie goas

AVG (column)

MAX (column)

s Hlade o

MIN (column)

s Hlade goftas

COUNT (column)

Jo i wls god) s SO sla yhw ol ux3 Null)

COUNT (*)
Jodz sladyesSy JS oluxs

FIRST (column)
s Hlado aldyl

LAST (column)
od lade g3t

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

: Scalar gilgi

9 S Giusla,y SO ST g uslin gilgi ul (aiSio Joc Al juslan plod Sg, 0 aS Aggregate gilgi juSce
030 Uiwlod 9, Az

UCASE (column)

(Zb a Slo,SLS Sly) S, Boy> @ 4Lé SlayisLE o

LCASE (column)

(ZU A SlayiSLE sly) SxsS Bg,> @ 4Lé SlayisL Lo

MID (column, start, end)

(dsiowd guso dlacl end g start) adauoe iwlos 9 05,5 la> ald 5l sSLIS end vl a start J=o 5l

LEN (column)

A s aa;, dgb Us,S Lazine

INSTR (column, “ch”)

S s ch LsSLIS £699 J=o Giuulod

LEFT (column, number)

A sl e woaw Sl pasiw 3SLIS slasi Us)S o>

RIGHT (column, number)

A9 5slee wowl)y conw 5l (pazaine LaSLES slaes 0SS >

ROUND (column, decimals)

Oloj 9 U Uiwlos
roolaiwl s,

g S JSa

SELECT function (column) FROM table

138 go> Jols sl Jlo el

with adoqueryl do begin

close;

sgl.Clear;

sgql.Add ('select sum(cost) from inventory');
open;

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

2d zliao 330 hwgl oL
ols ola 4 g
o ddwyo. s ode S Liuels YLy gl >4

1y Su>eS anded SO dduo 45/ FouS ool iilw! 4ol seT Jal) woly sysh> g ig)
oy Lo

- Jeis

Cowd Sac S5 max,min first,count,avg, ... Jio slei (s>9,5. aiw,> alb 1wl

query aS S;laso Jugiao 5 wyso a4 ((AS;l oslaiwl) auS oslaiwl Hleiwws oU 5l ilgi (ul s LIS a4 > S
' (o)l (58,9 s table L) acwl aswls o) aigs,Suo

select sum(cost) as new cost from inventory

ADOQueryl.FieldValues['new cost'];

a8 Hlase a augine Ainw SH18 o loni ¢ 5l aS ald o,loni 5l eslaiwl b gy LIS @ leiwo 0U 31 sy
el anwls (sawyiows

select sum(cost) from inventory

ADOQueryl.Fields[0] .Value;

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

www. | r PDF. com

Jlguw

24 hpl361 hwgsi odd 4idgs
poLw

?MTJWSUm Cawd o doly gy lgsiv pwl oy l0 Jedw LT) o 0SSy o gliwgo
Lhly dous add) O eS8y e o 450 s S o piloal s g Oy Sy o N/j_?‘(j/
C als)L oy /g (L

prhiio 4 Jaie

MasterData :lwgi Sl
Clas,95) aod 5l Ugiw Su b (U3 Re> 9, 3,85, Sy e Ugiw Sleze oo
ool adls ;i Ogiw Sy Vlsic @ g) 3,85, S Slpigiw ggoxo Slesue oSl

Select fieldl+field2+....+fieldN as NewField from TableName

N &> 3859, xSl 9, Lgiw S Slexuo S| Lol

Select Sum(FieldName) As NewField From TableName
Sl bl suSy 098 Ly by 4ise

aowl 020l awlsl 55 Group by 5,00 55 JolS Wlxuogi 1a>-gi

3k 3K 5k 3K 3K >k K 3k 5K 3K 3K 3K 3K 3K 3K K 3K 5K 3k 5K 3k 5K 3k 3K 3k 3K K 3K 3K 3K 3K K 5k 3k 5k K 5K K 5k koK k3K kK kK >k
rJgd i
24 MasterData huwg s oud idbgs
SlovyeSy) 4 J/ Jodw O L iy &F 49 25 & sl Jeiw s/ aise LI

u—“j/ Aild o dod> Jedw SO glale 4o g9y 0 ye Sy S slgeiw faast s/ axio 45
s

Select fieldl+field2+....+FieldN as NewField from TableName

u—)jf)é‘ﬁJJ}—{.ﬂJ LL;J/}dea@d/WJ/ Lo/
s

Select Sum(FieldName) As NewField From TableName
Al o sy 09 S Lo byd 4ile

5 LS laee u.ul_w|)_;3._5_})4&A}g)uwdguslg.'z_m)gClSp.Aig.oClSL'dg)q_ISJQﬂJa.iS.%u)b WolS
LU @i aiigs group by cowwd s aS Salid ob . suS oslaiwl group by 51 LU S wguis a%s LS
ALl odngl o select Sgl> > loi>

with adoqueryl do begin

close;

sgl.Clear;

sgql.Add ('select fieldl,sum(field2) from table ');
sql.Add ('group by fieldl');

open;

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: UNION

L Loyl od au bgsyo wleMbl Ozl Sl jgiws Gul o guogi UNION 5,60 55 plgsun oy il Soi

Dgwd IS S

SELECT field FROM tablel
UNION
SELECT field FROM table2

il by 1 0,500 1,8 select sla,giws 5> aS suldald slasi-
Ll S Wb VxS0 518 e 45 aS uldalid osls egi

L0340 5,18 Ueiw S, > oL sort g (Distinct) LSy w90 @ sl wewdy Jga> 95 5l aS g, suleMbl giws ol
AS Cad (sugod Hgiwd (A JSi 5,8 esleiwl UNION ALL 5l b acsl)15 juslaoe wlxil @y 5L6 S|
Aineos SOt aSus aidl 9 aliw oslaiwl union all 5l union Sls @ bhad (uw aiss

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: GROUP BY
owd W 03l saw 09,3 o)l sl s ed Sxb; 5,08 aS Sslgo 5l S

oslaiwl U vaUigy,Su0 v azuis Ulgic @y g, Jga> Sla o3> ploi (awuSue oslaiwl aggregate gilgi 51 aS (silo;
S Sy 095 9y W osls cald s LSy lase Sy ywlwl 4y augiae group by

Dgiwd IS Y

SELECT column, aggregate function (column) FROM table GROUP BY column

1oleZo VS 8 SSes @y g, VIS plos iyl inventory Joa> > auuS (o,9

select name,sum(cost) from inventory group by name

ay bgyyo COSt 38 £g90m0 0aw asigs asquery aiwl aiwls 39>9 oL S5 L VIS b oo s)§| VL oS s
1A93,540,0 A Llgic @ 9 pliod SOV

ol pd select cuonwd 5> L Ao auig group by Sgl> s as sal: aaSi

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: HAVING

b 9 5,5 aslaiwl where 5l aliuos il csdoyui wlhgiows @ 5L 81 (aiSio Sais 09,8 g, W osls aS silo;
.AuS oslewl having w,lc 5l

Dgwd IS JS

SELECT column, aggregate function (column) FROM table
GROUP BY column
HAVING aggregate function (column) condition wvalue

51 i Ll oodS Gyl a8 ula VS 9 VLS 8 SuSai @ 9, VK plod vyl inventory Jga> s 3uS (5,9
o YO o

select name, sum(cost) from inventory group by name having sum(cost)>=25000

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

ploseo 59,0l 5l 0aw ploi Luyss e osls (sulisb au by e wlhginws amil oo aws el U o0l

Whgiws ol Sl vy wowd Jgla> 9 punlios 5> Ohwe Jlocl o Giwlug @ bgiro aS 63 95 silhgiows
aowd ADO Wi > aS e osleiiwl ADOCommand ;1 ugl Sls au g euSaos 03lesiwl adoquery ;1 ass

: UPDATE
o=l Sho 0aw 35lg W8 aS cowd (suld osls Gl ug aiiue ol Lwwlios s adiuod aS (uld)lS 51 Sy
Ao o3leiwl UPDATE jgiw> 5l 8

oslaiwl L Jga> 55 d osls Mol 9 yiwulug by Hgiws il s jaxiiw aolS il suso 5l aS ghhiod
iy

g IS JSw

UPDATE table name
SET column name = new value
WHERE column name = some value

o aiigs column_name al$ sl new_value o> lase set Jilso >

>, aS by ol b eus s name alsd sl g, cost ald [lase poulgsao inventory Jea> > auS o9
. cost=new_cost wowdname=sample

ADOCommandl .CommandText:="update inventory set cost=new cost where
name=sample’';
ADOCommandl .Execute;

: DELETE
9 dwiiiginn aal> @y ,S il Shy lea> $auS Wi Joa> Su 5l pd U g, Jaw dix Mgz 00wl i Y U
AS Wi Lol buls b Joa> 5l o) jlaw slaswi jo woly slaz ausiwe sql > delete 5l oslaiwl U

Dgwd IS JSo

DELETE FROM table name
WHERE column name = some value

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: INSERT INTO
o oslaiwl U)y Las Sla osls 255 sl

Dgiws S Ui

1g
INSERT INTO table name
VALUES (valuel, value2,....)

2:
INSERT INTO table name (columnl, column2,...)
VALUES (valuel, value2,....)

aiSeo 3l9 9) ol

1S @ laso o) aL® plos inventory Joa> > wowd 5138 auS o,8

ADOCommandl.CommandText:="'insert into inventory values
("+editl.Text+',""+edit2.Text+'"'", "+tedit3.Text+',""+teditd.Text+'", "+tedit5.Te
xt+')"';

ADOCommandl .Execute;

s pll s Y s ald 0 (o> ,lade aS o
Al acdls " o Wb Lea> (text) ie Saald spslio (ape WSS

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: SELECT INTO
e ciigwlS U lowis aS auS wds 0,800 51,9 oslaiwl 5,00 W Jga> 51 18,3 BackUp sl wdel jgiws ol

aS 0,ps oy pualiny olos backup @y 5l aS (siles pa cpumlins pled Sl Lol 34,8, backup sugise oo
S oslaiwl select into

Dgwd IS Yo

SELECT column name (s) INTO newtable [IN externaldatabase]
FROM source

9 S 0,035 puwlos Ugod)5 o) lpdoa> Ulusiny Jigine pd U (iwd iy Blhsil oslell Bgd Heiws ¢l
Ay Jal ey puwlos S @ Awgine pd
:Jol >

SELECT * INTO table backup FROM table

SELECT * INTO table backup IN backup.mdb FROM table

g where aslo b, whlie Us,u LS au ¥ 5l eslaiwl Sls au paxuiw L8 L ulxol L3> sl
9> S5 09y Jaax iz Sl S5uS Uluiiy «S)l> wusog sl luiiy 38,3

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

t\b i OlHeiawd Sy o S Lus,)s 5l oslaiwl

tlbo jeiws by L as o) (suldadd plei 1SLLS ol w39 05,0, @ 9, % ,iSLIS LIKE ol 00 @y Mid
92,5 (50 5 9 Aidgy Ay 5l sikian U 9 Solauwe Jgb Sl 9 il

P 2095 [19 _ 5SLIS 3,00 55 plozeso 5950l
a9, by 531w AB Laigl Jgl B, > 95 9 diiwd 09,5 w aS owiaand wsuld a8 Jlis @ asS (o,9

)90

LIKE AB_

owd Jol> axis > abg, aba, abr, abz, ... Saald plod ouwugi

aLé sa,sSLS 5l sl acgozo 9 ounih aily seMbl ouuiw 9,00 S,uSLES ax U als as ol 51 81 Vs
paiSao oslawl [] 5] Sesr puloxo o)

:Jlo

'CU9>)§ w0 0 Jol> axis)s 9, dine g9 3,b,C,d,e,f,g Bg,> L aS o, LS plos

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

WWW.SoftGozar.Com www. | rPDE. com

: ALTER TABLE

Joa> a2l usg o adlol wp> aigos Ulgic @ aS aLwl w T-SQL wl; DDL wlhgicws 51 Sy sgiws ol
39450 wsw 03> pusgs

>l Uloj 5> ald Us,S adlol

oS oslaiwl ALTER TABLE ;1 3L LIS ol oShy

Dgiws IS S

ALTER TABLE table name
ADD column name datatype

Joa> oL : table_name
Ao oU @ column_name
Mo eg : datatype

oS adlol inventory Joas au ,uSLIS 0+ Jgb U g, MyField alid pudlgseo 1S (5,9

alter table inventory add MyField varchar (50)

3k 3k 3k %k %k 3k 3k %k 3k 3k 5k >k 5k 3k 3k 3k %k 3k 3k %k 5k %k 5k %k %k 5k %k 5k 3k %k %k %k %k %k %k %k %k %k %k *k %k %k

wixbw whgiws lh8d g oai atsS JolS wigo a4 Ly,si (DML) osls (sulisl 9 0,055) bgyyo wligiws
ploi isS Lidolo aS cawl 030lo (58U (DDL) osls o0&l wluogas g b (sS5u9 oukaii g 03l oKL 5> Luwl

5 asS (suld el 55 1) 593 OMS o 3ilgi seo 455,S 1w 5l 3)lge ol @ Olicwss ST 9 5,105 (sijg0 Lol
Aiglos S5uS 00w ,SS Alas ¥ axas

03 @ |, 59>90 GMSLiwo ouS s Cwle>)s e Uliwes wswlod I iowws JBLu 1 s W Jiuseel Liako
Aol oupw lio adaw 3o 55 b asS oMl

b 5940 9 (5990
ublads s ,9

Farhad.Dehdaran@gmail.com : YTYAV olo gl

www. | r PDF. com

http://www.irpdf.com/
http://www.irpdf.com/

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 ABS function
aggregate functions
 AVG
 COUNT
 GROUP BY clause and
 ORDER BY CLAUS and
 HAVING clause and
 MAX 2nd
 MIN 2nd
 SUM
aggregates
 nesting
 nulls and
aliases
 column aliases 2nd
 table aliases
 as table qualifiers
 ALTER COLUMN command
 ALTER TABLE command 2nd 3rd
 AND operator
 WHERE clause, SELECT statement
 ANSI JOIN SQL syntax
 ASC function
 auditing subqueries
 AVG function 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 BETWEEN operator
 WHERE clause, SELECT statement 2nd
 BIGINT data type
 BINARY data type 2nd
 binary intersection
 binary set difference
 binary unions
 BIT data type 2nd
 BNF (Backus Naur Form)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 Cartesian product
 CROSS JOIN and
 CAST conversion function
 CAST function
 CEILING function
 CHAR data type 2nd
 CHARACTER data type
character data types
 CHAR data type
 NCHAR data type
 NVARCHAR data type
 selecting
 TEXT data type
 Unicode character strings
 VARCHAR data type
 CHARINDEX function 2nd
 CHECK constraint
 CHECK integrity constraint
 color coding, query editor
 column aliases
columns
 joins
 table definitions
 UNION ALL operation
 UNION set operation
columns, tables
 adding, ALTER TABLE command
 aliases
 arithmetic operations
 data types, ALTER TABLE command
 deleting, ALTER TABLE command
commands
 ALTER COLUMN
 ALTER TABLE 2nd 3rd
 CREATE DATABASE
 CREATE INDEX
 CREATE SYNONYM
 CREATE TABLE 2nd
 CREATE VIEW
 DECLARE
 DELETE 2nd
 DELETE FROM
 DROP COLUMN
 DROP CONSTRAINT
 DROP INDEX
 DROP SYNONYM
 DROP TABLE
 DROP VIEW
 INDEX BY
 INNER JOIN
 INSERT
 INSERT INTO...SELECT
 INSERT...INTO
 JOIN
 SELECT
 SET
 UPDATE 2nd
 USE
 comments, statements
 concatenation, string functions
 constants, UNION operation
 constraints
 CHECK
 deleting
 NOT NULL
 PRIMARY KEY 2nd
 referential integrity
 UNIQUE
conversion functions
 CAST 2nd
 CONVERT
 STR
 CONVERT function 2nd
 correlated queries
 correlated subqueries 2nd
 EXISTS predicate
 IN predicate
 NOT EXISTS predicate
 COUNT function 2nd 3rd
 IS NOT NULL condition
 IS NULL condition
 CREATE DATABASE command
 CREATE INDEX command
 CREATE INDEX statement
 CREATE SYNONYM command
 CREATE TABLE command 2nd
 CREATE TABLE statement
 CREATE VIEW command
 CROSS JOIN
 CROSS JOIN query option

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 data in views
 data type precedence, parentheses
 data types
 BIGINT
 BINARY
 BIT
 CHAR
 CHARACTER
 character data types
 CHAR data type
 NCHAR data type
 NVARCHAR data type
 selecting
 TEXT data type
 Unicode character strings
 VARCHAR data type
 date and time data types
 DATETIME
 DEC
 DECIMAL
 FLOAT
 IMAGE
 INT
 INTEGER
 LONG
 miscellaneous data types
 BINARY data type
 BIT data type
 IMAGE data type
 monetary data types
 SQL_VARIANT data type
 TABLE data type
 UNIQUEIDENTIFIER data type
 XML data type
 MONEY
 NATIONAL CHARACTER
 NCHAR
 number data types
 NUMERIC
 numeric, integers
 NVARCHAR
 selection tips
 SMALLDATETIME
 SMALLINT
 SMALLMONEY
 SQL VARIANT
 TEXT
 TINYINT
 UNIQUE IDENTIFIER
 VARBINARY
 VARCHAR
 VARCHAR2
 XML
databases
 creating
 deleting
 master
 model
 msdb
 system, default
 tempdb
 date and time data types
date functions
 DATE TIME data type
 DATEADD
 DATEDIFF
 DATEPART
 DAY
 formats
 GETDATE
 MONTH 2nd
 YEAR
 DATE TIME data type
 DATEADD function 2nd
 DATEDIFF function 2nd
 DATEFORMAT function
 DATEPART function 2nd
 DATETIME data type
 DAY function 2nd
 DEC data type
 DECIMAL data type
 decimal data types
 DECLARE command
 DELETE command 2nd
 DELETE FROM command
deleting
 constraints
 databases
 indexes
 tables, DELETE command
derived structures
 query development and
 tables, temporary
 views
 column alises
 creating views
 data in
 ORDER BY claus
 SELECT INTO statement
 using views
 DESC function
 Designer tab
 difference operation, NOT IN predicate
 displaying data, SELECT statement
 DISTINCT function 2nd 3rd
 DROP COLUMN command
 DROP CONSTRAINT command
 DROP INDEX command
 DROP INDEX statement
 DROP SYNONYM command
 DROP TABLE command
 DROP VIEW command

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 entering queries
 entering statements
 Environment tab
 equi-joins
 non-equi joins
 ER diagram
 error messages, viewing
 executing queries
 stopping execution
 existential qualifiers
 EXISTS keyword
 EXISTS predicate, correlated subqueries
expressions
 parentheses in
 data type precedence and
 operator precedence and
 extraction, string functions

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 FLOAT data type
 FLOOR function
 foreign keys
 referential integrity constraints
 formats
 FROM, SELECT statement
 FULL OUTER JOIN
 functions
 ABS
 aggregate functions
 AVG 2nd
 COUNT 2nd 3rd
 MAX
 MIN
 SUM 2nd
 ASC
 CEILING
 conversion
 CAST
 CONVERT 2nd
 STR
 date functions
 DATEADD 2nd
 DATEDIFF 2nd
 DATEPART 2nd
 DAY 2nd
 GETDATE 2nd
 MONTH
 YEAR 2nd
 DATEFORMAT
 DESC
 FLOOR
 LIKE
 numeric
 row-level functions
 arithmetic operations on columns
 DISTINCT 2nd
 IS NOT NULL
 IS NULL
 ISNULL
 NULLIF 2nd
 ROUND 2nd
 TOP 2nd 3rd
 ROWCOUNT 2nd
 SET DATEFORMAT
 SORT
 SQUARE
 STR
 string functions
 CHARINDEX 2nd
 concatenation
 extraction
 LEFT 2nd
 LEN
 LOWER
 LTRIM
 RIGHT 2nd
 RTRIM 2nd
 SUBSTRING 2nd
 UPPER 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 GETDATE function 2nd
 grid form, query results
 GROUP BY clause
 aggregate functions and
 ORDER BY clause and
 DISTINCT function
 grouping, aggregates and
 GUID

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 HAVING clause 2nd
 aggregates and
 WHERE clause and

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 IMAGE data type 2nd
 IN operator
IN predicate
 correlated subqueries
 joins, examples
 set operations
 subqueries and
 INDEX BY command
 indexes
 deleting
 INNER JOIN command 2nd
 inner joins
 INSERT command
 INSERT INTO SELECT command
 INSERT INTO...SELECT command
 INSERT...INTO command
 INT data type
 INTEGER data type
 integer data types
integrity constraints
 CHECK
 UNIQUE
 INTERSECT operator, set operations 2nd
 IS NOT NULL condition, COUNT function
 IS NOT NULL function
 IS NULL condition, COUNT function
 ISNULL function 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 JOIN
 associative property
 CROSS JOIN
 nested
 OUTER JOIN
 FULL OUTER JOIN
 LEFT OUTER JOIN
 RIGHT OUTER JOIN
 syntax
 UNION and
 WHERE clause and
 joins
 columns
 equi-joins
 IN predicate and, examples
 INNER JOIN
 inner joins
 nested
 non-equi-joins
 ORDER BY clause and
 outer joins
 full outer join
 left outer join
 right outer join
 self-joins
 Student_course database
 subqueries as
 tables, multiple

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 LEFT function 2nd
 LEFT JOIN
 LEFT OUTER JOIN 2nd
 LEN string function 2nd
 LIKE clause
 LIKE function
 Load script, table creation
 LONG data type
 LOWER function
 LOWER string function
 LTRIM function
 LTRIM string function

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-APP-A-SECT-1]

A.1.

[bookmark: learnsqlsvr05-APP-A-SECT-1.1]

A.1.1. Brief English Description of the ER Diagram

[bookmark: IDX-APP-A-0003]

[bookmark: IDX-APP-A-0004]

			Student may be registered in one or more (M) Grade_Reports (Grade_report is for a specific course).

A Grade_Report must relate to one and only one (1) Student.

(Students may be in the database and not registered for any courses, but if a course is recorded in the Grade_report table, it must be related to one and only one student).

			A Section must have one or more (M) Grade_Reports (Sections only exist if they have students in them).

A Grade_Report must relate to one and only one (1) Section.

			A Section must relate to one and only one (1) Course.

A Course may be offered as one or more (M) Sections.

(Courses may exist where they are not offered in a section, but a section, if offered, must relate to one and only one course).

			A Student may be related to one and only one (1) Department_to_major (A student may or may not have declared a major).

A Department_to_major may have one or more (M) Students (A department may or may not have student-majors).

			A Course must be related to one and only one (1) Department_to_major.

A Department_to_major may offer one or more (M) Courses.

			A Section must be offered in one and only one (1) Room.

A Room may host one or more (M) Sections.

			A Course may have one or more (M) Prereq (A course may have one or more prerequisites).

A Prereq may be a prerequisite for one or more (M) Courses.

			A Student may have one or more (M) Dependents.

A Dependent must be related to one or more (N) Students.

[bookmark: learnsqlsvr05-APP-A-TABLE-2]

Table A-2. Table definition of other tables that have been used in this book

			

PLANTS

 COMPANY NVARCHAR(20)

 PLANTLO NVARCHAR(15)

 PRIMARY KEY(COMPANY, PLANTLO)

CAP

 NAME NVARCHAR(9)

 LANGU NVARCHAR(7)

 PRIMARY KEY(NAME, LANGU)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-APP-A]

Appendix A. The Student Database and Other Tables Used in This Book

[bookmark: learnsqlsvr05-APP-A-TABLE-1]

Table A-1. Table definitions of the tables in the Student_course database

			

STUDENT

 STNO NOT NULL SMALLINT PRIMARY KEY

 SNAME NVARCHAR(20)

 MAJOR NVARCHAR(4)

 CLASS SMALLINT

 BDATE SMALLDATETIME

DEPENDENT

 PNO SMALLINT

 DNAME NVARCHAR(20)

 RELATIONSHIP NVARCHAR(8)

 SEX CHAR(1)

 AGE SMALLINT

GRADE_REPORT

 STUDENT_NUMBER NOT NULL SMALLINT

 SECTION_ID NOT NULL SMALLINT

 GRADE CHAR(1)

 PRIMARY KEY(STUDENT_NUMBER, SECTION_ID)

SECTION

 SECTION_ID NOT NULL SMALLINT PRIMARY KEY

 COURSE_NUM NVARCHAR(8)

 SEMESTER NVARCHAR(6)

 YEAR CHAR(2)

 INSTRUCTOR NVARCHAR(10)

 BLDG SMALLINT

 ROOM SMALLINT

DEPARTMENT_TO_MAJOR

 DCODE NOT NULL NVARCHAR(4) PRIMARY KEY

 DNAME NVARCHAR(20)

COURSE

 COURSE_NAME NVARCHAR(20)

 COURSE_NUMBER NOT NULL NVARCHAR(8) PRIMARY KEY NOT NULL

 CREDIT_HOURS SMALLINT

 OFFERING_DEPT NVARCHAR(4)

 ROOM

 BLDG NOT NULL SMALLINT

 ROOM NOT NULL SMALLINT

 CAPACITY SMALLINT

 OHEAD NVARCHAR(1)

 PRIMARY KEY(BLDG, ROOM)

 PREREQ

 COURSE_NUMBER NVARCHAR(8)

 PREREQU NVARCHAR(8)

 PRIMARY KEY (COURSE_NUMBER, PREREQ)

			ER Diagram for the Student_course Database

[bookmark: learnsqlsvr05-APP-A-FIG-1]

Figure A-1. Diagram for the Student_course database

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-APP-B]

Appendix B. Script Used to Create the Student_course Database

Here we present the actual script[bookmark: IDX-APP-B-0005]

 used to create the Student_Course database.

drop table student;

drop table grade_report;

drop table section;

drop table department_to_major;

drop table plants;

drop table prereq;

drop table course;

drop table cap;

drop table room;

drop table teststu;

create table Student

(STNO SMALLINT PRIMARY KEY NOT NULL,

 SNAME NVARCHAR(20) NULL,

 MAJOR NVARCHAR(4) NULL,

 CLASS SMALLINT NULL,

 BDATE SMALLDATETIME NULL)

;

create table Grade_report

(STUDENT_NUMBER SMALLINT NOT NULL,

 SECTION_ID SMALLINT NOT NULL,

 GRADE CHAR(1),

 CONSTRAINT stno_secid PRIMARY KEY (STUDENT_NUMBER, SECTION_ID))

;

create table Section

(SECTION_ID SMALLINT PRIMARY KEY NOT NULL,

 COURSE_NUM NVARCHAR(8),

 SEMESTER NVARCHAR(6),

 YEAR CHAR(2),

 INSTRUCTOR NVARCHAR(10),

 BLDG SMALLINT,

 ROOM SMALLINT)

;

create table Department_to_major

(Dcode NVARCHAR(4) PRIMARY KEY NOT NULL,

 DNAME NVARCHAR(20))

;

create table Plants

(COMPANY NVARCHAR(20),

 PLANTLO NVARCHAR(15))

;

create table Prereq

(COURSE_NUMBER NVARCHAR(8),

 PREREQ NVARCHAR(8),

 CONSTRAINT couno_pre PRIMARY KEY(COURSE_NUMBER, PREREQ))

;

create table Course

(COURSE_NAME NVARCHAR(20),

 COURSE_NUMBER NVARCHAR(8) PRIMARY KEY NOT NULL,

 CREDIT_HOURS SMALLINT,

 OFFERING_DEPT NVARCHAR(4))

;

create table Cap

(NAME NVARCHAR(9),

 LANGU NVARCHAR(7))

;

create table Room

 (BLDG SMALLINT NOT NULL,

 ROOM SMALLINT NOT NULL,

 CAPACITY SMALLINT,

 OHEAD NVARCHAR(1),

 CONSTRAINT bldg_room PRIMARY KEY(BLDG, ROOM))

;

create table Dependent

(PNO SMALLINT NOT NULL,

 DNAME NVARCHAR(20) NULL,

 RELATIONSHIP NVARCHAR(8) NULL,

 SEX CHAR(1) NULL,

 AGE SMALLINT NULL)

;

insert into cap values('BRENDA','FRENCH');

insert into cap values('BRENDA','CHINESE');

insert into cap values('RICHARD','CHINESE');

insert into cap values('RICHARD','GERMAN');

insert into cap values('MARY JO','FRENCH');

insert into cap values('RICHARD','FRENCH');

insert into cap values('LUJACK','GERMAN');

insert into cap values('LUJACK','CHINESE');

insert into cap values('MARY JO','GERMAN');

insert into cap values('MARY JO','CHINESE');

insert into cap values('MELANIE','FRENCH');

insert into cap values('LUJACK','FRENCH');

insert into cap values('MELANIE','CHINESE');

insert into cap values('BRENDA','SPANISH');

insert into cap values('RICHARD','SPANISH');

insert into cap values('JOE','CHINESE');

insert into cap values('LUJACK','SPANISH');

insert into cap values('KENT','CHINESE');

insert into course values('ACCOUNTING I','ACCT2020',3,'ACCT');

insert into course values('ACCOUNTING II ','ACCT2220',3,'ACCT');

insert into course values('MANAGERIAL FINANCE','ACCT3333',3,'ACCT');

insert into course values('ACCOUNTING INFO SYST','ACCT3464',3,'ACCT');

insert into course values('INTRO TO COMPUTER SC','COSC1310',4,'COSC');

insert into course values('TURBO PASCAL','COSC2025',3,'COSC');

insert into course values('ADVANCED COBOL','COSC2303',3,'COSC');

insert into course values('DATA STRUCTURES ','COSC3320',4,'COSC');

insert into course values('DATABASE','COSC3380',3,'COSC');

insert into course values('OPERATIONS RESEARCH ','COSC3701',3,'COSC');

insert into course values('ADVANCED ASSEMBLER','COSC4301',3,'COSC');

insert into course values('SYSTEM PROJECT','COSC4309',3,'COSC');

insert into course values('ADA - INTRODUCTION','COSC5234',4,'COSC');

insert into course values('NETWORKS','COSC5920',3,'COSC');

insert into course values('ENGLISH COMP I','ENGL1010',3,'ENGL');

insert into course values('ENGLISH COMP II ','ENGL1011',3,'ENGL');

insert into course values('WRITING FOR NON MAJO','ENGL3520',2,'ENGL');

insert into course values('ALGEBRA ','MATH2333',3,'MATH');

insert into course values('DISCRETE MATHEMATICS','MATH2410',3,'MATH');

insert into course values('CALCULUS 1','MATH1501',4,'MATH');

insert into course values('AMERICAN CONSTITUTIO','POLY1201',1,'POLY');

insert into course values('INTRO TO POLITICAL S','POLY2001',3,'POLY');

insert into course values('AMERICAN GOVERNMENT ','POLY2103',2,'POLY');

insert into course values('SOCIALISM AND COMMUN','POLY4103',4,'POLY');

insert into course values('POLITICS OF CUBA','POLY5501',4,'POLY');

insert into course values('TECHNICAL WRITING ','ENGL3402',2,'ENGL');

insert into course values('FUND. TECH. WRITING ','ENGL3401',3,'ENGL');

insert into course values('INTRO TO CHEMISTRY','CHEM2001',3,'CHEM');

insert into course values('ORGANIC CHEMISTRY ','CHEM3001',3,'CHEM');

insert into course values('CALCULUS 2','MATH1502',3,'MATH');

insert into course values('CALCULUS 3','MATH1503',3,'MATH');

insert into course values('MATH ANALYSIS','MATH5501',3,'MATH');

insert into department_to_major values('ACCT','Accounting');

insert into department_to_major values('ART','Art');

insert into department_to_major values('COSC','Computer Science');

insert into department_to_major values('ENGL','English');

insert into department_to_major values('MATH','Mathematics');

insert into department_to_major values('POLY','Political Science');

insert into department_to_major values('UNKN',null);

insert into department_to_major values('CHEM','Chemistry');

insert into grade_report values(2,85,'D');

insert into grade_report values(2,102,'B');

insert into grade_report values(2,126,'B');

insert into grade_report values(2,127,'A');

insert into grade_report values(2,145,'B');

insert into grade_report values(3,85,'A');

insert into grade_report values(3,87,'B');

insert into grade_report values(3,90,'B');

insert into grade_report values(3,91,'B');

insert into grade_report values(3,92,'B');

insert into grade_report values(3,96,'B');

insert into grade_report values(3,101,null);

insert into grade_report values(3,133,null);

insert into grade_report values(3,134,null);

insert into grade_report values(3,135,null);

insert into grade_report values(8,85,'A');

insert into grade_report values(8,92,'A');

insert into grade_report values(8,96,'C');

insert into grade_report values(8,102,'B');

insert into grade_report values(8,133,null);

insert into grade_report values(8,134,null);

insert into grade_report values(8,135,null);

insert into grade_report values(10,101,null);

insert into grade_report values(10,112,null);

insert into grade_report values(10,119,null);

insert into grade_report values(10,126,'C');

insert into grade_report values(10,127,'A');

insert into grade_report values(10,145,'C');

insert into grade_report values(13,85,'B');

insert into grade_report values(13,95,'B');

insert into grade_report values(13,99,null);

insert into grade_report values(13,109,null);

insert into grade_report values(13,119,null);

insert into grade_report values(13,133,null);

insert into grade_report values(13,134,null);

insert into grade_report values(13,135,null);

insert into grade_report values(14,102,'B');

insert into grade_report values(14,112,null);

insert into grade_report values(14,91,'A');

insert into grade_report values(14,135,null);

insert into grade_report values(14,145,'B');

insert into grade_report values(14,158,'B');

insert into grade_report values(15,85,'F');

insert into grade_report values(15,92,'B');

insert into grade_report values(15,99,null);

insert into grade_report values(15,102,'B');

insert into grade_report values(15,135,null);

insert into grade_report values(15,145,'B');

insert into grade_report values(15,158,'C');

insert into grade_report values(17,112,null);

insert into grade_report values(17,119,null);

insert into grade_report values(17,135,null);

insert into grade_report values(19,102,'B');

insert into grade_report values(19,119,null);

insert into grade_report values(19,133,null);

insert into grade_report values(19,158,'D');

insert into grade_report values(20,87,'A');

insert into grade_report values(20,94,'C');

insert into grade_report values(6,201,null);

insert into grade_report values(8,201,null);

insert into grade_report values(24,90,'B');

insert into grade_report values(34,90,'B');

insert into grade_report values(49,90,'C');

insert into grade_report values(62,90,'C');

insert into grade_report values(70,90,'C');

insert into grade_report values(121,90,'B');

insert into grade_report values(122,90,'B');

insert into grade_report values(123,90,'B');

insert into grade_report values(125,90,'C');

insert into grade_report values(126,90,'C');

insert into grade_report values(127,90,'C');

insert into grade_report values(128,90,'F');

insert into grade_report values(129,90,'A');

insert into grade_report values(130,90,'C');

insert into grade_report values(131,90,'C');

insert into grade_report values(132,90,'B');

insert into grade_report values(142,90,'A');

insert into grade_report values(143,90,'B');

insert into grade_report values(144,90,'B');

insert into grade_report values(145,90,'F');

insert into grade_report values(146,90,'B');

insert into grade_report values(147,90,'C');

insert into grade_report values(148,90,'C');

insert into grade_report values(31,90,'C');

insert into grade_report values(151,90,'C');

insert into grade_report values(153,90,'C');

insert into grade_report values(155,90,'B');

insert into grade_report values(157,90,'B');

insert into grade_report values(158,90,'C');

insert into grade_report values(163,90,'C');

insert into grade_report values(161,90,'C');

insert into grade_report values(160,90,'C');

insert into grade_report values(5,90,'C');

insert into grade_report values(7,90,'C');

insert into grade_report values(9,90,'F');

insert into grade_report values(62,94,'C');

insert into grade_report values(70,94,'C');

insert into grade_report values(49,94,'C');

insert into grade_report values(5,94,'C');

insert into grade_report values(6,94,'C');

insert into grade_report values(7,94,'C');

insert into grade_report values(8,94,'C');

insert into grade_report values(9,94,'F');

insert into grade_report values(5,95,'B');

insert into grade_report values(6,95,'B');

insert into grade_report values(7,95,'B');

insert into grade_report values(8,95,'B');

insert into grade_report values(9,95,'F');

insert into grade_report values(121,95,'B');

insert into grade_report values(122,95,'B');

insert into grade_report values(123,95,'B');

insert into grade_report values(125,95,'B');

insert into grade_report values(126,95,'B');

insert into grade_report values(127,95,'B');

insert into grade_report values(128,95,'F');

insert into grade_report values(129,95,'B');

insert into grade_report values(130,95,'C');

insert into grade_report values(121,94,'B');

insert into grade_report values(122,94,'B');

insert into grade_report values(123,94,'B');

insert into grade_report values(125,94,'C');

insert into grade_report values(126,94,'C');

insert into grade_report values(127,94,'C');

insert into grade_report values(128,94,'F');

insert into grade_report values(129,94,'A');

insert into grade_report values(130,94,'C');

insert into grade_report values(24,95,'B');

insert into grade_report values(24,96,'B');

insert into grade_report values(24,97,null);

insert into grade_report values(24,98,null);

insert into grade_report values(24,99,null);

insert into grade_report values(24,100,null);

insert into grade_report values(34,98,null);

insert into grade_report values(34,97,null);

insert into grade_report values(34,93,'A');

insert into grade_report values(49,98,null);

insert into grade_report values(49,97,null);

insert into grade_report values(49,93,'A');

insert into grade_report values(123,98,null);

insert into grade_report values(123,97,null);

insert into grade_report values(123,93,'A');

insert into grade_report values(125,98,null);

insert into grade_report values(125,97,null);

insert into grade_report values(125,93,'A');

insert into grade_report values(126,98,null);

insert into grade_report values(126,97,null);

insert into grade_report values(126,93,'A');

insert into grade_report values(127,98,null);

insert into grade_report values(127,97,null);

insert into grade_report values(127,93,'A');

insert into grade_report values(142,100,null);

insert into grade_report values(143,100,null);

insert into grade_report values(144,100,null);

insert into grade_report values(145,100,null);

insert into grade_report values(146,100,null);

insert into grade_report values(147,100,null);

insert into grade_report values(148,100,null);

insert into grade_report values(142,107,null);

insert into grade_report values(143,107,null);

insert into grade_report values(144,107,null);

insert into grade_report values(145,107,null);

insert into grade_report values(146,107,null);

insert into grade_report values(147,107,null);

insert into grade_report values(148,107,null);

insert into grade_report values(142,202,null);

insert into grade_report values(143,202,null);

insert into grade_report values(144,202,null);

insert into grade_report values(145,202,null);

insert into grade_report values(146,202,null);

insert into grade_report values(147,202,null);

insert into grade_report values(148,202,null);

insert into grade_report values(142,88,null);

insert into grade_report values(143,88,null);

insert into grade_report values(144,88,null);

insert into grade_report values(145,88,null);

insert into grade_report values(146,88,null);

insert into grade_report values(147,88,null);

insert into grade_report values(148,88,null);

insert into grade_report values(142,89,'A');

insert into grade_report values(143,89,'B');

insert into grade_report values(144,89,'B');

insert into grade_report values(145,89,'F');

insert into grade_report values(146,89,'B');

insert into grade_report values(147,89,'B');

insert into grade_report values(148,89,'B');

insert into grade_report values(151,97,null);

insert into grade_report values(153,97,null);

insert into grade_report values(155,97,null);

insert into grade_report values(157,97,null);

insert into grade_report values(158,97,null);

insert into grade_report values(160,97,null);

insert into grade_report values(161,97,null);

insert into grade_report values(163,97,null);

insert into grade_report values(151,109,null);

insert into grade_report values(153,109,null);

insert into grade_report values(155,109,null);

insert into grade_report values(157,109,null);

insert into grade_report values(158,109,null);

insert into grade_report values(160,109,null);

insert into grade_report values(161,109,null);

insert into grade_report values(163,109,null);

insert into grade_report values(151,201,null);

insert into grade_report values(153,201,null);

insert into grade_report values(155,201,null);

insert into grade_report values(157,201,null);

insert into grade_report values(158,201,null);

insert into grade_report values(160,201,null);

insert into grade_report values(161,201,null);

insert into grade_report values(163,201,null);

insert into plants values('GULP OIL','PITTSBURGH');

insert into plants values('GULP OIL','GULF BREEZE');

insert into plants values('GULP OIL','MOBILE');

insert into plants values('GULP OIL','SAN FRANCISCO');

insert into plants values('GULP OIL','HONOLULU');

insert into plants values('GULP OIL','BINGHAMTON');

insert into plants values('IBN COMPUTERS','PITTSBURGH');

insert into plants values('IBN COMPUTERS','GULF BREEZE');

insert into plants values('IBN COMPUTERS','MOBILE');

insert into plants values('IBN COMPUTERS','SAN FRANCISCO');

insert into plants values('IBN COMPUTERS','HONOLULU');

insert into plants values('IBN COMPUTERS','BINGHAMTON');

insert into plants values('BO$S TIRES','PITTSBURGH');

insert into plants values('BO$S TIRES','GULF BREEZE');

insert into plants values('BO$S TIRES','MOBILE');

insert into plants values('BO$S TIRES','SAN FRANCISCO');

insert into plants values('BO$S TIRES','HONOLULU');

insert into plants values('BO$S TIRES','BINGHAMTON');

insert into plants values('BANK D$AMERICER','PITTSBURGH');

insert into plants values('BANK D$AMERICER','GULF BREEZE');

insert into plants values('BANK D$AMERICER','MOBILE');

insert into plants values('BANK D$AMERICER','SAN FRANCISCO');

insert into plants values('BANK D$AMERICER','HONOLULU');

insert into plants values('BANK D$AMERICER','BINGHAMTON');

insert into plants values('COLONEL MOTORS','PITTSBURGH');

insert into plants values('COLONEL MOTORS','GULF BREEZE');

insert into plants values('COLONEL MOTORS','SAN FRANCISCO');

insert into plants values('COLONEL MOTORS','HONOLULU');

insert into plants values('COLONEL MOTORS','BINGHAMTON');

insert into plants values('COLONEL MOTORS','TUSCALOOSA');

insert into plants values('COKE COLA','PITTSBURGH');

insert into plants values('COKE COLA','GULF BREEZE');

insert into plants values('COKE COLA','MOBILE');

insert into plants values('COKE COLA','SAN FRANCISCO');

insert into plants values('COKE COLA','HONOLULU');

insert into plants values('COKE COLA','BINGHAMTON');

insert into plants values('COKE COLA','TUSCALOOSA');

insert into plants values('WENDIES','PITTSBURGH');

insert into plants values('WENDIES','GULF BREEZE');

insert into plants values('WENDIES','MOBILE');

insert into plants values('WENDIES','SAN FRANCISCO');

insert into plants values('WENDIES','HONOLULU');

insert into plants values('WENDIES','BINGHAMTON');

insert into plants values('WENDIES','TUSCALOOSA');

insert into plants values('CAPTAIN E$S','PITTSBURGH');

insert into plants values('CAPTAIN E$S','GULF BREEZE');

insert into plants values('CAPTAIN E$S','MOBILE');

insert into plants values('CAPTAIN E$S','SAN FRANCISCO');

insert into plants values('CAPTAIN E$S','HONOLULU');

insert into plants values('CAPTAIN E$S','BINGHAMTON');

insert into plants values('CAPTAIN E$S','TUSCALOOSA');

insert into plants values('RADAR SHACK','PITTSBURGH');

insert into plants values('RADAR SHACK','GULF BREEZE');

insert into plants values('RADAR SHACK','SAN FRANCISCO');

insert into plants values('RADAR SHACK','HONOLULU');

insert into plants values('RADAR SHACK','BINGHAMTON');

insert into plants values('RADAR SHACK','TUSCALOOSA');

insert into plants values('PHIL$S BAKE SHOP','PITTSBURGH');

insert into plants values('PHIL$S BAKE SHOP','GULF BREEZE');

insert into plants values('PHIL$S BAKE SHOP','SAN FRANCISCO');

insert into plants values('PHIL$S BAKE SHOP','HONOLULU');

insert into plants values('PHIL$S BAKE SHOP','BINGHAMTON');

insert into plants values('PHIL$S BAKE SHOP','TUSCALOOSA');

insert into plants values('WYATT$S TOMBSTONE','PITTSBURGH');

insert into plants values('WYATT$S TOMBSTONE','GULF BREEZE');

insert into plants values('WYATT$S TOMBSTONE','SAN FRANCISCO');

insert into plants values('WYATT$S TOMBSTONE','HONOLULU');

insert into plants values('WYATT$S TOMBSTONE','BINGHAMTON');

insert into plants values('WYATT$S TOMBSTONE','TUSCALOOSA');

insert into plants values('EAST PUBLISHING','PITTSBURGH');

insert into plants values('EAST PUBLISHING','GULF BREEZE');

insert into plants values('EAST PUBLISHING','SAN FRANCISCO');

insert into plants values('EAST PUBLISHING','HONOLULU');

insert into plants values('EAST PUBLISHING','BINGHAMTON');

insert into plants values('EAST PUBLISHING','TUSCALOOSA');

insert into plants values('UTAH BOB$S','PITTSBURGH');

insert into plants values('UTAH BOB$S','GULF BREEZE');

insert into plants values('UTAH BOB$S','SAN FRANCISCO');

insert into plants values('UTAH BOB$S','HONOLULU');

insert into plants values('UTAH BOB$S','BINGHAMTON');

update plants set company = replace(company,'$','''');

insert into prereq values('ACCT3333','ACCT2220');

insert into prereq values('COSC3320','COSC1310');

insert into prereq values('COSC3380','COSC3320');

insert into prereq values('COSC3380','MATH2410');

insert into prereq values('COSC5234','COSC3320');

insert into prereq values('ENGL1011','ENGL1010');

insert into prereq values('ENGL3401','ENGL1011');

insert into prereq values('ENGL3520','ENGL1011');

insert into prereq values('MATH5501','MATH2333');

insert into prereq values('POLY2103','POLY1201');

insert into prereq values('POLY5501','POLY4103');

insert into prereq values('CHEM3001','CHEM2001');

insert into room values(13,101,85,'Y');

insert into room values(36,123,35,'N');

insert into room values(58,114,60,null);

insert into room values(79,179,35,'Y');

insert into room values(79,174,22,'Y');

insert into room values(58,112,40,null);

insert into room values(36,122,25,'N');

insert into room values(36,121,25,'N');

insert into room values(36,120,25,'N');

insert into room values(58,110,null,'Y');

insert into section values(85,'MATH2410','FALL','98','KING',36,123);

insert into section values(86,'MATH5501','FALL','98','EMERSON',36,123);

insert into section values(87,'ENGL3401','FALL','98','HILLARY',13,101);

insert into section values(88,'ENGL3520','FALL','99','HILLARY',13,101);

insert into section values(89,'ENGL3520','SPRING','99','HILLARY',13,101);

insert into section values(90,'COSC3380','SPRING','99','HARDESTY',79,179);

insert into section values(91,'COSC3701','FALL','98',null,79,179);

insert into section values(92,'COSC1310','FALL','98','ANDERSON',79,179);

insert into section values(93,'COSC1310','SPRING','99','RAFAELT',79,179);

insert into section values(94,'ACCT3464','FALL','98','RODRIGUEZ',74,null);

insert into section values(95,'ACCT2220','SPRING','99','RODRIQUEZ',74,null);

insert into section values(96,'COSC2025','FALL','98','RAFAELT',79,179);

insert into section values(97,'ACCT3333','FALL','99','RODRIQUEZ',74,null);

insert into section values(98,'COSC3380','FALL','99','HARDESTY',79,179);

insert into section values(99,'ENGL3401','FALL','99','HILLARY',13,101);

insert into section values(102,'COSC3320','SPRING','99','KNUTH',79,179);

insert into section values(107,'MATH2333','SPRING','00','CHANG',36,123);

insert into section values(109,'MATH5501','FALL','99','CHANG',36,123);

insert into section values(112,'MATH2410','FALL','99','CHANG',36,123);

insert into section values(119,'COSC1310','FALL','99','ANDERSON',79,179);

insert into section values(126,'ENGL1010','FALL','98','HERMANO',13,101);

insert into section values(127,'ENGL1011','SPRING','99','HERMANO',13,101);

insert into section values(133,'ENGL1010','FALL','99','HERMANO',13,101);

insert into section values(134,'ENGL1011','SPRING','00','HERMANO',13,101);

insert into section values(135,'COSC3380','FALL','99','STONE',79,179);

insert into section values(145,'COSC1310','SPRING','99','JONES',79,179);

insert into section values(158,'MATH2410','SPRING','98',null,36,123);

insert into section values(201,'CHEM2001','FALL','99',null,58,114);

insert into section values(202,'CHEM3001','SPRING','00','CARNEAU',58,null);

insert into section values(100,'POLY1201','FALL','99','SCHMIDT',null,null);

insert into section values(101,'POLY2103','SPRING','00','SCHMIDT',null,null);

insert into section values(104,'POLY4103','SPRING','00','SCHMIDT',null,null);

insert into student values(2,'Lineas','ENGL','1','15-APR-80');

insert into student values(3,'Mary','COSC','4','16-JUL-78');

insert into student values(8,'Brenda','COSC','2','13-AUG-77');

insert into student values(10,'Richard','ENGL','1','13-MAY-80');

insert into student values(13,'Kelly','MATH','4','12-AUG-80');

insert into student values(14,'Lujack','COSC','1','12-FEB-77');

insert into student values(15,'Reva','MATH','2','10-JUN-80');

insert into student values(17,'Elainie','COSC','1','12-AUG-76');

insert into student values(19,'Harley','POLY','2','16-APR-81');

insert into student values(20,'Donald','ACCT','4','15-OCT-77');

insert into student values(24,'Chris','ACCT','4','12-FEB-78');

insert into student values(34,'Lynette','POLY','1','16-JUL-81');

insert into student values(49,'Susan','ENGL','3','11-MAR-80');

insert into student values(62,'Monica','MATH','3','14-OCT-80');

insert into student values(70,'Bill','POLY',null,'14-OCT-80');

insert into student values(121,'Hillary','COSC','1','16-JUL-77');

insert into student values(122,'Phoebe','ENGL','3','15-APR-80');

insert into student values(123,'Holly','POLY','4','15-JAN-81');

insert into student values(125,'Sadie','MATH','2','12-AUG-80');

insert into student values(126,'Jessica','POLY','2','16-JUL-81');

insert into student values(127,'Steve','ENGL','1','11-MAR-80');

insert into student values(128,'Brad','COSC','1','10-SEP-77');

insert into student values(129,'Cedric','ENGL','2','15-APR-80');

insert into student values(130,'Alan','COSC','2','16-JUL-77');

insert into student values(131,'Rachel','ENGL','3','15-APR-80');

insert into student values(132,'George','POLY','1','16-APR-81');

insert into student values(142,'Jerry','COSC','4','12-MAR-78');

insert into student values(143,'Cramer','ENGL','3','15-APR-80');

insert into student values(144,'Fraiser','POLY','1','16-JUL-81');

insert into student values(145,'Harrison','ACCT','4','12-FEB-77');

insert into student values(146,'Francis','ACCT','4','11-JUN-77');

insert into student values(147,'Smithly','ENGL','2','13-MAY-80');

insert into student values(148,'Sebastian','ACCT','2','14-OCT-76');

insert into student values(31,'Jake','COSC','4','12-FEB-78');

insert into student values(151,'Losmith','CHEM','3','15-JAN-81');

insert into student values(153,'Genevieve','UNKN',null,'15-OCT-79');

insert into student values(155,'Lindsay','UNKN','1','15-OCT-79');

insert into student values(157,'Stephanie','MATH',null,'16-APR-81');

insert into student values(158,'Thornton',null,null,'15-OCT-79');

insert into student values(163,'Lionel',null,null,'15-OCT-79');

insert into student values(161,'Benny','CHEM','4','10-JUN-80');

insert into student values(160,'Gus','ART ','3','15-OCT-78');

insert into student values(5,'Zelda','COSC',null,'12-FEB-78');

insert into student values(7,'Mario','MATH',null,'12-AUG-80');

insert into student values(9,'Romona','ENGL',null,'15-APR-80');

insert into student values(6,'Ken','POLY',null,'15-JUL-80');

insert into student values(88,'Smith',null,null,'15-OCT-79');

insert into student values(191,'Jake','MATH','2','10-JUN-80');

insert into dependent values(2,'Matt','Son','M',8);

insert into dependent values(2,'Mary','Daughter','F',9);

insert into dependent values(2,'Beena','Spouse','F',31);

insert into dependent values(10,'Amit','Son','M',3);

insert into dependent values(10,'Shantu','Daughter','F',5);

insert into dependent values(14,'Raju','Son','M',1);

insert into dependent values(14,'Rani',' ','F',3);

insert into dependent values(17,'Susan','Daughter','F',4);

insert into dependent values(17,'Sam','Son','M',1);

insert into dependent values(20,'Donald II','Son','M',Null);

insert into dependent values(20,'Chris','Son','M',6);

insert into dependent values(34,'Susan','Daughter','F',5);

insert into dependent values(34,'Monica','Daughter','F',1);

insert into dependent values(62,'Tom','Husband','M',45);

insert into dependent values(62,'James','Son','M',14);

insert into dependent values(62,'Hillary','Daughter','F',16);

insert into dependent values(62,'Phoebe','Daughter','F',12);

insert into dependent values(123,'James','Son','M',5);

insert into dependent values(123,'Jon','Son','M',2);

insert into dependent values(126,'Om','Son','M',6);

insert into dependent values(126,'Prakash','Son','M',1);

insert into dependent values(128,'Mithu','Son','M',1);

insert into dependent values(128,'Mita','Daughter','F',Null);

insert into dependent values(128,'Nita','Daughter','F',2);

insert into dependent values(128,'Barbara','Wife','F',26);

insert into dependent values(132,'Rekha','Daughter','F',6);

insert into dependent values(142,'Rakhi','Daughter','F',2);

insert into dependent values(143,'Mona','Daughter','F',7);

insert into dependent values(144,'Susan','Wife','F',22);

insert into dependent values(145,'Susie','Wife','F',22);

insert into dependent values(146,'Xi du','Wife','F',22);

insert into dependent values(147,'Barbara','Wife','F',23);

insert into dependent values(147,'Sebastian','Son','M',4);

insert into dependent values(147,'Jake','Son','M',2);

insert into dependent values(147,'Losmith','Son','M',Null);

insert into dependent values(153,'Madhu','Daughter','F',5);

insert into dependent values(153,'Mamta','Daughter','F',4);

insert into dependent values(153,'Mahesh','Son','M',2);

insert into dependent values(158,'Sally','wife', 'F',22);

select top 6 sname, major, class into teststu from student;

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

About the Author

Dr. Sikha Bagui is an Assistant Professor in the Department of Computer Science at the University of West Florida in Pensacola. She teaches a variety of computer science courses and database courses, and her research areas are database design, data mining, pattern recognition, and statistical computing. Dr. Bagui has published many journal articles and co-authored several books with Dr. Earp. Books co-authored with Dr. Earp are Learning SQL: A Step-by-Step Guide using Oracle and Learning SQL: A Step-by-Step Guide using Access, both published by Addison Wesley; Database Design Using ER Diagrams, published by CRC Press, and Advanced SQL Functions in Oracle 10g, published by Wordware Publishing.

Dr. Richard Walsh Earp is the former Chair of and a former Associate Professor in the Department of Computer Science at the University of West Florida in Pensacola, Florida. He also served at Dean of the College of Science and Technology at that institution. He has taught a variety of computer science courses, including database systems and advanced database systems. Dr. Earp has authored and co-authored several papers and has co-authored several books with Dr. Bagui. Dr. Earp was also an instructor with Learning Tree International for several years and worked for Computer Sciences Corporation at the Naval Air Station in Pensacola, Florida as a database consultant after his retirement from academia.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-1]

1.1. Starting Microsoft SQL Server 2005 and SQL Server 2005's Management Studio

[bookmark: IDX-CHP-1-0006]

To start Microsoft SQL Server 2005 and open up SQL Server 2005's Management Studio, follow these steps:

From the Start menu, go to All Programs, select Microsoft SQL Server 2005, and then SQL Server Management Studio (as shown in the Figure 1-1).

You will get the screen shown in Figure 1-2. This screen allows you to connect to Microsoft SQL Server 2005. If the server type and server name are different from the defaults that came up, enter the appropriate server type and server name, and select Windows Authentication. Then, click Connect.

[bookmark: learnsqlsvr05-CHP-1-FIG-1]

Figure 1-1. Opening Microsoft SQL Server 2005 and SQL Server Management Studio

[image:]

						[image:]			Your system may require a username and password for each SQL Server instance.

Once connected to the server that you typed in, you will get the Microsoft SQL Server Management Studio screen (Figure 1-3) that we will be using throughout the rest of the book.

[bookmark: learnsqlsvr05-CHP-1-FIG-2]

Figure 1-2. Connecting to Microsoft SQL Server 2005

[image:]

[bookmark: learnsqlsvr05-CHP-1-FIG-3]

Figure 1-3. Connected to Microsoft SQL Server 2005's Server

[image:]

The Microsoft SQL Server Management Studio screen contains the Object Explorer on the left portion of the screen and, to start with, a Summary tab on the right portion of the screen. The Object Explorer provides a hierarchical view of objects. For example, you can navigate through a database, table, column, or other types of objects, as we will soon show you.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-10]

1.10. Entering a SQL Query or Statement

[bookmark: IDX-CHP-1-0036]

[bookmark: IDX-CHP-1-0037]

[bookmark: IDX-CHP-1-0038]

[bookmark: IDX-CHP-1-0039]

[bookmark: IDX-CHP-1-0040]

Like every computer language, a SQL query or statement is used to give instructions to the computer. A query is a request for data stored in SQL Server. The computer analyzes each instruction and interprets it. If the instruction is "understandable" to the computer, the computer produces a result. If the computer cannot figure out what the instruction means, it displays an error message.

In this book, we focus on Transact-SQL (T-SQL), SQL Server's variant of SQL. In SQL Server 2005, the SQL query is typed in the query editor screen, as shown in Figure 1-12. But, before you type in your query, make sure the database that you wish to work with is active or open. To type in or work on the queries in this book, the Student_course database should be active or open.

Right click on Student_course and then select New Query. Type the following SQL query in the resulting screen:

 USE Student

 SELECT *

 FROM Student

USE Student opens the Student_course database, as shown in Figure 1-12. SELECT is the SQL keyword that means "select data" or "retrieve the following data from the database." The * is interpreted to mean "show all columns in the result." FROM is the keyword that names the source of the data, and Student is the name of a table. So this is a simple SQL query that tells SQL Server to display all the rows and columns (all the data) in the Student table.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-11]

1.11. Parsing a Query

Before you execute your query, you may parse your query. The Parse Query button is shown in Figure 1-25. By parsing[bookmark: IDX-CHP-1-0041]

 the query you can make sure that your query is correctly written, before you execute your query.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-12]

1.12. Executing a Query

[bookmark: IDX-CHP-1-0042]

[bookmark: IDX-CHP-1-0043]

[bookmark: IDX-CHP-1-0044]

[bookmark: IDX-CHP-1-0045]

To execute a query, click the Execute button, shown in Figure 1-25. If there are no errors in the query, the Execute button will execute (run) the query and the results will show on the results pane (bottom partition) of the screen.

[bookmark: learnsqlsvr05-CHP-1-FIG-25]

Figure 1-25. Displaying output

[image:]

[bookmark: learnsqlsvr05-CHP-1-SECT-12.1]

1.12.1. Color Coding

The automatic color coding[bookmark: IDX-CHP-1-0046]

 of SQL code in the query editor will help you type in your SQL query correctly. It will help you prevent and resolve errors. If you are using the default color codes, for example, and you type in a keyword that is not displayed in blue, the keyword is probably misspelled. If your code is displayed in red, you might have omitted a closing quotation mark for a character string.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-13]

1.13. Saving a Query

To save a query, while the query is on the query editor screen, from the top menu, select File and Save SQLQuery1.sql As.... A dialog box will open up and you will be able to type the name under which you want to save your query, and you will also be able to navigate to the directory to which you want to save your query.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-14]

1.14. Displaying the Results

[bookmark: IDX-CHP-1-0047]

[bookmark: IDX-CHP-1-0048]

[bookmark: IDX-CHP-1-0049]

[bookmark: IDX-CHP-1-0050]

Results in SQL Server 2005 are displayed in the Results pane. The Results pane is shown in Figure 1-25. SQL queries[bookmark: IDX-CHP-1-0051]

 can be executed to view results in grid form[bookmark: IDX-CHP-1-0052]

 or text form, or the results can be saved to a file, as discussed in the following subsections.

[bookmark: learnsqlsvr05-CHP-1-SECT-14.1]

1.14.1. Viewing Results in Grid Form

The grid form displays the results in spreadsheet-like grids. To execute a query and view query results in grid form, first click the "Results to grid" icon (this icon is shown in Figure 1-26) and then click the Execute button.

[bookmark: learnsqlsvr05-CHP-1-FIG-26]

Figure 1-26. Displaying the results icons

[image:]

						[image:]			You may also click <F5> on the keyboard to execute queries.

You will now get the results in grid form, as shown in Figure 1-27.

On Figure 1-27, on the bottom panel of the screen, the name of the database and the number of rows in the result set are displayed.

[bookmark: learnsqlsvr05-CHP-1-FIG-27]

Figure 1-27. Viewing results in grid form

[image:]

[bookmark: learnsqlsvr05-CHP-1-SECT-14.2]

1.14.2. Viewing Results in Text Form

[bookmark: IDX-CHP-1-0053]

[bookmark: IDX-CHP-1-0054]

[bookmark: IDX-CHP-1-0055]

[bookmark: IDX-CHP-1-0056]

To execute a query and view query results in text form,[bookmark: IDX-CHP-1-0057]

 click on the "Results to text" icon (shown in Figure 1-26) and then click the Execute button. You will now get the results in text form, as shown in Figure 1-25. Viewing the output in text form may make it easier for you to copy and paste the output into a word processor, from where you can print the output easily. Figure 1-25 also displays, on the bottom panel of the screen, the name of the database and the number of rows in the result set.

[bookmark: learnsqlsvr05-CHP-1-SECT-14.3]

1.14.3. Saving Results to File

To save your query results to a file, from Figure 1-26, select Results to File icon (this icon is shown in Figure 1-26), and then click the Execute button. The Save Results window will come up and you will be able to select the appropriate directory and enter the appropriate filename and save the results to file for later use. The Results to File option produces output formatted for Crystal Reports. Crystal Reports is the best-selling database reporting tool and is included with SQL Server. It is beyond our scope to discuss Crystal Reports here.

To open this Crystal Report (the saved file), select File from the top menu, Open, and then File (as shown in Figure 1-28). Then, navigate to the directory where you saved your file, select your file, and your results will be displayed on the screen.

[bookmark: learnsqlsvr05-CHP-1-FIG-28]

Figure 1-28. Opening Crystal Reports

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-15]

1.15. Stopping Execution of a Long Query

[bookmark: IDX-CHP-1-0058]

[bookmark: IDX-CHP-1-0059]

[bookmark: IDX-CHP-1-0060]

[bookmark: IDX-CHP-1-0061]

[bookmark: IDX-CHP-1-0062]

[bookmark: IDX-CHP-1-0063]

[bookmark: IDX-CHP-1-0064]

If you want to stop the execution of a long-running query, you may click on the Cancel Query Execution button (shown in Figure 1-26), or you may press Alt-Break.

[bookmark: learnsqlsvr05-CHP-1-SECT-15.1]

1.15.1. Viewing Error Messages

To view error messages, click on the Message tab (shown in Figure 1-27). This displays the messages (as well as error messages) of the SQL query output.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-16]

1.16. Printing the Query and Results

Once the SQL query is on the query editor screen, you can print the query by selecting File->Print from the top menu.

To print the results, the query should be executed in the Results in Text mode. Then, when the results are displayed in the bottom window partition (the results pane), place your cursor in the results pane by clicking anywhere in the results pane (see Figure 1-25 for the results pane), and then select File [image:] Print from the top menu.

When the results are saved to file, they can, of course, be retrieved and printed from the file.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-17]

1.17. Customizing SQL Server 2005

[bookmark: IDX-CHP-1-0065]

You can customize some options in SQL Server 2005 by selecting Tools [image:] Options from the top menu. You will get the following tabs: Environment, Source Control, Text Editor, Query Execution, Query Results, Designers.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.1]

1.17.1. The Environment tab

[bookmark: IDX-CHP-1-0066]

The Environment tab has the General, Fonts and Colors, Keyboards and Help options. Among other options, the General tab allows you to change the default start-up window options of SQL Server 2005. The Fonts and Colors option allows you to change, among other things, an items foreground and background color. The Keyboard option allows you to change keyboarding options like Shortcuts.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.2]

1.17.2. The Source Control Tab

The Source Control tab specifies the source control plug-in to use with Microsoft SQL Server Management Studio and allows changes to plug-in specific options.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.3]

1.17.3. The Text Editor Tab

The Text Editor tab[bookmark: IDX-CHP-1-0067]

 allows you to change the default editor and change other language and text options.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.4]

1.17.4. The Query Execution Tab

The Query Execution tab[bookmark: IDX-CHP-1-0068]

 allows you to change the default ROWCOUNT options, TEXTSIZE options, execution time-out length, and other settings.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.5]

1.17.5. The Query Results Tab

The Query Results tab[bookmark: IDX-CHP-1-0069]

 allows you to change the default type for results, the default location for results to be saved, and other settings.

[bookmark: learnsqlsvr05-CHP-1-SECT-17.6]

1.17.6. The Designer Tab

The Designer tab[bookmark: IDX-CHP-1-0070]

 allows you to change the default table and database designer settings.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-18]

1.18. Summary

In this chapter, we have shown you how to start Microsoft SQL Server 2005 and SQL Server 2005's Management Studio. We have also shown you how to create the Student_course database that we will be using throughout the rest of this book. In addition, we have demonstrated how to work with tables. We have shown you how to type, parse, execute and save a simple query. In the process, we have also familiarized you with the main screens and workings of SQL Server 2005's Management Studio. Towards the end of the chapter, we showed you how to change (or customize) some of SQL Server 2005's default settings to suit your needs.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-19]

1.19. Review Questions

			If I want to see what fields a table is made of, and what the sizes of the fields are, what option do I have to look for?

			What is a query?

			A SQL query is typed in the _________ .

			What is the purpose of the model database?

			What is the purpose of the master database?

			What is the purpose of the tempdb database?

			What is the purpose of the USE command?

			If you delete a table in the database, will the data in the table be deleted too?

			What is the Parse Query button used for? How does this help you?

			Tables are created in a ____________________ in SQL Server 2005.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-2]

1.2. Creating a Database in Microsoft SQL Server 2005

[bookmark: IDX-CHP-1-0007]

Before we begin to work with Microsoft SQL Server 2005, we will create a database. To create a database, as shown in Figure 1-4, right click on Databases in the Object Explorer and select New Database... from the context menu.

[bookmark: learnsqlsvr05-CHP-1-FIG-4]

Figure 1-4. Creating a New Database

[image:]

You will get the New Database dialog box,[bookmark: IDX-CHP-1-0008]

 as shown in Figure 1-5. We will create a database called Student_course.

[bookmark: learnsqlsvr05-CHP-1-FIG-5]

Figure 1-5. Typing in the database name

[image:]

Type in your database name as Student_course. You may leave the Owner as <default[bookmark: IDX-CHP-1-0009]

[bookmark: IDX-CHP-1-0010]

> for now, as shown in Figure 1-5. Click OK. You will get the screen shown in Figure 1-6.

[bookmark: learnsqlsvr05-CHP-1-FIG-6]

Figure 1-6. The Student_course database

[image:]

The Student_course database has now been created. Note the newly created Student_course database icon under the Summary tab on the righthand side of the screen below Databases (see Figure 1-6).

In order to view the Student_course database under the Object Explorer (on the left side of your screen) right away, you may have to first right-click on the Databases node and then select Refresh.

Then, as shown in Figure 1-6, you may now expand the Databases node by clicking on the + sign beside Databases under the Object Explorer, and you also will see the Student_course database node under and Databases (under the Object Explorer on the left portion of your screen), as shown in Figure 1-7.

[bookmark: learnsqlsvr05-CHP-1-SECT-2.1]

1.2.1. Objects in the Student_course Database

[bookmark: IDX-CHP-1-0011]

A SQL Server database is a collection of many objects,[bookmark: IDX-CHP-1-0012]

 such as tables, views, and synonyms, defined to support activities performed with data.

From Figure 1-7, expand the Student_course database node by clicking on the + sign beside the Student_course node, and you will get the screen shown in Figure 1-8, which shows the default objects that are in the Student_course database.

[bookmark: learnsqlsvr05-CHP-1-SECT-2.2]

1.2.2. Default Tables in the Student_course Database

A database is a collection of related tables. So far we have created the Student_course database, but we have not created any tables.

[bookmark: learnsqlsvr05-CHP-1-FIG-7]

Figure 1-7. The Student_course database under the Object Explorer

[image:]

[bookmark: learnsqlsvr05-CHP-1-FIG-8]

Figure 1-8. Viewing the Objects in the Student_course database

[image:]

To view the default tables in the Student_course database, expand the Tables node (as shown in Figure 1-9), and the only default table in the Student_course database, System Tables, will be displayed.

[bookmark: learnsqlsvr05-CHP-1-FIG-9]

Figure 1-9. System tables in the Student_coursedatabase

[image:]

At this point you may click on the - sign beside the Tables node, and then on the - sign beside the Student_course node to close those up, and you will get back to Figure 1-7.

[bookmark: learnsqlsvr05-CHP-1-SECT-2.3]

1.2.3. Default System Databases

[bookmark: IDX-CHP-1-0013]

[bookmark: IDX-CHP-1-0014]

SQL Server 2005 comes with some default System databases--master, model, msdb, and tempdb. To view these default database nodes, expand the Database node and then System Databases node, as shown in Figure 1-10, and you will be able to see the default System databases.

[bookmark: learnsqlsvr05-CHP-1-FIG-10]

Figure 1-10. Default System Databases

[image:]

master[bookmark: IDX-CHP-1-0015]

 is a database composed of system tables that keeps track of server installation as a whole and all other databases that are subsequently created. The SQL Server Management Studio query window defaults to the master database context. Any queries executed from the query window will execute in the master database unless you change the context.

model[bookmark: IDX-CHP-1-0016]

 is a template database. Every time a new database is created, SQL Server makes a copy of the model database[bookmark: IDX-CHP-1-0017]

 (and all of the objects in it) to form the basis of the new database. If you want all your new databases to inherit certain properties, you could include these properties and objects in your model database.

msdb[bookmark: IDX-CHP-1-0018]

 is a database that contains the metadata and database objects used by the SQL Server agent that performs scheduled activities such as backups and replication tasks.

tempdb[bookmark: IDX-CHP-1-0019]

 is a temporary database or workspace recreated every time SQL Server is restarted. tempdb is used for temporary tables created by users and to hold intermediate results created internally by SQL Server during query processing and sorting.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-20]

1.20. Exercises

The tables available in the Student_course database are shown in Appendix A.

			The Student_course database contains the following tables: Student, Dependent, Grade_report, Section, Department, Course, Prereq, Room, Cap, Plants.

			View the table definition of each of these tables.

			View the data of each of these tables. Save your results to a file and print them out.

			Write a SQL query to view all the columns and rows in the Student table. (Hint: To retrieve all columns, use SELECT * in your query; the * means "all columns"). Save and execute the query. Save the results to a file and print out the results.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-3]

1.3. The Query Editor

[bookmark: IDX-CHP-1-0020]

[bookmark: IDX-CHP-1-0021]

[bookmark: IDX-CHP-1-0022]

The most important thing you do in SQL Server 2005, or in any other database for that matter, is query the database. Queries in SQL Server 2005 are typed in the query editor. The query editor can be opened in two ways, as discussed in the following subsections: (a) by right-clicking,[bookmark: IDX-CHP-1-0023]

 and (b) by using the New Query button.

[bookmark: learnsqlsvr05-CHP-1-SECT-3.1]

1.3.1. Opening the Query Editor by Right-Clicking

Select the Student_course database and right-click, as shown in Figure 1-11. Select New Query.

Figure 1-12 shows the query editor, which can be used to create queries and other SQL scripts and execute them against SQL Server databases.

The first query will be called SQLQuery1.sql by default. Later we will show you how to change the name of the query when saving it.

If the query editor is opened in this way, the Student_course database automatically becomes the database against which the queries are executed, because you initially selected Student_course and then right-clicked. If we want to work in our Student_course database, we have to make sure that the Student_course database is active. If the Student_course database is not active, we have to activate itwe show you how to do this in different ways in the following sections.

[bookmark: learnsqlsvr05-CHP-1-FIG-11]

Figure 1-11. Opening the query editor

[image:]

[bookmark: learnsqlsvr05-CHP-1-FIG-12]

Figure 1-12. The query editor

[image:]

[bookmark: learnsqlsvr05-CHP-1-SECT-3.2]

1.3.2. Opening the Query Editor Using the New Query Button

You can also open the query editor by selecting the New Query button[bookmark: IDX-CHP-1-0024]

 from the top menu (leftmost icon), as shown in Figure 1-13.

[bookmark: learnsqlsvr05-CHP-1-FIG-13]

Figure 1-13. Using the New Query icon

[image:]

If you used the New Query icon from Figure 1-13 (without selecting the Student_course database), you will get Figure 1-14. Here, note that the Student_course database is not the active database; master is the active database, because SQL Server 2005 defaults to master.

[bookmark: learnsqlsvr05-CHP-1-FIG-14]

Figure 1-14. The query screen

[image:]

But we want to use the Student_course database that we just created, so we have to activate the Student_course database. Click on the drop-down icon of the Combo box beside master and select Student_course, as shown in Figure 1-15. This step activates or opens the Student_course database.

[bookmark: learnsqlsvr05-CHP-1-FIG-15]

Figure 1-15. Selecting the Student_course database

[image:]

[bookmark: learnsqlsvr05-CHP-1-SECT-3.3]

1.3.3. Opening or Activating the Database Using USE

[bookmark: IDX-CHP-1-0025]

You can also activate or open the Student_course database by typing in the following in the query editor (as shown in Figure 1-16):

 USE Student_course

[bookmark: learnsqlsvr05-CHP-1-FIG-16]

Figure 1-16. Using USE

[image:]

Then, click the Execute button (it is on the menu bar above the query editor screen). You will get the following message in the results pane (as shown in Figure 1-16):

 Command(s) completed successfully

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-4]

1.4. Creating Tables Using the Load Script

[bookmark: IDX-CHP-1-0026]

[bookmark: IDX-CHP-1-0027]

A table is used to store data in a database, and, a database is typically composed of many tables.

After the Student_course database is opened or activated, you need to create tables in the Student_course database and insert data into the tables. To do this, run (execute) the load script, SQLServer2005_load.sql, that you downloaded and saved to your working directory.

Go to the directory where you saved the load script, SQLServer2005_load.sql. Double-click SQLServer2005_load.sql. Then, select the whole script and copy it. This script will be pasted into SQL Server 2005's query editor. Open SQL Server 2005's query editor as shown in Figure 1-12. Make sure that the Student_course database is active. Paste the load script into the query editor, as shown in the Figure 1-17.

[bookmark: learnsqlsvr05-CHP-1-FIG-17]

Figure 1-17. Pasting the load script into the query editor

[image:]

Once the script has been pasted into the query editor, execute this script by clicking the Execute button or the F5 shortcut key. This script takes only a few seconds to execute. You will get the results shown in Figure 1-18--on the bottom part of the screen under the Messages tab.

[bookmark: learnsqlsvr05-CHP-1-FIG-18]

Figure 1-18. Executed load script

[image:]

This script creates the tables Cap, Course, Department_to_major, Dependent, Grade_report, Plants, Prereq, Room, Section, Student, and teststu, in the Student_course database and inserts data into them. The tables in the Student_course database are laid out in Appendix A. We also present the T-SQL for the load script in Appendix B.

To view the tables that were created by the load script, expand the Student_course node and then expand the Tables node. You will get the screen shown in Figure 1-19. Every table shows up as a node under Student_course.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-5]

1.5. Viewing Table Definitions

[bookmark: IDX-CHP-1-0028]

Every table in SQL Server 2005 has a table definition. The table definition gives us information about a table such as the column names in the table, the data types of the columns in the table and whether the columns allow null (missing) values.

To view the definition of the Student table for example, expand the Student node by clicking on the + sign beside it, and then expand the Columns node, by clicking on the + sign beside it, as shown in Figure 1-20. You will be able to view the columns[bookmark: IDX-CHP-1-0029]

 in the Student table. The columns in the Student table are stno, sname, major, class, and bdate.

[bookmark: learnsqlsvr05-CHP-1-FIG-19]

Figure 1-19. Viewing the tables in the Student_coursedatabase

[image:]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-6]

1.6. Modifying Table Definitions

[bookmark: IDX-CHP-1-0030]

If you wish to modify any of the column specificationsfor example, if you want to insert or delete columns, rename a column, change the data type of a column, or allow or disallow null fieldsyou need to modify the table definition. The table definition can be modified by modifying[bookmark: IDX-CHP-1-0031]

 the column definition or by modifying the table definition.

[bookmark: learnsqlsvr05-CHP-1-SECT-6.1]

1.6.1. Modifying Column Definitions

To modify the column definition, right-click the column that you wish to modify. For example, if you wish to modify the column definition of the SNAME field of the Student table, as seen in Figure 1-20, right-click the SNAME field of the Student table (as shown in Figure 1-21), and select one of the following optionsNew Column, Modify, Rename, Delete, Refresh or Properties.

[bookmark: learnsqlsvr05-CHP-1-FIG-20]

Figure 1-20. Viewing the table definition of the Student table

[image:]

[bookmark: learnsqlsvr05-CHP-1-SECT-6.2]

1.6.2. Modifying the Table Definition Directly

Another way to view or modify the table definition is to right-click the tablefor example, Student--and then select Modify, as shown in Figure 1-22.

The table definition of the Student table is now displayed, as shown in Figure 1-23.

You can delete or insert columns from here, change the data types, allow or disallow null values, and more. Once you have finished making your changes (or just viewing the table definition, if that is what you intended to do), you can close this window. You will be asked if you wish to save the changes and you may select Yes or No, depending on whether you made changes to the table definition and you want to save the changes.

[bookmark: learnsqlsvr05-CHP-1-FIG-21]

Figure 1-21. Modifying the column definition

[image:]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-7]

1.7. Viewing Table Data

[bookmark: IDX-CHP-1-0032]

To view the data in a table, right click on the table, as shown in Figure 1-22, and select Open Table. For example, to view the data of the Student table, right-click on the Student table, and select Open Table. This will show all 48 rows of the Student table, of which we show the first 14 rows here:

 STNO SNAME MAJOR CLASS BDATE

 ----- ------- ------ ----- ----------------------

 2 Lineas ENGL 1 4/15/1980 12:00:00 AM

 3 Mary COSC 4 7/16/1978 12:00:00 AM

 8 Brenda COSC 2 8/13/1977 12:00:00 AM

 10 Richard ENGL 1 5/13/1980 12:00:00 AM

 13 Kelly MATH 4 8/12/1980 12:00:00 AM

 14 Lujack COSC 1 2/12/1977 12:00:00 AM

 15 Reva MATH 2 6/10/1980 12:00:00 AM

 17 Elainie COSC 1 8/12/1976 12:00:00 AM

 19 Harley POLY 2 4/16/1981 12:00:00 AM

 20 Donald ACCT 4 10/15/1977 12:00:00 AM

 24 Chris ACCT 4 2/12/1978 12:00:00 AM

 34 Lynette POLY 1 7/16/1981 12:00:00 AM

 49 Susan ENGL 3 3/11/1980 12:00:00 AM

 62 Monica MATH 3 10/14/1980 12:00:00 AM

 .

 .

 .

This screen also allows you to insert data, make changes to the data, and save this changed data.

[bookmark: learnsqlsvr05-CHP-1-FIG-22]

Figure 1-22. Modifying/viewing the table definition

[image:]

[bookmark: learnsqlsvr05-CHP-1-FIG-23]

Figure 1-23. Viewing the table definition of the Student table using the Modify option

[image:]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-8]

1.8. Deleting a Table

[bookmark: IDX-CHP-1-0033]

[bookmark: IDX-CHP-1-0034]

[bookmark: IDX-CHP-1-0035]

To delete a table, right-click on the table that you wish to delete (as shown in Figure 1-22), and then select Delete. Deleting a table will delete the table, table definition, and all of the data in the table.

						[image:]			Once you delete a table, there will be no way to get the table or its data back except by restoring from a backup. Be very careful that you indeed intend to permanently dispose of data before selecting Delete.

Do not delete any tables right now. We provide this information for later reference, should you have to delete tables.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1-SECT-9]

1.9. Deleting a Database

To delete a database, right-click on the database that you would like to delete, and select Delete, as shown in Figure 1-24.

						[image:]			But please do not delete the database right now.

[bookmark: learnsqlsvr05-CHP-1-FIG-24]

Figure 1-24. Deleting a database

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-1]

Chapter 1. Starting Microsoft SQL Server 2005

This chapter introduces SQL Server 2005 and SQL Server 2005's Management Studio and its basic workings. You will learn how to create a database, view the objects and default tables in a database, use a query editor, activate the database in different ways, and create tables in the database using a load script. The load script is available at http://www.cs.uwf.edu/~sbagui. The load script will create the Student_course database for you. This database will be used throughout the rest of the book to learn SQL. At this point, you may want to copy the load script, SQLServer2005_load.sql, to your working directory on your computer, before you start working on the next section. Right-click on the script on the web site, select Save Target As, and save it to your working directory.

In this chapter, you will also learn how to view and modify table definitions; delete a table and a database; type, parse, execute and save a query; display the results in different forms; stop execution of a query; and print the query and results. The final section of this chapter discusses customizing SQL Server 2005's settings.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-1]

10.1. Noncorrelated Subqueries

[bookmark: IDX-CHP-10-0460]

A noncorrelated subquery is a subquery that is independent of the outer query. In other words, the subquery could be executed on its own. The following is an example of a query that is not correlated:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.grade = 'A')

The first part of the preceding query (the first three lines) is the main, outer query, and the second part (the part in parentheses) is the subquery (also referred to as an inner, nested, or embedded query). To demonstrate that this subquery is an independent entity, you could run it by itself:

SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.grade = 'A'

which would produce the following output (17 rows):

student_number

2

3

8

8

10

14

20

129

142

129

34

49

123

125

126

127

142

(17 row(s) affected)

The preceding subquery is thought of as being evaluated first, creating the set of student numbers who have As. Then, the subquery's result set is used to determine which rows (tuples) in the main query will be SELECTed. So, the full query results in the following output (14 rows):

sname

Lineas

Mary

Brenda

Richard

Lujack

Donald

Lynette

Susan

Holly

Sadie

Jessica

Steve

Cedric

Jerry

(14 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-2]

10.2. Correlated Subqueries

[bookmark: IDX-CHP-10-0461]

As stated at the beginning of the chapter, a correlated subquery is an inner subquery whose information is referenced by the main, outer query such that the inner query may be thought of as being executed repeatedly.

Correlated subqueries present a different execution scenario to the database manipulation language (DML) than do ordinary, noncorrelated subqueries. The correlated subquery cannot stand alone, as it depends on the outer query; therefore, completing the subquery prior to execution of the outer query is not an option. The efficiency of the correlated subquery varies; it may be worthwhile to test the efficiency of correlated subqueries versus joins or sets.

						[image:]			One situation in which you cannot avoid correlation is the "for all" query, which is discussed later in this chapter.

To illustrate how a correlated subquery works, the following is an example of the non-correlated subquery from the previous section revised as a correlated subquery:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.student_number = s.stno

 AND gr.grade = 'A')

This query produces the following output (14 rows), which is the same as the output of the noncorrelated subquery (shown earlier):

sname

Lineas

Mary

Brenda

Richard

Lujack

Donald

Lynette

Susan

Holly

Sadie

Jessica

Steve

Cedric

Jerry

(14 row(s) affected)

In this example, the inner query (the part in parentheses) references the outer oneobserve the use of s.stno in the WHERE clause of the inner query. Rather than thinking of this query as creating a set of student numbers that have As, each row from the outer query can be considered to be SELECTed individually and tested against all rows of the inner query one at a time until it is determined whether a given student number is in the inner set and whether that student earned an A.

This query was illustrated with and without correlation. You might think that a correlated subquery is less efficient than doing a simple subquery, because the simple subquery is done once, whereas the correlated subquery is done once for each outer row. However, the internal handling of how the query executes depends on the SQL and the optimizer for that database engine.

The correlated subquery acts like a nested DO loop in a programming language, where the first row from the Student table is SELECTed and tested against all the rows in the Grade_report table, and then the second Student row is SELECTed and tested against all rows in the Grade_report table. The following is the DO loop in pseudocode:

LOOP1: For each row in Student s DO

 LOOP2: For each row in Grade_report gr DO

 IF (gr.student_number = s.stno) THEN

 IF (gr.grade = 'B') THEN TRUE

 END LOOP2;

 IF TRUE, THEN Student row is SELECTed

END LOOP1

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-3]

10.3. Existence Queries and Correlation

[bookmark: IDX-CHP-10-0462]

[bookmark: IDX-CHP-10-0463]

Correlated queries are often written so that the question in the inner query is one of existence. For example, suppose you want to find the names of students who have taken a computer science (COSC) class and have earned a grade of B in that course. This query can be written in several ways. For example, you can write it as a noncorrelated subquery as follows:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number FROM Grade_report gr, Section

 WHERE Section.section_id = gr.section_id

 AND Section.course_num LIKE 'COSC%'

 AND gr.grade = 'B')

This query produces the following output (17 rows):

sname

Lineas

Mary

Brenda

Lujack

Reva

Harley

Chris

Lynette

Hillary

Phoebe

Holly

George

Cramer

Fraiser

Francis

Lindsay

Stephanie

(17 row(s) affected)

You can think of this query as first forming the set of student numbers of students who have made Bs in COSC coursesthe inner query result set. In the inner query, you must have both the Grade_report table (for the grades) and the Section table (for the course numbers). Once you form this set of student numbers (by completing the inner query), the outer query looks through the Student table and SELECTs only those students who are in the inner query set.

						[image:]			This query could also be done by creating a double-nested subquery containing two INs, or it could be written using a three-table join.

Had we chosen to write the query with an unnecessary correlation, it might look like this:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number

 FROM Grade_report gr, Section

 WHERE Section.section_id = gr.section_id

 AND Section.course_num LIKE 'COSC%'

 AND gr.student_number = s.stno

 AND gr.grade = 'B')

The output of this query would be the same as the previous query. In this case, the use of the Student table in the subquery is unnecessary. Although correlation is unnecessary, this example is included to show the following:

			When correlation is necessary

			How to untangle unnecessarily correlated queries

			How you might migrate your thought process toward correlation, should it be necessary

First, let's look at situations in which the correlation of a subquery is necessary, and introduce a new predicate: EXISTS.

[bookmark: learnsqlsvr05-CHP-10-SECT-3.1]

10.3.1. Using EXISTS

[bookmark: IDX-CHP-10-0464]

[bookmark: IDX-CHP-10-0465]

In situations in which the correlation of a subquery is necessary, you can write the correlated subquery with the EXISTS predicate, which looks like this:

SELECT s.sname

FROM Student s

WHERE EXISTS

 (SELECT 1 FROM Grade_report gr, Section

 WHERE Section.section_id = gr.section_id

 AND Section.course_num LIKE 'COSC%'

 AND gr.student_number = s.stno

 AND gr.grade = 'B')

The output of this query would be the same as the output (17 rows) of both of the previous queries.

Let's dissect this query. The EXISTS predicate says, "Choose the row from the Student table in the outer query if the subquery is true (that is, if a row in the subquery exists that satisfies the condition in the subquery WHERE clause)." Because no actual result set is formed, "SELECT 1" is used as a "dummy" result set to indicate that the subquery is true (1 is returned) or false (no rows are returned). In the noncorrelated case, we tied the student number in the Student table to the inner query by the IN predicate as follows:

SELECT s.stno

FROM Student s

WHERE s.stno IN

 (SELECT "student number ...)

When using the EXISTS predicate, we do not use any column of the Student table, but rather are seeking only to find whether the subquery WHERE can be satisfied.

We have indicated that we are using EXISTS with (SELECT 1...). Using the EXISTS predicate, the subquery does not form a result set per se, but rather causes EXISTS to returns true or false. The use of SELECT * in the inner query is common among SQL programmers. However, from an "internal" standpoint, SELECT * causes the SQL engine to check the data dictionary unnecessarily. As the actual result of the inner query is not important, it is strongly suggested that you use SELECT 'X' (or SELECT 1 ...) instead of SELECT * ... so that a constant is SELECTed instead of some "sensible" entry. The SELECT 'X' .. or SELECT 1 ... is simply more efficient.

In the EXISTS case, we do not specify any columns to be SELECTed in the inner query's result set; rather, we use a dummy result--SELECT 'X' (or we could use SELECT 1). If the subquery WHERE is satisfied, it returns true, and if the inner query is not satisfied, it selects nothing, then the subquery returns false. The EXISTS predicate forces us to correlate the query. To illustrate that correlation is usually necessary with EXISTS, consider the following query:

SELECT s.sname

FROM Student s

WHERE EXISTS

 (SELECT 'X' FROM Grade_report gr, Section t

 WHERE t.section_id = gr.section_id

 AND t.course_num LIKE 'COSC%'

 AND gr.grade = 'B')

This query produces 48 rows of output (of which we show the first 20 rows):

sname

Lineas

Mary

Zelda

Ken

Mario

Brenda

Romona

Richard

Kelly

Lujack

Reva

Elainie

Harley

Donald

Chris

Jake

Lynette

Susan

Monica

Bill.

.

.

(48 row(s) affected)

This query uses EXISTS, but has no correlation. This syntax infers that for each student row, we test the joined Grade_report and Section tables to see whether there is a course number like COSC and a grade of B (which, of course, there is). We unnecessarily ask the subquery question over and over again. The result from this latter, uncorrelated EXISTS query is the same as the following:

SELECT s.sname

FROM Student s

The point is that the correlation is usually necessary when we use EXISTS.

Consider another example in which a correlation could be used. Suppose that we want to find the names of all students who have three or more Bs. A first pass at a query might be something like this:

SELECT s.sname

FROM Student s WHERE "something" IN

 (SELECT "something"

 FROM Grade_report

 WHERE "count of grade = 'B'" > 2)

This query can be done with a HAVING clause, as you saw previously (Chapter 9), but we want to show how to do this in yet another way. Suppose we arrange the subquery to use the student number (stno) from the Student table as a filter and count in the subquery only when a row in the Grade_report table correlates to that student. The query (this time with an implied EXISTS) looks like this:

SELECT s.sname

FROM Student s

WHERE 2 < (SELECT COUNT(*)

 FROM Grade_report gr

 WHERE gr.student_number = s.stno

 AND gr.grade = 'B')

which results in the following output (8 rows):

sname

Lineas

Mary

Lujack

Reva

Chris

Hillary

Phoebe

Holly

(8 row(s) affected)

Although there is no EXISTS in this query, it is implied. The syntax of the query does not allow an EXISTS, but the sense of the query is "WHERE EXISTS a COUNT of 2 which is less than..." In this correlated subquery, we have to examine the Grade_report table for each member of the Student table to see whether the student has more than two Bs. We test the entire Grade_report table for each student row in the outer query.

If it were possible, a subquery without the correlation would be more desirable, because it would appear simpler to understand. The overall query might be as follows:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (subquery that defines a set of students who have made 3 Bs)

Therefore, we might attempt to write the following query:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.grade = 'B')

However, as the following output (27 rows) shows, this query would give us only students who earned at least one B:

sname

Lineas

Mary

Zelda

Ken

Mario

Brenda

Kelly

Lujack

Reva

Harley

Chris

Lynette

Hillary

Phoebe

Holly

Sadie

Jessica

Steve

Cedric

George

Cramer

Fraiser

Francis

Smithly

Sebastian

Lindsay

Stephanie

(27 row(s) affected)

To get a list of students who have earned at least three Bs, we could try the following query:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number, COUNT(*)

 FROM Grade_report gr

 WHERE gr.grade = 'B'

 GROUP BY gr.student_number

 HAVING COUNT(*) > 2)

However, this approach does not work, because the subquery cannot have two columns in its result set unless the main query has two columns in the WHERE .. IN.

Here, the subquery must have only gr.student_number to match s.stno. So, we might try to construct an inline view, as shown in the following query:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT vi.student_number

 FROM (SELECT student_number, ct = COUNT(*)

 FROM Grade_report gr

 WHERE gr.grade = 'B'

 GROUP BY student_number

 HAVING COUNT(*) > 2) AS vi)

This is an example of the inline view, discussed in Chapter 6. This query succeeds in SQL Server 2005, producing the following output (8 rows):

sname

Lineas

Mary

Lujack

Reva

Chris

Hillary

Phoebe

Holly

(8 row(s) affected)

						[image:]			This query also works in Oracle, but it may fail in other SQL languages.

As you can see, several ways exist to query the database with SQL. In this case, the correlated subquery may be the easiest to see and perhaps the most efficient.

[bookmark: learnsqlsvr05-CHP-10-SECT-3.2]

10.3.2. From IN to EXISTS

[bookmark: IDX-CHP-10-0466]

[bookmark: IDX-CHP-10-0467]

A simple example of converting from IN to EXISTS--uncorrelated to correlated (or vice versa)--would be to move the set test in the WHERE .. IN of the uncorrelated subquery to the WHERE of the EXISTS in the correlated query.

As an example, consider the following uncorrelated subquery:

SELECT *

FROM Student s

WHERE s.stno IN

 (SELECT g.student_number

 FROM Grade_report g

 WHERE grade = 'B')

The following is the same query written as a correlated subquery:

SELECT *

FROM Student s

WHERE EXISTS

 (SELECT g.student_number

 FROM Grade_report g

 WHERE grade = 'B'

 AND s.stno = g.student_number)

This query produces 27 rows of output (of which we show the first 15 rows):

STNO SNAME MAJOR CLASS BDATE

------ -------------------- ----- ------ -----------------------

2 Lineas ENGL 1 1980-04-15 00:00:00

3 Mary COSC 4 1978-07-16 00:00:00

5 Zelda COSC NULL 1978-02-12 00:00:00

6 Ken POLY NULL 1980-07-15 00:00:00

7 Mario MATH NULL 1980-08-12 00:00:00

8 Brenda COSC 2 1977-08-13 00:00:00

13 Kelly MATH 4 1980-08-12 00:00:00

14 Lujack COSC 1 1977-02-12 00:00:00

15 Reva MATH 2 1980-06-10 00:00:00

19 Harley POLY 2 1981-04-16 00:00:00

24 Chris ACCT 4 1978-02-12 00:00:00

34 Lynette POLY 1 1981-07-16 00:00:00

121 Hillary COSC 1 1977-07-16 00:00:00

122 Phoebe ENGL 3 1980-04-15 00:00:00

123 Holly POLY 4 1981-01-15 00:00:00.

.

.

(27 row(s) affected)

This example gives you a pattern to move from one kind of query to the other kind and to test the efficiency of both kinds of queries. Both of the preceding queries should produce the same output.

[bookmark: learnsqlsvr05-CHP-10-SECT-3.3]

10.3.3. NOT EXISTS

[bookmark: IDX-CHP-10-0468]

[bookmark: IDX-CHP-10-0469]

As with the IN predicate, which has a NOT IN compliment, EXISTS may also be used with NOT. In some situations, the predicates EXISTS and NOT EXISTS are vital. For example, if we ask a "for all" question, it must be answered by "existence"--actually, the lack thereof (that is, "not existence"). In logic, the statement, "find x for all y" is logically equivalent to "do not find x where there does not exist a y." Or, there is no x for no y. Or, you cannot find an x when there is no y.

In SQL, there is no "for all" predicate. Instead, SQL uses the idea of "for all" logic with NOT EXISTS. (A word of caution, howeverSQL is not simply a logic exercise, as you will see.) In this section, we look at how EXISTS and NOT EXISTS work in SQL. In the following section, we address the "for all" problem.

Consider the following query:

SELECT s.sname

FROM Student s

WHERE EXISTS

 (SELECT 'X'

 FROM Grade_report gr

 WHERE s.stno = gr.student_number

 AND gr.grade = 'C')

which produces the following output (24 rows):

sname

Zelda

Ken

Mario

Brenda

Richard

Reva

Donald

Jake

Susan

Monica

Bill

Sadie

Jessica

Steve

Alan

Rachel

Smithly

Sebastian

Losmith

Genevieve

Thornton

Gus

Benny

Lionel

(24 row(s) affected)

For this correlated subquery, "student names" are SELECTed when:

			The student is enrolled in a section (WHERE s.stno = gr.student_number)

			The same student has a grade of C (note the correlation in the WHERE clause in the inner query)

Both statements must be true for the student row to be SELECTed. Recall that we use SELECT 1 or SELECT 'X' in our inner query, because we want the subquery to return something if the subquery is true. The actual value of the "something" does not matter. true means something is returned; false means nothing was returned from the subquery. Therefore, SELECT .. EXISTS "says" SELECT .. WHERE true. The inner query is true if any row is SELECTed in the inner query.

Now consider the preceding query with a NOT EXISTS in it instead of EXISTS for students who do not have a grade of C:

SELECT s.sname

FROM Student s

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Grade_report gr

 WHERE s.stno = gr.student_number

 AND gr.grade = 'C')

This query produces the following output (24 rows):

sname

Lineas

Mary

Romona

Kelly

Lujack

Elainie

Harley

Chris

Lynette

Smith

Hillary

Phoebe

Holly

Brad

Cedric

George

Jerry

Cramer

Fraiser

Harrison

Francis

Lindsay

Stephanie

Jake

(24 row(s) affected)

In this query, we are still SELECTing with the pattern SELECT .. WHERE true because all SELECTs with EXISTS work that way. But, the twist is that the subquery has to be false to be SELECTed with NOT EXISTS. If the subquery is false, then NOT EXISTS is true and the outer row is SELECTed.

Now, logic implies that if either s.stno <> gr.student_number or gr.grade <> 'C', then the subquery "fails"--that is, it is false for that student row. As the subquery is false, the NOT EXISTS would return a TRue for that row. Unfortunately, this logic is not quite what happens. Recall that we characterized the correlated subquery as follows:

LOOP1: For each row in Student s DO

 LOOP2: For each row in Grade_report DO

 IF (gr.student_number = s.stno) THEN

 IF (gr.grade = 'C') THEN TRUE

 END LOOP2;

 IF TRUE, THEN student row is SELECTed

END LOOP1

Note that LOOP2 is completed before the next student is tested. In other words, just because a student number exists that is not equal, it will not cause the subquery to be false. Rather, the entire subquery table is parsed and the logic is more like this:

For the case .. WHERE EXISTS s.stno = gr.student_number ..., is there a gr.grade = 'C'? If, when the student numbers are equal, no C can be found, then the subquery returns no rowsit is false for that student row. So, with NOT EXISTS, we will SELECT students who have student numbers equal in the Grade_report and Student tables, but who have no C in the Grade_report table. The point about "no C in the Grade_report table" can be answered true only by looking at all the rows in the inner query and finding no C for that student.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-4]

10.4. SQL Universal and Existential Qualifiers

In SQL, "for all" and "for each" are the universal qualifiers,[bookmark: IDX-CHP-10-0470]

 whereas "there exists" is the existential[bookmark: IDX-CHP-10-0471]

 qualifier. As mentioned in the preceding section, SQL does not have a "for all" predicate; however, logically, the following relationship exists:

			For all x, WHERE P(x) is true ...

which is logically the same as the following:

			There does not exist an x, WHERE P(x) is not true.

A "for all" type SQL query is less straightforward than the other queries we have used, because it involves a double-nested, correlated subquery using the NOT EXISTS predicate. The next section shows an example.

[bookmark: learnsqlsvr05-CHP-10-SECT-4.1]

10.4.1. Example 1

[bookmark: IDX-CHP-10-0472]

[bookmark: IDX-CHP-10-0473]

To show a "for all" type SQL query, we will use another table in our Student_course databasea table called Cap (for "capability"). This table has names of students who have multiple foreign-language capabilities. We begin by looking at the table by typing the following query:

SELECT *

FROM Cap

ORDER BY name

This query produces the following output (18 rows):

NAME LANGU

--------- -------

BRENDA FRENCH

BRENDA CHINESE

BRENDA SPANISH

JOE CHINESE

KENT CHINESE

LUJACK SPANISH

LUJACK FRENCH

LUJACK GERMAN

LUJACK CHINESE

MARY JO FRENCH

MARY JO GERMAN

MARY JO CHINESE

MELANIE FRENCH

MELANIE CHINESE

RICHARD SPANISH

RICHARD FRENCH

RICHARD CHINESE

RICHARD GERMAN

(18 row(s) affected)

Suppose that we want to find out which languages are spoken by all students (for which we would ask the question, "For each language, does it occur with all students?"). Although this manual exercise would be very difficult for a large table, for our practice table, we can answer the question by displaying and manually counting in the table ordered by language.

To see how to answer a question of the type--"Which languages are spoken by all students?"--for a much larger table where sorting and examining the result would be tedious, we will construct a query. After showing the query, we will dissect the result. Following is the query to answer our question:

SELECT name, langu

FROM Cap x

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap y

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap z

 WHERE x.langu = z.langu

 AND y.name = z.name))

						[image:]			As you will see, all the for all/for each questions follow this double-nested, correlated NOT EXISTS pattern.

This query produces the following output (7 rows):

name langu

--------- -------

BRENDA CHINESE

RICHARD CHINESE

LUJACK CHINESE

MARY JO CHINESE

MELANIE CHINESE

JOE CHINESE

KENT CHINESE

(7 row(s) affected)

[bookmark: learnsqlsvr05-CHP-10-SECT-4.1.1]

10.4.1.1. The way the query works

To SELECT a "language" spoken by all students, the query proceeds as follows:

			SELECT a row in Cap (x) (outer query).

			For that row, begin SELECTing each row again in Cap (y) (middle query).

			For each of the middle query rows, we want the inner query (Cap z) to be true for all cases of the middle query (remember that true is translated to false by the NOT EXISTS). As each inner query is satisfied (it is true), it forces the middle query to continue looking for a matchto look at all cases and eventually conclude false (evaluate to false overall). If the middle query is false, the outer query sees true because of its NOT EXISTS.

To make the middle query (y) find false, all the inner query (z) occurrences must be true; that is, the languages from the outer query must exist with all names from the middle one (y) in the inner one (z). For an eventual "match," every row in the middle query for an outer query row must be false (that is, every row in the inner query is true).

These steps are explained in further detail in the next example, in which we use a smaller table, so that the explanation is easier to understand.

[bookmark: learnsqlsvr05-CHP-10-SECT-4.2]

10.4.2. Example 2

Suppose that we have the simpler table Cap1 (see Table 10-1) when attempting to answer the question "Which languages are spoken by all students?"

[bookmark: learnsqlsvr05-CHP-10-TABLE-1]

Table 10-1. Cap1

			

Name Language

------------ ------------

Joe Hindi

Mary Hindi

Mary French

(3 row(s) affected)

						[image:]			The table Cap1 does not exist in the Student_course database. You will have to create it. Keep the column names and types similar to the table Cap.

The query will be similar to the one used in the previous section:

SELECT name, language

FROM Cap1 x

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 y

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 z

 WHERE x.language = z. language

 AND y.name = z.name))

ORDER BY language

This query produces the following output:

name language

------------ ------------

Joe Hindi

Mary Hind

(2 row(s) affected)

[bookmark: learnsqlsvr05-CHP-10-SECT-4.2.1]

10.4.2.1. The way this query works

The following is a step-by-step explanation of how this query would work in Table 10-1 (Cap1):

			The row <Joe, Hindi> is SELECTed by the outer query (x).

			The row <Joe, Hindi> is SELECTed by the middle query (y).

			The row <Joe, Hindi> is SELECTed by the inner query (z).

			The inner query is true:

 X.LANGUAGE = Hindi

 Z.LANGUAGE = Hindi

 Y.NAME = Joe

 Z.NAME = Joe

			Because the inner query returns a row (is true), the NOT EXISTS of the middle query translates this to false and continues with the next row in the middle query. The middle query SELECTs <Mary, Hindi> and the inner query begins again with <Joe, Hindi> seeing:

 X.LANGUAGE = Hindi

 Z.LANGUAGE = Hindi

 Y.NAME = Mary

 Z.NAME = Joe

This is false, so the inner query SELECTs a second row <Mary, Hindi>:

 X.LANGUAGE = Hindi

 Z.LANGUAGE = Hindi

 Y.NAME = Mary

 Z.NAME = Mary

This is true, so the inner query is TRue. (Notice that the X.LANGUAGE has not changed yet; the outer query [X] is still on the first row.)

			Because the inner query returns a row (is true), the NOT EXISTS of the middle query translates this to false and continues with the next row in the middle query.

The middle query now SELECTs <Mary, French> and the inner query begins again with <Joe, Hindi> seeing:

 X.LANGUAGE = Hindi

 Z.LANGUAGE = Hindi

 Y.NAME = Mary

 Z.NAME = Joe

This is false, so the inner query SELECTs a second row <Mary, Hindi>:

 X.LANGUAGE = Hindi

 Z.LANGUAGE = Hindi

 Y.NAME = Mary

 Z.NAME = Mary

This is true, so the inner query is true.

			Because the inner query is true, the NOT EXISTS of the middle query again converts this true to false and wants to continue, but the middle query is out of rows. Thus the middle query is false.

			Because the middle query is false, and because we are testing

"SELECT distinct name, language

 FROM Cap1 x

 WHERE NOT EXISTS

 (SELECT 'X' FROM Cap1 y ...",

the false from the middle query is translated to true for the outer query and the row <Joe, Hindi> is SELECTed for the result set. Note that "Hindi" occurs with both "Joe" and "Mary."

			The second row in the outer query will repeat the previous steps for <Mary, Hindi>. The value "Hindi" will be seen to occur with both "Joe" and "Mary" as <Mary, Hindi> is added to the result set.

			The third row in the outer query begins with <Mary, French>. The middle query SELECTs <Joe, Hindi> and the inner query SELECTs <Joe, Hindi>. The inner query sees the following:

 X.LANGUAGE = French

 Z.LANGUAGE = Hindi

 Y.NAME = Joe

 Z.NAME = Mary

This is false, so the inner query SELECTs a second row, <Mary, Hindi>:

 X.LANGUAGE = French

 Z.LANGUAGE = Hindi

 Y.NAME = Joe

 Z.NAME = Mary

This is false, so the inner query SELECTs a third row, <Mary, French>:

 X.LANGUAGE = French

 Z.LANGUAGE = French

 Y.NAME = Joe

 Z.NAME = Mary

This is also false. The inner query returns no rows (fails). The inner query evaluates to false, which causes the middle query to returns rows (see TRue) because of the NOT EXISTS. Because the middle query sees true, it is finished and evaluated to true. Because the middle query evaluates to TRue, the NOT EXISTS in the outer query changes this to false and X.LANGUAGE = French fails because X.LANGUAGE = French did not occur with all the values of NAME.

Consider again the "for all" query presented in Example 2:

SELECT name, language

FROM Cap1 x

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 y

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 z

 WHERE x.language = z. language

 AND y.name = z.name))

ORDER BY language

A clue as to what a query of this kind means can be found in the inner query where the outer query is tested. In the phrase that says WHERE x.language = z. language..., the x.language is where the query is testing which language occurs for all names.

This query is a SQL realization of a relational division exercise. Relational division is a "for all" operation just like that illustrated earlier. In relational algebra, the query must be set up into a divisor, dividend, and quotient in this pattern:

			Quotient (B) [image:] Dividend(A, B) divided by Divisor (A).

If the question is "What language for all names?" then the Divisor, A, is names, and the Quotient, B, is language. It is most prudent to set up SQL like relational algebra with a two-column table (like Cap or Cap1) for the Dividend and then treat the Divisor and the Quotient appropriately. Our query will have the column for language, x.language, in the inner query, as language will be the quotient. We have chosen to also report name in the result set.

[bookmark: learnsqlsvr05-CHP-10-SECT-4.3]

10.4.3. Example 3

Note that the preceding query is completely different from the following query, which asks, "Which students speak all languages?":

SELECT DISTINCT name, language

FROM Cap1 x

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 y

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap1 z

 WHERE y.language = z.language

 AND x.name = z.name))

ORDER BY language

This query produces the following output:

name language

------------ ------------

Mary French

Mary Hindi

(2 row(s) affected)

Note that the inner query contains x.name, which means the question was "Which names occur for all languages?" or, put another way, "Which students speak all languages?" The "all" goes with languages for x.name.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-5]

10.5. Summary

In this chapter, we discussed the correlated subquery, noncorrelated subquery, EXISTS, and NOT EXISTS. We described situations where the correlation of a subquery is necessary and can be written with the EXISTS predicate, and other times when EXISTS can be used, even with no correlation. We also introduced loops and discussed how the "for all" and "for each" are used in SQL.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-6]

10.6. Review Questions

			What is a noncorrelated subquery?

			Which type of subquery can be executed on its own?

			Which part of a query is evaluated first, the query or the subquery?

			What are correlated subqueries?

			What does the EXISTS predicate do?

			What are considered universal qualifiers?

			Is correlation necessary when we use EXISTS? Why?

			Explain how the "for all" type SQL query involves a double-nested correlated subquery using the NOT EXISTS predicate.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10-SECT-7]

10.7. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			List the names of students who have received Cs. Do this in three ways: (a) as a join, (b) as an uncorrelated subquery, and (c) as a correlated subquery. Show both results and account for any differences.

			In section "Existence Queries and Correlation," you were asked to find the names of students who have taken a computer science class and earned a grade of B. We noted that it could be done in several ways. One query could look like this:

SELECT s.sname

FROM Student s

WHERE s.stno IN

 (SELECT gr.student_number

 FROM Grade_report gr, Section

 WHERE Section.section_id = gr.section_id

 AND Section.course_num LIKE 'COSC___ _'

 AND gr.grade = 'B')

Redo this query, putting the finding of the COSC course in a correlated subquery. The query should be as follows:

The Student table uncorrelated subquery to the Grade_report table, correlated EXISTS to the Section table.

			In the section "SQL Universal and Existential Qualifiers," we illustrated both an existence query:

SELECT s.sname

FROM Student s

WHERE EXISTS

 (SELECT 'X'

 FROM Grade_report gr

 WHERE Student.stno = gr.student_number

 AND gr.grade = 'C')

and a NOT EXISTS version:

SELECT s.sname

FROM Student s

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Grade_report gr

 WHERE Student.stno = gr.student_number

 AND gr.grade = 'C')

Show that the EXISTS version is the complement of the NOT EXISTS versioncount the rows in the EXISTS result, the rows in the NOT EXISTS result, and the rows in the Student table. Also, devise a query to give the same result with IN and NOT..IN.

			Discover whether all students take courses by counting the students, and then count those students whose student numbers are in the Grade_report table and those whose student numbers are not in the table. Use IN and then NOT..IN, and then use EXISTS and NOT EXISTS. How many students take courses and how many students do not?

			Find out which students have taken courses but who have not taken COSC courses. Create a set of student names and courses from the Student, Grade_report, and Section tables (use the prefix COSC to indicate computer science courses). Then, use NOT..IN to "subtract" from that set another set of student names of students (who take courses) who have taken COSC courses. For this set difference, use NOT..IN.

			Change NOT..IN to NOT EXISTS (with other appropriate changes) and explain the result. The "other appropriate changes" include adding the correlation and the change of the result column in the subquery set.

			There exists a table called Plants. List the table and then find out what company or companies have plants in all cities. Verify your result manually.

			Run the following query and print the result:

SELECT distinct name, langu

FROM Cap x

WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap y

 WHERE NOT EXISTS

 (SELECT 'X'

 FROM Cap z

 WHERE X.langu =Z.langu

 AND Y.name=Z.name))

Save the query (e.g., save forall) and hand in the result.

			Recreate the Cap table (e.g., call it some other name, such as LANG1). To do this, first create the table and then use the INSERT statement with the sub select option (INSERT INTO LANG1 AS SELECT * FROM Cap).

			Add a new person to your table who speaks only BENG.

			Recall your previous SELECT (get for all).

			CHANGE the table from CAP to LANG1 (for all occurrences, use CHANGE/Cap/lang1/ repeatedly, assuming that you called your table LANG1).

			Start the new query (the one you just created with LANG1 in it).

			How is this result different from the situation in which Newperson was not in LANG1? Provide an explanation of why the query did what it did.

			The Department_to_major table is a list of four-letter department codes with the department names. In Chapter 8, Exercise 7 (hereafter referred to as Exercise 8-7), you created a table called Secretary, which should now have data like this:

			Secretary

			

			dCode

			Name

			ACCT

			Beryl

			COSC

			Kaitlyn

			ENGL

			David

			HIST

			Christina

			BENG

			Fred

			Null

			Brenda

In Exercise 8-7, you did the following:

			Create a query that lists the names of departments that have secretaries (use IN and the Secretary table in a subquery). Save this query as q8_7a.

			Create a query that lists the names of departments that do not have secretaries (use NOT..IN). Save this query as q8_7b.

			Add one more row to the Secretary table that contains <null,'Brenda'>. (This could be a situation in which you have hired Brenda but have not yet assigned her to a department.)

			Recall q8_7a and rerun it.

			Recall q8_7b and rerun it.

We remarked in Exercise 8-7 that the NOT..IN predicate has problems with nulls: the behavior of NOT..IN when nulls exist may surprise you. If nulls may exist in the subquery, then NOT..IN should not be used. If you use NOT..IN in a subquery, you must ensure that nulls will not occur in the subquery or you must use some other predicate, such as NOT EXISTS. Perhaps the best advice is to avoid NOT..IN.

Here, we repeat Exercise 8-7 using NOT EXISTS:

			Reword query q8_7a to use EXISTS. You will have to correlate the inner and outer queries. Save this query as q10_7aa.

			Reword query q8_7b to use NOT EXISTS. You will have to correlate the inner and outer queries. Save this query as q10_7bb. You should not have a phrase IS NOT NULL in your NOT EXISTS query.

			Rerun q8_9a with and without <null, Brenda>.

			Rerun q8_9b with and without <null, Brenda>.

Note the difference in behavior versus the original question. List the names of those departments that do or do not have secretaries. The point here is to encourage you to use NOT EXISTS in a correlated subquery, rather than NOT..IN.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-10]

Chapter 10. Correlated Subqueries

A correlated subquery is an inner subquery whose information is referenced by the main, outer query such that the inner query may be thought of as being executed repeatedly. In this chapter, we discuss correlated subqueries[bookmark: IDX-CHP-10-0459]

 in detail. We discuss existence queries (EXISTS) and correlation as well as NOT EXISTS. We also take a look at SQL's universal and existential qualifiers. Before discussing correlated subqueries in detail however, let's make sure that you understand what constitutes a noncorrelated subquery.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-1]

11.1. The "Simple" CREATE TABLE

[bookmark: IDX-CHP-11-0474]

You have seen a "simple" CREATE TABLE statement in Chapter 3. To refresh your memory, here is an example:

CREATE TABLE Test1

 (name VARCHAR(20),

 ssn CHAR(9),

 dept_number INT,

 acct_balance SMALLMONEY)

The following are the elements of this CREATE TABLE command:

			We created a table called Test1.

			name is a variable-length character string with maximum length of 20

			ssn (Social Security number) is a fixed-length character string of length 9

			dept_number is an integer (which in SQL Server 2005 simply means no decimals allowed)

			acct_balance is a currency column

Beyond choosing data types for columns in tables, you may need to make other choices to create an effective database. You can create indexes[bookmark: IDX-CHP-11-0475]

 on tables, which then can be used to aid in the enforcement of certain validation rules. You also can use other "add-ons" called CONSTRAINTs, which make you enter good data (or, prevents you from entering invalid data into the database) and hence maintain the integrity of a database. In the following sections, we explore indexes and then CONSTRAINTs.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-2]

11.2. Indexes

[bookmark: IDX-CHP-11-0476]

SQL Server 2005 allows you to create several indexes on a table. In SQL Server 2005, it is the job of the query optimizer to determine which indexes will be the most useful in processing a specific query. Although indexes may speed up queries in large tables, indexes will slow update operations (insert, delete, update), because every update causes a rebuild of the index. We begin by introducing the "simple" CREATE INDEX statement.

						[image:]			Discussing the query optimizer is beyond the scope of this book.

[bookmark: learnsqlsvr05-CHP-11-SECT-2.1]

11.2.1. The "Simple" CREATE INDEX

The CREATE INDEX statement is used to create a new index on some column in an existing table. The following is the general syntax for the CREATE INDEX statement:

CREATE INDEX index_name

ON Tablename (column [ASC | DESC])

For example, if we wanted to create an index called ssn_ndx on the ssn column, in descending order of ssn, for the Test1 table, we would type the following:

CREATE INDEX ssn_ndx

ON Test1 (ssn DESC)

You will get:

Command(s) completed successfully.

This result means that the index was successfully created. Although the user has the option of setting the column in ascending (ASC) or descending (DESC) order, if DESC is not included, the index will be created in ascending order, because ASC is the default order for indexes[bookmark: IDX-CHP-11-0477]

.

To view the index that you just created, click on the + sign beside the newly created table, Test1, and then click on the + sign beside the Indexes node, and you will be able to see that index that we just created, ssn_ndx, and you will get Figure 11-1.

[bookmark: learnsqlsvr05-CHP-11-FIG-1]

Figure 11-1. Viewing the index

[image:]

Now, to see if this index, ssn_ndx, is in ascending order or descending order, right-click on the index, ssn_ndx and select Properties, and you will get Figure 11-2. Figure 11-2 shows that this index, ssn_ndx, is in descending order, indexed by the ssn column.

Also from Figure 11-2, to add more columns to the index key, we can click Add; to remove columns from the index key, we can select the key and then click Remove.

To prevent duplicate values in indexed columns, you must use the UNIQUE option in the CREATE INDEX statement, as follows:

CREATE UNIQUE INDEX ssn_ndx1

ON Test1 (ssn DESC)

This query will create the unique index, ssn_ndx1, as shown in Figure 11-3.

The UNIQUE option can be used on columns that will not be a primary key in a table. A primary key is a key or field that uniquely identifies a row in a table.

The UNIQUE option will disallow duplicate entries for a column even though the column is not a primary key in a table. NULLs are allowed in nonprimary key indexes.

[bookmark: learnsqlsvr05-CHP-11-SECT-2.2]

11.2.2. Deleting Indexes Using SQL

[bookmark: IDX-CHP-11-0478]

[bookmark: IDX-CHP-11-0479]

You can use a DROP INDEX statement to delete an index in SQL. The general format of the DROP INDEX statement is as follows:

DROP INDEX Table_name.index_name

For example, to delete the index ssn_ndx1 created on Test1, you would type the following:

DROP INDEX Test1.ssn_ndx1

[bookmark: learnsqlsvr05-CHP-11-FIG-2]

Figure 11-2. Index properties

[image:]

[bookmark: learnsqlsvr05-CHP-11-FIG-3]

Figure 11-3. Showing the UNIQUE index

[image:]

Unused indexes slow data modification without helping retrieval. So, if you have indexes that are not being used, you should delete (drop) them. All indexes will automatically get deleted (dropped) if the table is deleted.

						[image:]			Indexes cannot be created on all column types in SQL Server 2005. For example, you cannot create an index on a column of TEXT, NTEXT, or IMAGE data type.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-3]

11.3. Constraints

As with indexes, constraints can be added to tables. As explained previously, constraints are added to give tables more integrity. In this section, we discuss some of the constraints available in SQL Server 2005: the NOT NULL[bookmark: IDX-CHP-11-0480]

 constraint, the PRIMARY KEY constraint, the UNIQUE constraint, the CHECK constraint, and a few referential constraints.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.1]

11.3.1. The NOT NULL Constraint

[bookmark: IDX-CHP-11-0481]

The NOT NULL constraint is an integrity CONSTRAINT that allows the database creator to deny the creation of a row where a column would have a null value. Usually, a null signifies a missing data item. As discussed in previous chapters, nulls in databases present an interpretation problemdo they mean not applicable, not available, unknown, or what? If a situation in which a null is present could affect the integrity of the database, then the table creator can deny anyone the ability to insert nulls into the table for that column. To deny nulls, we can create a table with the NOT NULL constraint on a column(s) after the data type. The following example shows how to include the NOT NULL constraint using a CREATE TABLE statement:

CREATE TABLE Test2

 (name VARCHAR(20),

 ssn CHAR(9),

 dept_number INT NOT NULL,

 acct_balance SMALLMONEY)

In this newly created table, Test2, the dept_number column, now has a NOT NULL constraint included (and the Allow Nulls option is unchecked, as shown in Figure 11-4).

[bookmark: learnsqlsvr05-CHP-11-FIG-4]

Figure 11-4. Table definition of Test2

[image:]

The NOT NULL constraint can also be added to the column after the table has been created. You can check the Allow Nulls option of the dept_number column in Figure 11-4, or you can use SQL to do this. To do this in SQL, you will have to use the ALTER TABLE command, as we illustrate in the following example.

Suppose that we created the Test2 table as follows:

CREATE TABLE Test2

 (name VARCHAR(20),

 ssn CHAR(9),

 dept_number INT,

 acct_balance SMALLMONEY)

Now, we want to add a NOT NULL constraint (using SQL) after the table has been created. To do so, we must use the ALTER COLUMN option within the ALTER TABLE statement, with the following general syntax:

ALTER TABLE Tablename

ALTER COLUMN column_name column_type(size) NOT NULL

So, to set the dept_number column in the Test2 table to NOT NULL, we would type the following:

ALTER table Test2

ALTER COLUMN dept_number INTEGER NOT NULL

This query will give us the same table definition that we got in Figure 11-4.

But you need to understand the following three things about the ALTER COLUMN extension of the ALTER TABLE statement:

			The column type and size must always be typed after the column name. For example, the following statement will cause SQL Server 2005 to announce a syntax error:

ALTER TABLE Test2

ALTER COLUMN name NOT NULL

You will get following error message:

Msg 156, Level 15, State 1, Line 2

Incorrect syntax near the keyword 'NOT'.

			If you type only the column type, without the column size, the column size will reset to the default maximum size of the data type.

			You cannot put a NOT NULL constraint on a column that already contains nulls.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.2]

11.3.2. The PRIMARY KEY Constraint

[bookmark: IDX-CHP-11-0482]

[bookmark: IDX-CHP-11-0483]

When creating a table, a PRIMARY KEY constraint will prevent duplicate values for the column(s) defined as a primary key. Internally, the designation of a primary key also creates a primary key index.

Designation of a primary key will be necessary for the referential integrity constraints that follow. The designation of a primary key also automatically puts the NOT NULL constraint in the definition of the column(s), as you will see in an example later in the chapter. A fundamental rule of relational database is that primary keys cannot be null.

One of the following three options can be used to set the primary key.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.2.1]

11.3.2.1. Option 1

The first option is to declare the primary key while creating the table, in the CREATE TABLE statement. Here, the PRIMARY KEY constraint is added to the column upon creation:

CREATE TABLE Test2a

 (ssn CHAR(9) CONSTRAINT ssn_pk PRIMARY KEY,

 name VARCHAR2(20), etc.

ssn_pk is the name of the PRIMARY KEY constraint for the ssn column. It is conventional to name all CONSTRAINTs (although most people often do not bother to name NOT NULL constraints).

The following two options of setting the primary key are preferable because they provide greater flexibility.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.2.2]

11.3.2.2. Option 2

The second option available to create a primary key is called the table format, in which the CREATE TABLE looks like the following:

CREATE TABLE Test2a

 (ssn CHAR(9),

 blah blah ..,

 acct_balance NUMBER,

 CONSTRAINT ssn_pk PRIMARY KEY (ssn))

[bookmark: learnsqlsvr05-CHP-11-SECT-3.2.3]

11.3.2.3. Option 3

The third option available to create a primary key is to add the stipulation of the PRIMARY KEY post hoc by using the ALTER TABLE command. The syntax for the PRIMARY KEY in the ALTER TABLE command would be as follows:

ALTER TABLE Tablename

ADD CONSTRAINT constraint_name PRIMARY KEY (column_name(s))

So, to make ssn a primary key column in Test2, we could type the following:

ALTER TABLE Test2

ADD CONSTRAINT ssn_pk PRIMARY KEY (ssn)

But, once you type in that syntax, you will receive the following error message:

Msg 8111, Level 16, State 1, Line 1

Cannot define PRIMARY KEY constraint on nullable column in table 'Test2'.

Msg 1750, Level 16, State 0, Line 1

Could not create constraint. See previous errors.

This error occurs because SQL Server 2005 does not allow you to define a primary key on a column that has not been specified as NOT NULL. So, we need to first make ssn a column that will not accept nulls as follows:

ALTER TABLE Test2

ALTER COLUMN ssn CHAR(9) NOT NULL

The design of the Test2 table will now be as in shown in Figure 11-5.

[bookmark: learnsqlsvr05-CHP-11-FIG-5]

Figure 11-5. New table definition of Test2

[image:]

Now we can type the following command to create the primary key:

ALTER TABLE Test2

ADD CONSTRAINT ssn_pk PRIMARY KEY (ssn)

Figure 11-6 shows the primary key constraint that we just created (note the key icon on the left of the ssn column).

[bookmark: learnsqlsvr05-CHP-11-FIG-6]

Figure 11-6. Primary key constraint

[image:]

You can view this ssn_pk constraint by clicking the + sign beside Test2, and then clicking the + sign beside the Keys node. You will get the results shown in Figure 11-7.

[bookmark: learnsqlsvr05-CHP-11-FIG-7]

Figure 11-7. The ssn_pk constraint

[image:]

You can modify, rename, delete, or refresh this ssn_pk constraint by right-clicking ssn_pk, as shown in Figure 11-8.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.2.4]

11.3.2.4. Concatenated primary keys

In relational databases, it is sometimes necessary to define more than one column as the primary key. When more than one column makes up a primary key, it is called a concatenated primary key. In SQL Server 2005, however, you cannot directly designate a concatenated primary key with a statement like the following:

[bookmark: learnsqlsvr05-CHP-11-FIG-8]

Figure 11-8. Changing constraint properties

[image:]

CREATE TABLE Test2a

 (ssn CHAR(9) PRIMARY KEY,

 salary INT PRIMARY KEY)

This query will give the following error message:

Msg 8110, Level 16, State 0, Line 1

Cannot add multiple PRIMARY KEY constraints to table 'Test2a'.

In SQL Server 2005, you can define the concatenated primary key in the following way:

CREATE TABLE Test2a

 (ssn CHAR(9),

 salary INT,

 CONSTRAINT ssn_salary_pk PRIMARY KEY (ssn, salary))

The table definition of the Test2a table will now be as shown in Figure 11-9.

[bookmark: learnsqlsvr05-CHP-11-FIG-9]

Figure 11-9. Table definition of Test2a

[image:]

Or, you can create the concatenated primary key in two separate statements, first with a CREATE TABLE:

CREATE TABLE Test2b

 (ssn CHAR(9) NOT NULL,

 salary INT NOT NULL)

Then, with an ALTER TABLE:

ALTER TABLE Test2b

ADD CONSTRAINT ssn_salary_pk1 PRIMARY KEY (ssn, salary)

This query will produce the same table definition as was shown in Figure 11-9.

We called this latter constraint ssn_salary_pk1, because you cannot have another constraint called ssn_salary_pk (which was a constraint created for table Test2a). Figure 11-10 shows the constraints created for table Test2b. Note that the constraint shows up not only as a key constraint, but also as an index.

[bookmark: learnsqlsvr05-CHP-11-FIG-10]

Figure 11-10. Viewing the constraints

[image:]

Another example of a concatenated primary key. Suppose that we have a new table in our database, Grade1, which has columns student_number, section_id, and grade. Further suppose that a grade cannot be determined by either the student_number or section_id alone. Because both these columns (together) are required to uniquely identify a grade, the student_number and section_id will have to be the concatenated primary key of the Grade1 table.

The CREATE TABLE and ALTER TABLE sequence for creating the Grade1 table with the concatenated primary key as is shown next. First we create the Grade1 table:

CREATE TABLE Grade1

 (student_number CHAR(9) NOT NULL,

 section_id CHAR(9) NOT NULL,

 grade CHAR(1))

Then we define the concatenated primary key:

ALTER TABLE Grade1 ADD CONSTRAINT snum_section_pk

 PRIMARY KEY (student_number, section_id)

Figure 11-11 gives the table definition of table Grade1.

[bookmark: learnsqlsvr05-CHP-11-FIG-11]

Figure 11-11. Table definition of Grade1

[image:]

Figure 11-12 shows the constraint snum_section_pk.

[bookmark: learnsqlsvr05-CHP-11-FIG-12]

Figure 11-12. The snum_section_pk constraint

[image:]

[bookmark: learnsqlsvr05-CHP-11-SECT-3.3]

11.3.3. The UNIQUE Constraint

[bookmark: IDX-CHP-11-0484]

[bookmark: IDX-CHP-11-0485]

Like PRIMARY KEY, UNIQUE is another column integrity constraint. UNIQUE is different from PRIMARY KEY in three ways:

			UNIQUE keys can exist in addition to (or without) the PRIMARY KEY.

			UNIQUE does not necessitate NOT NULL, whereas PRIMARY KEY does.

			There can be more than one UNIQUE key, but only one PRIMARY KEY.

As an example of using the UNIQUE constraint, suppose that we created a table of names and occupational titles in which everyone was supposed to have a unique title. Further suppose that the table had an employee number as a primary key. The statement to create the table might look like the following:

CREATE TABLE Emp

 (empno INT,

 name VARCHAR(20),

 title VARCHAR(20),

 CONSTRAINT empno_pk PRIMARY KEY (empno),

 CONSTRAINT title_uk UNIQUE (title))

Figure 11-13 shows the table definition of the newly created Emp table.

[bookmark: learnsqlsvr05-CHP-11-FIG-13]

Figure 11-13. Table definition of Emp

[image:]

From Figure 11-13, we can see that both the empno and title fields will not allow nulls, as empno is defined as a primary key and title is defined as unique.

Figure 11-14 shows the empno_pk and title_uk constraints of the Emp table.

[bookmark: learnsqlsvr05-CHP-11-FIG-14]

Figure 11-14. Showing the empno_pk and title_uk constraints

[image:]

In SQL Server 2005, when you declare a PRIMARY KEY[bookmark: IDX-CHP-11-0486]

 or UNIQUE constraint, internally a unique index is created just as if you had used the CREATE INDEX command. In terms of internal storage and maintenance of indexes in SQL Server 2005, there is no difference between unique indexes created using the CREATE INDEX command and indexes created using the UNIQUE constraint. In fact, an index is a type of a constraint. When it comes to the query optimizer, how the index was created is irrelevant to the query optimizer. The query optimizer makes decisions based on the presence of a unique index.

						[image:]			Discussing the query optimizer is beyond the scope of this book.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.4]

11.3.4. The CHECK Constraint

[bookmark: IDX-CHP-11-0487]

[bookmark: IDX-CHP-11-0488]

[bookmark: IDX-CHP-11-0489]

In addition to the NOT NULL, PRIMARY KEY and UNIQUE constraints, we can also include a CHECK constraint on our column definitions in SQL Server 2005. A CHECK constraint will disallow a value that is outside the bounds of the CHECK. Consider the following example:

CREATE TABLE StudentA

 (ssn CHAR(9),

 class INT

 CONSTRAINT class_ck CHECK (class BETWEEN 1 AND 4),

 name VARCHAR(20))

This query will give the table definition of table StudentA as shown in Figure 11-15.

[bookmark: learnsqlsvr05-CHP-11-FIG-15]

Figure 11-15. Table definition of StudentA

[image:]

To view the CHECK constraint, click the + sign beside table StudentA, and then click the + sign beside Constraints, and you will get Figure 11-16.

[bookmark: learnsqlsvr05-CHP-11-FIG-16]

Figure 11-16. The CHECK constraint

[image:]

Once the CHECK constraint has been added, we could not, for example, successfully execute the following INSERT:

INSERT INTO StudentA VALUES ('123456789', 5, 'Smith')

We would get the following error message:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint "class_ck". The conflict

occurred in database "Student_course", table "dbo.StudentA", column 'class'.

The statement has been terminated.

This error occurs because the values of the column class have to be between 1 and 4 (and we tried to insert 5). We could however, enter a null value for class, which technically does not violate the integrity constraint (unless we specify so by making class also NOT NULL).

[bookmark: learnsqlsvr05-CHP-11-SECT-3.5]

11.3.5. Deleting a Constraint

[bookmark: IDX-CHP-11-0490]

The following is the general SQL syntax to delete any named constraint:

ALTER TABLE Tablename

DROP CONSTRAINT constraint_name

For example, in table Test2a we created a constraint called ssn_salary_pk, which made both the ssn and salary columns primary keys of Test2a. If we want to delete this constraint, which means making both the ssn and salary columns just regular columns (and not primary keys), we would type the following:

ALTER TABLE Test2a

DROP CONSTRAINT ssn_salary_pk

Now the table definition of table Test2a will appear as shown in Figure 11-17. As can be seen from Figure 11-17, the primary keys are no longer marked, as was shown in Figure 11-9.

[bookmark: learnsqlsvr05-CHP-11-FIG-17]

Figure 11-17. Primary keys no longer marked

[image:]

Figure 11-18 also shows no constraints[bookmark: IDX-CHP-11-0491]

 for table Test2a.

[bookmark: learnsqlsvr05-CHP-11-FIG-18]

Figure 11-18. Constraint deleted

[image:]

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6]

11.3.6. Referential Integrity Constraints

[bookmark: IDX-CHP-11-0492]

A relational database consists of relations (tables) and relationships between tables. To define a relationship between two tables, we create a referential integrity[bookmark: IDX-CHP-11-0493]

 constraint. A referential integrity constraint is one in which a row in one table (with a foreign key) cannot exist unless a value (column) in that row refers to a primary key value (column) in another table. This is a primary key-foreign key relationship between two tables. For example, suppose we have the following two tables:

						[image:]			A foreign key is a column in one table that is used to link that table to another table in which that column is a primary key. Relationships are implemented in relational databases through foreign keys/primary key relationships.

[bookmark: learnsqlsvr05-CHP-11-TABLE-1]

Table 11-1. Department table

			Deptno

			Deptname

			1

			Accounting

			2

			Personnel

			3

			Development

[bookmark: learnsqlsvr05-CHP-11-TABLE-2]

Table 11-2. Employee table

			empno

			Empname

			Dept

			100

			Jones

			2

			101

			Smith

			1

			102

			Adams

			1

			104

			Harris

			3

To maintain referential integrity, it would be inappropriate to enter a row (tuple) in the Employee table that did not have an existing department number already defined in the Department table. To try to insert the following row into the Employee table would be a violation of the integrity of the database, because department number 4 does not exist (that is, it has no integrity):

<105,'Walsh',4>

Likewise, it would be invalid to try to change a value in an existing row (that is, perform an UPDATE) to make it equal to a value that does not exist. If, for example, we tried to change:

<100,'Jones',2>

to:

<100,'Jones',5>

This operation would violate database integrity, because there is no department 5.

Finally, it would be invalid to delete a row in the Department table that contains a value for a department number that is already in the Employee table. For example, if:

<2,'Personnel'>

were deleted from the Department table, then the row:

<100,'Jones',2>

would refer to a nonexistent department. It therefore would be a reference or relationship with no integrity.

In each case (INSERT, UPDATE, and DELETE), we say that there needs to be a referential integrity constraint on the dept column in the Employee table referencing deptno in the Department table. When this primary key (deptno in the Department table)-foreign key (dept in the Employee table) relationship is defined, we have defined the relationship of the Employee table to the Department table.

In the INSERT and UPDATE cases discussed earlier, you would expect (correctly) that the usual action of the system would be to deny the action. In SQL Server 2005, in the case of the DELETE and UPDATE commands, there is an option available that will allow us to CASCADE the DELETE or UPDATE operations respectively. Whereas an "ordinary" referential integrity constraint would simply disallow the deletion of a row where the referenced row would be orphaned, a CASCADEd delete would delete the referencing row as well. If, for example, in the previous data we deleted department 3, in a CASCADEd delete situation, the referencing row in the Employee table, <104,Harris,3>, would be deleted as well.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6.1]

11.3.6.1. Defining the referential integrity constraint

To enable a referential integrity constraint, it is necessary for the column that is being referenced to be first defined as a primary key. In the preceding Employee-Department example, we have to first create the Department table with a primary key. The CREATE TABLE statement for the Department table (the referenced table) could look like this:

CREATE TABLE Department

 (deptno INT,

 deptname VARCHAR(20),

 CONSTRAINT deptno_pk PRIMARY KEY (deptno))

The table definition of the Department table would then be as shown in Figure 11-19.

[bookmark: learnsqlsvr05-CHP-11-FIG-19]

Figure 11-19. Table definition of Department table

[image:]

The constraints for the Department table would be as shown in Figure 11-20.

[bookmark: learnsqlsvr05-CHP-11-FIG-20]

Figure 11-20. Constraint of the Department table

[image:]

The Employee table (the referencing table containing the foreign key) would then be created using this statement:

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk1 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT CONSTRAINT dept_fk REFERENCES Department(deptno))

The table definition of the Employee table would then be as shown in Figure 11-21.

[bookmark: learnsqlsvr05-CHP-11-FIG-21]

Figure 11-21. Table definition of the Employee table

[image:]

Now, to view the referential integrity constraints of the Employee table, click the + sign beside Employee and then click the + sign beside Keys, you will get Figure 11-22.

To modify the foreign key, right-click dept_fk and select Modify, as shown in Figure 11-23.

You will get the results shown in Figure 11-24. You can expand the Table And Columns Specification option (under General), and you will be able to see what the foreign key base table is (that is, the table with the foreign key, which in this case is the Employee table), what the foreign key columns are (in this case, dept), what the primary/unique key base table is (that is, the table with the primary key, which in this case is Department), the primary/unique key column (which in this case is deptno). You can change these options by clicking on the ... icon on the right of General.

[bookmark: learnsqlsvr05-CHP-11-FIG-22]

Figure 11-22. Viewing the referential integrity constraints of the Employee table

[bookmark: IDX-CHP-11-0494]

[image:]

[bookmark: learnsqlsvr05-CHP-11-FIG-23]

Figure 11-23. Modifying the foreign key

[image:]

The CREATE TABLE Employee... statement defines a column, dept, to be of type INT, but the statement goes further in defining dept to be a foreign key that references another table, Department. Again, within the Department table, the referenced column, deptno, has to be an already-defined primary key.

Also note that the Department table has to be created first. If we tried to create the Employee table before the Department table with the referential CONSTRAINT, we would be trying to reference a nonexistent table and this would also cause an error.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6.2]

11.3.6.2. Adding the foreign key after tables are created

As we have seen with other constraints, the foreign key can be added after tables are created. To do so, we must first have set up the primary key of the referenced table. The syntax of the ALTER TABLE command to add a foreign key to a referencing table would look like this:

ALTER TABLE xxx

 ADD CONSTRAINT dept_fk

 FOREIGN KEY (dept)

 REFERENCES Department(deptno)

[bookmark: learnsqlsvr05-CHP-11-FIG-24]

Figure 11-24. The dept_fk foreign key

[image:]

The (optional) name of the CONSTRAINT is dept_fk. Note that the column's data types in the references clause must agree with the column's data types in the referenced table.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6.3]

11.3.6.3. DELETE and the referential CONSTRAINT

[bookmark: IDX-CHP-11-0495]

[bookmark: IDX-CHP-11-0496]

There are a couple of options in the DELETE option of a foreign key referential constraint in SQL Server 2005--CASCADE and NO ACTION. Both of these options specify what action takes place on a row if that row has a referential relationship and the referenced row is deleted from the parent table. First we discuss the default, which is NO ACTION, and then we look at the CASCADE option.

ON DELETE NO ACTION. If the NO ACTION alternative is used in the ON DELETE option of the CREATE TABLE command, and we try to delete a row from the parent table (in this case, the Department table) that has a referencing row in the dependent table (in this case, the Employee table), then SQL Server 2005 will raise an error and the delete action on the row in the parent table will be undone. The NO ACTION option on the ON DELETE option is the default.

The ON DELETE NO ACTION option is added after the REFERENCES clause of a CREATE TABLE command. The CREATE TABLE command with the ON DELETE NO ACTION would be as shown in the next example.

						[image:]			In order to create the following Employee table, you will need to delete the previous one.

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk2 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT REFERENCES Department(deptno)

 ON DELETE NO ACTION)

						[image:]			Make sure that you have created the Department table first before you attempt to create this Employee table.

The design of the Employee table will now be as shown in Figure 11-25.

[bookmark: learnsqlsvr05-CHP-11-FIG-25]

Figure 11-25. Viewing the referential integrity constraints of the Employee table

[image:]

Then, to view the ON DELETE NO ACTION, from Figure 11-25, right-click on EFK_Employee_dept_33D4B598 and select Modify, similar to what is shown in Figure 11-23. You will get Figure 11-26, the Foreign Key Relationships screen. On this screen, under Table Designer, expand the "INSERT And UPDATE Specification" option, and you will see the Delete Rule as No Action, shown in Figure 11-26.

ON DELETE CASCADE. The ON DELETE CASCADE option may be added after the REFERENCES clause of a CREATE TABLE command, as shown here:

						[image:]			In order to create the following Employee table, you will need to delete the previous one.

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk3 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT REFERENCES Department(deptno)

 ON DELETE CASCADE)

The table definition of the Employee table will be similar to what was shown in Figure 11-21.

[bookmark: learnsqlsvr05-CHP-11-FIG-26]

Figure 11-26. Viewing the ON DELETE NO ACTION

[image:]

The ON DELETE CASCADE option will be included in the referential integrity constraint. To view the ON DELETE CASCADE, from the Foreign Key Relationships screen, once again expand the "INSERT And UPDATE Specification" option, and you will see the Delete Rule as Cascade, shown in Figure 11-27.

CASCADE will allow the deletions in the dependent table (in this case, the Employee table) that are affected by the deletions of the tuples in the referenced table (in this case, the Department table). Suppose, for example, that we had deptno = 3 in the Department table. Also suppose that we had employees in department 3. If we deleted department 3 in the Department table, then with CASCADE we would also delete all employees in the Employee table with dept = 3.

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6.4]

11.3.6.4. UPDATE and the referential CONSTRAINT

[bookmark: IDX-CHP-11-0497]

[bookmark: IDX-CHP-11-0498]

Both the CASCADE and NO ACTION options are also available with the ON UPDATE option of a foreign key referential constraint enforcement in SQL Server 2005. Both these options specify what action takes place on a row if that row has a referential relationship and the referenced row is updated in the parent table. In the following discussion, we show the syntax of these two options.

ON UPDATE NO ACTION. Just as with the ON DELETE option, if the NO ACTION option is used with the ON UPDATE option of the CREATE TABLE command, and we try to update a row from the parent table (in this case, the Department table) that has a referencing row in the dependent table (in this case, the Employee table), then SQL Server 2005 will raise an error and the update action on the row in the parent table will be rolled back. The NO ACTION option on the ON UPDATE option is the default.

[bookmark: learnsqlsvr05-CHP-11-FIG-27]

Figure 11-27. Viewing the ON DELETE CASCADE option

[image:]

Just as in the ON DELETE NO ACTION option, the ON UPDATE NO ACTION option is added after the REFERENCES clause of a CREATE TABLE command. The CREATE TABLE command with the ON UPDATE NO ACTION would be as shown here:

						[image:]			In order to create the following Employee table, you will need to delete the previous one.

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk4 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT REFERENCES Department(deptno)

 ON UPDATE NO ACTION)

						[image:]			Make sure you have created the Department table first before you attempt to create this Employee table.

Once again, the design of the Employee table will be similar to what was shown in Figure 11-21.

The ON UPDATE NO ACTION option will be included in the referential integrity constraint. View the ON UPDATE NO ACTION as shown in Figure 11-27. Figure 11-27 also shows the Update Rule.

ON UPDATE CASCADE. The ON UPDATE CASCADE option is also added after the REFERENCES clause of a CREATE TABLE command, as shown here:

						[image:]			In order to create the following Employee table, you will need to delete the previous one.

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk5 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT REFERENCES Department(deptno)

 ON UPDATE CASCADE)

The design of the Employee table will be similar to what was shown in Figure 11-21.

The ON UPDATE CASCADE option will be included in the referential integrity constraint. To view the ON UPDATE CASCADE, from the Foreign Key Relationships screen, once again expand the "INSERT And UPDATE Specification" option, and you will see the Update Rule as Cascade, shown in Figure 11-28.

[bookmark: learnsqlsvr05-CHP-11-FIG-28]

Figure 11-28. Viewing the ON UPDATE CASCADE

[image:]

When CASCADE is included in the ON UPDATE option, the row is updated in the referencing table (in this case, the Employee table) if that row is updated in the parent table (in this case, the Department table).

[bookmark: learnsqlsvr05-CHP-11-SECT-3.6.5]

11.3.6.5. Using the ON DELETE and ON UPDATE together

You can also use the ON DELETE and ON UPDATE options together if needed. Both the ON DELETE and ON UPDATE do not necessarily have to be set to the same option. That is, both of them do not have to be set to NO ACTION or CASCADE at the same time. You can have a NO ACTION option set for one option and a CASCADE set for the other option. For example, you may create the Employee table as follows:

						[image:]			Once again, note that before you create this Employee table, delete the previous version.

CREATE TABLE Employee

 (empno INT CONSTRAINT empno_pk6 PRIMARY KEY,

 empname VARCHAR(20),

 dept INT REFERENCES Department(deptno)

 ON UPDATE CASCADE

 ON DELETE NO ACTION)

Once again, the table definition of the Employee table would then be as shown in Figure 11-21.

Both the ON UPDATE CASCADE option and the ON DELETE NO ACTION option will be included in the referential integrity constraint. Once again, from the Foreign Key Relationships screen, expand the "INSERT And UPDATE Specification" option, and you will see the Delete Rule as well as Update Rule.

The foreign key relationships figure will be as shown in Figure 11-29.

[bookmark: learnsqlsvr05-CHP-11-FIG-29]

Figure 11-29. Setting the ON DELETE and ON UPDATE together

[image:]

So, in summary, SQL Server 2005 gives you quite a bit of flexibility in setting up your referential integrity constraints.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-4]

11.4. Summary

In this chapter, we showed you how to create indexes and constraints using different options. We also showed you how to view, edit, and delete indexes and constraints. We explained referential integrity constraints, and also showed you how to create, view and edit them.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-5]

11.5. Review Questions

			What is an index?

			Does an index slow down updates on indexed columns?

			What is a constraint?

			How many indexes does SQL Server 2005 allow you to have on a table?

			What command would you use to create an index?

			Is there a difference between an index and a constraint?

			What is the default ordering that will be created by an index (ascending or descending)?

			When can the UNIQUE option be used?

			What does the IGNORE NULL option do?

			How do you delete an index?

			What does the NOT NULL constraint do?

			What command must you use to include the NOT NULL constraint after a table has already been created?

			When a PRIMARY KEY constraint is included in a table, what other constraints does this imply?

			What is a concatenated primary key?

			How are the UNIQUE and PRIMARY KEY constraints different?

			What is a referential integrity constraint? What two keys does the referential integrity constraint usually include?

			What is a foreign key?

			What does the ON DELETE CASCADE option do?

			What does the ON UPDATE NO ACTION do?

			Can you use the ON DELETE and ON UPDATE in the same constraint?

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11-SECT-6]

11.6. Exercises

[bookmark: IDX-CHP-11-0499]

[bookmark: IDX-CHP-11-0500]

[bookmark: IDX-CHP-11-0501]

[bookmark: IDX-CHP-11-0502]

[bookmark: IDX-CHP-11-0503]

[bookmark: IDX-CHP-11-0504]

[bookmark: IDX-CHP-11-0505]

[bookmark: IDX-CHP-11-0506]

[bookmark: IDX-CHP-11-0507]

[bookmark: IDX-CHP-11-0508]

[bookmark: IDX-CHP-11-0509]

[bookmark: IDX-CHP-11-0510]

[bookmark: IDX-CHP-11-0511]

[bookmark: IDX-CHP-11-0512]

[bookmark: IDX-CHP-11-0513]

[bookmark: IDX-CHP-11-0514]

[bookmark: IDX-CHP-11-0515]

[bookmark: IDX-CHP-11-0516]

[bookmark: IDX-CHP-11-0517]

[bookmark: IDX-CHP-11-0518]

[bookmark: IDX-CHP-11-0519]

[bookmark: IDX-CHP-11-0520]

[bookmark: IDX-CHP-11-0521]

[bookmark: IDX-CHP-11-0522]

[bookmark: IDX-CHP-11-0523]

[bookmark: IDX-CHP-11-0524]

[bookmark: IDX-CHP-11-0525]

[bookmark: IDX-CHP-11-0526]

[bookmark: IDX-CHP-11-0527]

[bookmark: IDX-CHP-11-0528]

[bookmark: IDX-CHP-11-0529]

[bookmark: IDX-CHP-11-0530]

[bookmark: IDX-CHP-11-0531]

[bookmark: IDX-CHP-11-0532]

[bookmark: IDX-CHP-11-0533]

[bookmark: IDX-CHP-11-0534]

[bookmark: IDX-CHP-11-0535]

[bookmark: IDX-CHP-11-0536]

[bookmark: IDX-CHP-11-0537]

[bookmark: IDX-CHP-11-0538]

[bookmark: IDX-CHP-11-0539]

[bookmark: IDX-CHP-11-0540]

[bookmark: IDX-CHP-11-0541]

[bookmark: IDX-CHP-11-0542]

[bookmark: IDX-CHP-11-0543]

[bookmark: IDX-CHP-11-0544]

[bookmark: IDX-CHP-11-0545]

[bookmark: IDX-CHP-11-0546]

[bookmark: IDX-CHP-11-0547]

[bookmark: IDX-CHP-11-0548]

[bookmark: IDX-CHP-11-0549]

[bookmark: IDX-CHP-11-0550]

[bookmark: IDX-CHP-11-0551]

[bookmark: IDX-CHP-11-0552]

[bookmark: IDX-CHP-11-0553]

[bookmark: IDX-CHP-11-0554]

[bookmark: IDX-CHP-11-0555]

[bookmark: IDX-CHP-11-0556]

[bookmark: IDX-CHP-11-0557]

[bookmark: IDX-CHP-11-0558]

[bookmark: IDX-CHP-11-0559]

[bookmark: IDX-CHP-11-0560]

[bookmark: IDX-CHP-11-0561]

[bookmark: IDX-CHP-11-0562]

[bookmark: IDX-CHP-11-0563]

[bookmark: IDX-CHP-11-0564]

[bookmark: IDX-CHP-11-0565]

[bookmark: IDX-CHP-11-0566]

[bookmark: IDX-CHP-11-0567]

[bookmark: IDX-CHP-11-0568]

[bookmark: IDX-CHP-11-0569]

[bookmark: IDX-CHP-11-0570]

[bookmark: IDX-CHP-11-0571]

[bookmark: IDX-CHP-11-0572]

[bookmark: IDX-CHP-11-0573]

[bookmark: IDX-CHP-11-0574]

[bookmark: IDX-CHP-11-0575]

[bookmark: IDX-CHP-11-0576]

[bookmark: IDX-CHP-11-0577]

[bookmark: IDX-CHP-11-0578]

[bookmark: IDX-CHP-11-0579]

[bookmark: IDX-CHP-11-0580]

[bookmark: IDX-CHP-11-0581]

[bookmark: IDX-CHP-11-0582]

[bookmark: IDX-CHP-11-0583]

[bookmark: IDX-CHP-11-0584]

[bookmark: IDX-CHP-11-0585]

[bookmark: IDX-CHP-11-0586]

[bookmark: IDX-CHP-11-0587]

[bookmark: IDX-CHP-11-0588]

[bookmark: IDX-CHP-11-0589]

[bookmark: IDX-CHP-11-0590]

[bookmark: IDX-CHP-11-0591]

[bookmark: IDX-CHP-11-0592]

[bookmark: IDX-CHP-11-0593]

[bookmark: IDX-CHP-11-0594]

[bookmark: IDX-CHP-11-0595]

[bookmark: IDX-CHP-11-0596]

[bookmark: IDX-CHP-11-0597]

[bookmark: IDX-CHP-11-0598]

[bookmark: IDX-CHP-11-0599]

[bookmark: IDX-CHP-11-0600]

[bookmark: IDX-CHP-11-0601]

[bookmark: IDX-CHP-11-0602]

[bookmark: IDX-CHP-11-0603]

[bookmark: IDX-CHP-11-0604]

[bookmark: IDX-CHP-11-0605]

[bookmark: IDX-CHP-11-0606]

[bookmark: IDX-CHP-11-0607]

[bookmark: IDX-CHP-11-0608]

[bookmark: IDX-CHP-11-0609]

[bookmark: IDX-CHP-11-0610]

[bookmark: IDX-CHP-11-0611]

[bookmark: IDX-CHP-11-0612]

[bookmark: IDX-CHP-11-0613]

[bookmark: IDX-CHP-11-0614]

[bookmark: IDX-CHP-11-0615]

[bookmark: IDX-CHP-11-0616]

[bookmark: IDX-CHP-11-0617]

[bookmark: IDX-CHP-11-0618]

[bookmark: IDX-CHP-11-0619]

[bookmark: IDX-CHP-11-0620]

[bookmark: IDX-CHP-11-0621]

[bookmark: IDX-CHP-11-0622]

[bookmark: IDX-CHP-11-0623]

[bookmark: IDX-CHP-11-0624]

Unless specified otherwise, use the Student_course database to answer the following questions. Unless otherwise directed, name all CONSTRAINTs.

			To test choices of data types, create a table with various data types like this:

CREATE TABLE Test3

 (name VARCHAR(20),

 ssn CHAR(9),

 dept_number INTEGER,

 acct_balance SMALLMONEY)

Then insert values into the table to see what will and will not be accepted. The following data may or may not be acceptable. You are welcome to try other choices.

'xx','yy',2,5

'xx','yyy',2000000000,5

'xx','yyyy',2,1234567.89

			Create an index of ssn in ascending order of ssn. TRy to insert some new data in the ssn column. Does your ssn column take nulls?

			Does your ssn column take duplicates? If so, how can you prevent this column from taking duplicates?

			Include a NOT NULL constraint on the ssn column. Now try to insert some new data in the ssn column with nulls in the ssn column. What happens?

			With this NOT NULL constraint, is it necessary to include the PRIMARY KEY constraint? Why or why not? Now include the PRIMARY KEY constraint and see whether there is any difference in the types of values it accepts.

			Include some data with null values in the dept_number and acct_balance columns. Now include the NOT NULL constraint in the acct_balance column. What happens?

			Include the NOT NULL constraint in the acct_balance column. What happens?

Delete Test3.

			To test the errors generated when NOT NULL is used, create a table called Test4, which looks like this:

CREATE TABLE Test4

 (a CHAR(2) NOT NULL,

 b CHAR(3))

Input some data and try to enter a null value for A. Acceptable input data for a null is "null."

			Create or recreate, if necessary, Test3, which does not specify a primary key. Populate the table with at least one duplicate ssn. Then, try to impose the PRIMARY KEY constraint with an ALTER TABLE command. What happens?

			Recreate the Test3 table, but this time add a primary key of ssn. If you still have the Test3 table from Exercise 4, you may be able to delete offending rows and add the PRIMARY KEY constraint. Enter two more rows to your tableone containing a new ssn and one with a duplicate ssn. What happens?

			Create the Department and Employee tables, as per the examples earlier in the chapter, with all the constraints (PRIMARY KEYs, referential and UNIQUE constraints). You can add the constraints at create time or you can use ALTER TABLE to add the constraints. Populate the Department table first with departments 1, 2, and 3. Then populate the Employee table.

Note: before doing the next few exercises, it is prudent to create two tables, called Deptbak and Empbak, to contain the data you load, because you will be deleting, inserting, dropping, recreating, and so on. You can create Deptbak and Empbak tables (as temporary tables) with the data we have been using with a query like:

SELECT *

INTO Deptbak

FROM Dept

Then, when you have added, deleted, updated, and so on and you want the original table from the start of this problem, you simply run the following commands:

DROP TABLE Dept

SELECT *

INTO Dept

FROM Deptbak

			Create a violation of insertion integrity by adding an employee to a nonexistent department. What happens?

			Create an UPDATE violation by trying to change an existing employee to a nonexistent department, and then by trying to change a referenced department number.

			Try to delete a department for which there is an employee. What happens? What happens if you try to DELETE a department to which no employee has yet been assigned?

			Redo this entire experiment (starting with Exercise 5a), except that this time create the Employee table with the ON DELETE CASCADE. View the table definition of the Employee table.

			Redo exercises 5a-5c, except that this time, create the Employee table with the ON DELETE NO ACTION.

			Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE CASCADE.

			Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE NO ACTION.

			Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE NO ACTION and ON DELETE CASCADE together.

			Create a table (your choice) with a PRIMARY KEY and a UNIQUE constraint. Insert data into the table and, as you do, enter a good row and a bad row (the bad row violates a constraint). Demonstrate a violation of each of your constraints one at a time. Show the successes and the errors as you receive them.

			In this chapter, the Employee table was referenced to (depended on) the Department table. Suppose that there were another table that depended on the Employee table, such as Dependent, where the Dependent table contained the columns name and empnum. Create the Dependent table. Then add the referential constraint where empnum references the Employee table, with ON DELETE CASCADE (and note that the Employee table also has an ON DELETE CASCADE option). You are creating a situation in which the Dependent table references the Employee table, which references the Department table. Will SQL Server let you do this? If so, and if you delete a tuple from the Department table, will it cascade through the Employee table and on to the Dependent table?

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-11]

Chapter 11. Indexes and Constraints on Tables

In previous chapters, we concentrated primarily on retrieving information from existing tables. This chapter revisits the creation of tables, but focuses on how indexes and constraints can be added to tables to make the tables more efficient and to increase the integrity of the data in the tables (and hence in the database). Referential integrity constraints and other constraints are also discussed.

SQL Server 2005 does not need indexes to successfully retrieve results for a SELECT statement. But, an index may speed up queries and searches on the indexed columns and may facilitate sorting and grouping operations. As tables get larger, the value of using proper indexes becomes more of an issue. Indexes can be used to find data quickly that satisfy conditions in a WHERE clause, find matching rows in a JOIN clause, or to efficiently maintain uniqueness of the key columns during INSERTs and UPDATEs.

Constraints are a very powerful ways to increase the data integrity in a database. Integrity implies believability and correctness. Any data that destroys the sense of correctness is said to lack integrity. For example, a constraint is used to establish relationships with other tables. A violation of integrity would be, for instance, if a nonexistent referenced row were included in the relationship. The CONSTRAINT clause can be used with the CREATE TABLE and the ALTER TABLE statements to create constraints or delete constraints, respectively.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-1]

2.1. Displaying Data with the SELECT Statement

[bookmark: IDX-CHP-2-0071]

[bookmark: IDX-CHP-2-0072]

One of the very first things that you would usually want to do with a set of tables (or a database) is to see what information the tables contain. To display the information in a table using a query, you use a SELECT command on the table. SELECT is usually the first word in a SQL statement or query. The SELECT statement returns information from a table (or a set of tables, the database) as a set of records, or a result set. The result set is a tabular arrangement of data, composed of rows and columns. The SELECT statement shows the output on the computer screen (as shown in Figures 1-26 and 1-28 of Chapter 1). It does not save the results. The simplest and most commonly used form of the SELECT syntax is:

SELECT fields (a.k.a. columns or attributes)

FROM Table

Here, Table is the name of the table from which the data will be displayed, and fields are the columns (attributes) that you chose to display from the named table. If you did not know the name of the columns in the table, or you wanted to display all the columns in the table, you would use an asterisk (*) in place of fields; substituting an asterisk (*) in place of fields would list all the columns in the table.

So, the SELECT statement gives us a result set that is composed of the data from columns of a table.

						[image:]			SQL commands in SQL Server 2005 do not have to be terminated by a semicolon, as is true in several other SQL languages.

But, before we use the SELECT statement, we have to make sure that the right database is open. To open a database that you want to use, type the following in the query editor screen (the query editor screen is shown in Figure 1-12 of Chapter 1):

USE Student_course

and then click the Execute button.

Student_course is the name of the database that we would like to open. The Student_course database should now be active.

Once the Student_course database is active, to display all the data from a table called Dependent from our database (Student_course database), type the following in the query editor screen:

SELECT *

FROM Dependent

The * means all columns of the Dependent table. Now click the Execute button to execute this query. Your results will display in the result pane.

[bookmark: learnsqlsvr05-CHP-2-SECT-1.1]

2.1.1. SELECT without the FROM

[bookmark: IDX-CHP-2-0073]

[bookmark: IDX-CHP-2-0074]

Most SQL languages require a FROM in a query. But, SELECT statements in SQL Server do not need to be from a table. SQL Server allows us to write some special queries without FROM. For example, using a special function, GEtdATE, we may type this:

SELECT GETDATE()

and the query will return the date and time as defined by the host computer:

2006-01-12 21:55:30.107

(1 row(s) affected)

Note that these columns do not have any headings.

In SQL Server 2005, a SELECT statement can also be used to make an assignment. For example, the following example assigns 100 to col1, and 200 to col2:

SELECT col1=100, col2=200

with the results:

col1 col2

----------- -----------

100 200

(1 row(s) affected)

						[image:]			"col1" and "col2" are column aliases. Column aliases are discussed in detail later in this chapter.

SELECT 'A', 'B'

produces:

---- ----

A B

(1 row(s) affected)

Note that this output has no headings either.

SELECT 4+3, 4-3, 4*3, 4/3

produces:

----------- ----------- ----------- -----------

7 1 12 1

(1 row(s) affected)

To include meaningful column headings here, we can type:

SELECT Additions=4+3, Subtractions=4-3, Multiplications=4*3, Divisions=4/3

which results in:

Additions Subtractions Multiplications Divisions

----------- ------------ --------------- -----------

7 1 12 1

(1 row(s) affected)

						[image:]			"/" gives the whole-number quotient of a division.

[bookmark: learnsqlsvr05-CHP-2-SECT-1.2]

2.1.2. Displaying or Selecting Columns from a Table

Using a SELECT statement, you do not have to display or return all the columns from a table. You may choose to display only certain relevant columns from a table, provided you know the names of the columns in the table. In this section, we show you how to display or return one column from a table, more than one column from a table, and then how to display or return all columns from a table. Then we introduce the ORDER BY clause and also show you how to order the output in ascending or descending order by adding the ASC or DESC commands, respectively, to the ORDER BY clause.

[bookmark: learnsqlsvr05-CHP-2-SECT-1.3]

2.1.3. Displaying or SELECTing One Column from a Table

To be able to display or return particular fields or columns from a table, you need to know the column names in the table. To view the column names that a table contains, you will have to go to the Table Definition of a table. Chapter 1 (Figure 1-20) shows you how to view the table definitions of tables.

You may find it odd that a someone working with a database might not know the column names. However, when creating a table, one has great latitude with naming columns. If you knew, for example, that a table called Customer contained a name and address, you'd have to know the exact name of the column. If the table creator called the customer's name CustName, then to retrieve the data from that column, you'd have to use CustName and not any variation of it (like CustomerName or Name or anything else).

Select the table for which you want to see the definition by right clickingon the table from the Object Explorer, and then clicking on Columns. Now, right-click on the Dependent table and click Columns, and you will see the table definition of the Dependent table.

Figure 2-1 shows the definition of the Dependent table. The table definition provides the exact column names, the data types of the columns, the field sizes and information on whether the fields can hold nulls. The data type allows you to enter only a particular kind of data in the columns. The field sizes allow you to enter only up to a certain number of characters in a field. null or not null tells you whether the field will allow for nulls.

The Dependent table in Figure 2-1 has columns PNO (short for parent_number) of data type SMALLINT (small integers), DNAME (short for dependent name) of data type NVARCHAR (a varying number of characters), RELATIONSHIP (for relationship to parent or Student) of data type NVARCHAR, SEX of data type CHAR (one character), and AGE of data type SMALLINT. The only field in the Dependent table that cannot be null is STNO.

[bookmark: learnsqlsvr05-CHP-2-FIG-1]

Figure 2-1. Definition of the Dependent table

[image:]

						[image:]			Data types are discussed in detail in the next chapter

Once you know what columns a table contains, you may choose to view or display particular columns of the table. Following is the general syntax to display or SELECT the data from one field or column of a table:

SELECT field_name

FROM table

						[image:]			Refer to Appendix A for a complete list of tables and columns in the Student_course database.

For example, to display or SELECT data for a column called dname from the Dependent table, you type the following query in the query editor:

SELECT dname

FROM Dependent

This query returns a result set containing 39 records or rows (of which the first 10 rows are shown):

dname

Matt

Mary

Beena

Amit

Shantu

Raju

Rani

Susan

Sam

Donald II

.

.

.

(39 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-1.4]

2.1.4. Displaying or SELECTing More than One Column from a Table

To display or SELECT (or return) data for more than one column of the table, the column names have to be separated by commas. For example, to display the data from the dname and relationship columns in the Dependent table, type the following query:

SELECT dname, relationship

FROM Dependent

This query also produces 39 rows of output (we show the first 12 rows here):

dname relationship

-------------------- ------------

Matt Son

Mary Daughter

Beena Spouse

Amit Son

Shantu Daughter

Raju Son

Rani

Susan Daughter

Sam Son

Donald II Son

Chris Son

Susan Daughter

.

.

.

(39 row(s) affected)

In this example, we see a row where dname (dependent name) is Rani, but no relationship has been assigned or entered. This is a very typical problem in any databasedata is missing or unknown, also known as NULL. Therefore, preferably, when data is entered into a table, all columns should be valued. In this case probably an empty string was entered, otherwise SQL Server 2005 assigns a NULL value.

						[image:]			The concept of NULLs is introduced later in this chapter.

[bookmark: learnsqlsvr05-CHP-2-SECT-1.5]

2.1.5. Displaying or SELECTing All Columns of a Table

There are times when you will want to display or select all the columns of a table. To do so, as illustrated previously, you use a * in place of the column names. For example, the following produces an output of 39 rows and all the columns in the Dependent table:

SELECT *

FROM Dependent

This query also produces 39 rows of output (of which we show the first 15 rows here):

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

2 Matt Son M 8

2 Mary Daughter F 9

2 Beena Spouse F 31

10 Amit Son M 3

10 Shantu Daughter F 5

14 Raju Son M 1

14 Rani F 3

17 Susan Daughter F 4

17 Sam Son M 1

20 Donald II Son M NULL

20 Chris Son M 6

34 Susan Daughter F 5

34 Monica Daughter F 1

62 Tom Husband M 45

62 James Son M 14

.

.

.

(39 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-1.6]

2.1.6. ORDER BY

[bookmark: IDX-CHP-2-0075]

A table maintains the data in the order that the system stores it in, which is unpredictable. Remember that a relational database contains sets of rows of data and sets are not ordered. If you wish to display the contents of a table in a predictable manner, you may use the ORDER BY clause[bookmark: IDX-CHP-2-0076]

 in the SELECT statement. For example, to order the Dependent table by field age, you would type the following:

SELECT dname, age

FROM Dependent

ORDER BY age

This produces the following 39 rows of output, ordered by age (of which the first 20 rows are shown below):

dname age

-------------------- ------

Donald II NULL

Mita NULL

Losmith NULL

Prakash 1

Mithu 1

Raju 1

Sam 1

Monica 1

Jon 2

Rakhi 2

Jake 2

Nita 2

Mahesh 2

Rani 3

Amit 3

Susan 4

Sebastian 4

Mamta 4

Madhu 5

Shantu 5

.

.

.

(39 row(s) affected)

The ORDER BY does not actually change the order of the data in the table. It only displays or returns the data (output) in a particular order.

When using an ORDER BY in a SELECT statement, you do not have to have the column that you are ordering by in the SELECT statement. For example, you may display only the dependent name and age while ordering by sex, as follows:

SELECT dname, age

FROM Dependent

ORDER BY sex

This would produce 39 rows of output, of which we are showing the first 5 rows (the females are shown first, because it is ordered alphabetically):

dname age

-------------------- ------

Mary 9

Beena 31

Shantu 5

Rani 3

Susan 4

.

.

.

(39 row(s) affected)

Although the previous output is not wrong, it is may appear to be randomly ordered by someone who does not know what was used in the ORDER BY statement. Therefore, it is generally better to display the column that you are ordering by also, as follows:

SELECT dname, age, sex

FROM Dependent

ORDER BY sex

This query would once again produce 39 rows, of which we are showing the first 5 rows:

dname age sex

-------------------- ------ ----

Mary 9 F

Beena 31 F

Shantu 5 F

Rani 3 F

Susan 4 F

.

.

.

(39 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-1.6.1]

2.1.6.1. ORDER BY and NULLs

[bookmark: IDX-CHP-2-0077]

[bookmark: IDX-CHP-2-0078]

When data has not been entered for a particular column of a particular row, this cell gets a NULL value. Null means that data is missing or unavailable, so the cell has no value.

If the field that you choose to ORDER BY contains nulls, the fields that have null values assigned to them are placed at the top of the displayed list of output. This is because of the way SQL Server stores null values internally. Look at the output of the following query:

SELECT dname, age

FROM Dependent

ORDER BY age

which produces 39 rows of output, of which we are showing the first 16 rows:

dname age

-------------------- ------

Donald II NULL

Mita NULL

Losmith NULL

Prakash 1

Mithu 1

Raju 1

Sam 1

Monica 1

Jon 2

Rakhi 2

Jake 2

Nita 2

Mahesh 2

Rani 3

Amit 3

Susan 4

.

.

.

(39 row(s) affected)

If nothing was entered in a column (an empty string was entered), the column behaves just like a NULL field when using the ORDER BY clause. For example, if we type in the following query:

SELECT dname, relationship

FROM Dependent

ORDER BY relationship

we get 39 rows of output, of which we are showing the first 8 rows:

dname relationship

-------------------- ------------

Rani

Susan Daughter

Mary Daughter

Susan Daughter

Monica Daughter

Hillary Daughter

Phoebe Daughter

Shantu Daughter

.

.

.

(39 row(s) affected)

In this table, nothing (an empty string) was entered in the relationship column for the dependent Rani.

[bookmark: learnsqlsvr05-CHP-2-SECT-1.7]

2.1.7. Ascending and Descending Order

[bookmark: IDX-CHP-2-0079]

[bookmark: IDX-CHP-2-0080]

In SQL Server, the default order of an ORDER BY is ascending. To display or order output in descending order, the keyword DESC has to be appended to the ORDER BY clause. And, in order to display or order output in ascending order, the keyword ASC can be appended to the ORDER BY clause.

So, unless you specify otherwise, the following two queries will give you the same output:

SELECT dname, age

FROM Dependent

ORDER BY age

and:

SELECT dname, age

FROM Dependent

ORDER BY age ASC

The top query returns a result set ordered in ascending order by age by default. The second query has the keyword ASC appended to the ORDER BY clause, so it also orders in ascending order by age (the output for these queries has been shown previously).

In order to display or order output in descending order, the keyword DESC can be appended to the ORDER BY clause, as follows:

SELECT dname, age

FROM Dependent

ORDER BY age DESC

This produces 39 rows of output in descending order of age (of which the first 10 rows are shown here):

dname age

-------------------- ------

Tom 45

Beena 31

Barbara 26

Barbara 23

Susan 22

Susie 22

Xi du 22

Sally 22

Hillary 16

James 14

.

.

.

(39 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-1.8]

2.1.8. Ordering Within an Order

[bookmark: IDX-CHP-2-0081]

[bookmark: IDX-CHP-2-0082]

There will be times when you will want to sort groups within an order by another order. SQL Server syntax allows you to do this. For example, using the Dependent table, if you want to order all the dependents by sex, and within sex you want to order by age in descending order, would you type the following query:

SELECT dname, sex, age

FROM Dependent

ORDER BY sex, age DESC

This query would produce the following 39 rows of output:

dname sex age

-------------------- ---- ------

Beena F 31

Barbara F 26

Barbara F 23

Susan F 22

Susie F 22

Xi du F 22

Sally F 22

Hillary F 16

Phoebe F 12

Mary F 9

Mona F 7

Rekha F 6

Madhu F 5

Shantu F 5

Susan F 5

Susan F 4

Mamta F 4

Rani F 3

Rakhi F 2

Nita F 2

Monica F 1

Mita F NULL

Tom M 45

James M 14

Matt M 8

Chris M 6

Om M 6

James M 5

Sebastian M 4

Amit M 3

Jon M 2

Jake M 2

Mahesh M 2

Prakash M 1

Mithu M 1

Sam M 1

Raju M 1

Donald II M NULL

Losmith M NULL

(39 row(s) affected)

You could also order by descending order of sex, and descending order of age, as follows:

SELECT dname, sex, age

FROM Dependent

ORDER BY sex DESC, age DESC

This query would give the following 39 rows of output:

dname sex age

-------------------- ---- ------

Tom M 45

James M 14

Matt M 8

Chris M 6

Om M 6

James M 5

Sebastian M 4

Amit M 3

Jake M 2

Jon M 2

Mahesh M 2

Prakash M 1

Mithu M 1

Raju M 1

Sam M 1

Donald II M NULL

Losmith M NULL

Beena F 31

Barbara F 26

Barbara F 23

Sally F 22

Susan F 22

Susie F 22

Xi du F 22

Hillary F 16

Phoebe F 12

Mary F 9

Mona F 7

Rekha F 6

Madhu F 5

Shantu F 5

Susan F 5

Susan F 4

Mamta F 4

Rani F 3

Nita F 2

Rakhi F 2

Monica F 1

Mita F NULL

(39 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-10]

2.10. Summary

In this chapter, we have shown you how to use the basic SELECT statement and how to extract columns and rows using SELECT. We introduced the COUNT and ROWCOUNT functions, the AND, OR, and BETWEEN operators, table and column aliases, and synonyms. We also touched on the concept of nulls and have shown you how to include comments. Towards the end of the chapter, we presented some conventions for writing SQL statements and a few notes about SQL Server syntax. You will need this basic knowledge and understanding to work the forthcoming chapters.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-11]

2.11. Review Questions

			What is usually the first word in a SQL query?

			Does a SQL Server 2005 SELECT statement require a FROM?

			Can a SELECT statement in SQL Server 2005 be used to make an assignment? Explain with examples.

			What is the ORDER BY used for?

			Does ORDER BY actually change the order of the data in the tables or does it just change the output?

			What is the default order of an ORDER BY clause?

			What kind of comparison operators can be used in a WHERE clause?

			What are four major operators that can be used to combine conditions on a WHERE clause? Explain the operators with examples.

			What are the logical operators?

			In a WHERE clause, do you need to enclose a text column in quotes? Do you need to enclose a numeric column in quotes?

			Is a null value equal to anything? Can a space in a column be considered a null value? Why or why not?

			Will COUNT(column) include columns with null values in its count?

			What are column aliases? Why would you want to use column aliases? How can you embed blanks in column aliases?

			What are table aliases?

			What are table qualifiers? When should table qualifiers be used?

			Are semicolons required at the end of SQL statements in SQL Server 2005?

			Do comments need to go in a special place in SQL Server 2005?

			When would you use the ROWCOUNT function versus using the WHERE clause?

			Is SQL case-sensitive? Is SQL Server 2005 case-sensitive?

			What is a synonym? Why would you want to create a synonym?

			Can a synonym name of a table be used instead of a table name in a SELECT statement?

			Can a synonym of a table be used when you are trying to alter the definition of a table?

			Can you type more than one query in the query editor screen at the same time?

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-12]

2.12. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions.

In writing out all the following queries, use table and column aliases wherever you feel that it would improve the readability of your output. Follow the conventions for writing SQL statements. Also, for future reference, you may want to get into the practice of saving your queries by question number. For example, save the query you write for Question 2-2a as query2-2a. Print the query and your results.

						[image:]			Refer to Appendix A for a complete listing of all tables (and their columns) available in the Student_course database.

			The Student_course database used in this book has the following tables: Student, Dependent, Course, Section, Prereq (for prerequisite), Grade_report, Department_to_major, and Room.

			Display the data from each of these tables by using the simple form of the SELECT * statement.

			Display the first five rows from each of these tables.

			Display the student name and student number of all students who are juniors (hint: class = 3).

			Display the student names and numbers (from question 2) in descending order by name.

			Display the course name and number of all courses that are three credit hours.

			Display all the course names and course numbers (from question 3) in ascending order by course name.

			Display the building number, room number, and room capacity of all rooms in descending order by room capacity. Use appropriate column aliases to make your output more readable.

			Display the course number, instructor, and building number of all courses that were offered in the Fall semester of 1998. Use appropriate column aliases to make your output more readable.

			List the student number of all students who have grades of C or D.

			List the offering_dept of all courses that are more than three credit hours.

			Display the student name of all students who have a major of COSC.

			Find the capacity of room 120 in Bldg 36.

			Display a list of all student names ordered by major.

			Display a list of all student names ordered by major, and by class within major. Use appropriate table and column aliases.

			Count the number of departments in the Department_to_major table.

			Count the number of buildings in the Room table.

			What output will the following query produce?

SELECT COUNT(class)

FROM Student

WHERE class IS NULL

Why do you get this output?

			Use the BETWEEN operator to list all the sophomores, juniors, and seniors from the Student table.

			Use the NOT BETWEEN operator to list all the sophomores and juniors from the Student table.

			Create synonyms for each of the tables available in the Student_course database. View your synonyms in the Object Explorer.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-2]

2.2. Displaying or SELECTing Rows or Tuples from a Table

[bookmark: IDX-CHP-2-0083]

[bookmark: IDX-CHP-2-0084]

[bookmark: IDX-CHP-2-0085]

[bookmark: IDX-CHP-2-0086]

[bookmark: IDX-CHP-2-0087]

[bookmark: IDX-CHP-2-0088]

In relational database terminology, a table is called a relation, and is denoted by the name of the relation followed by the columns (or attributes), as shown here:

Dependent(pno, dname, relationship, sex, age)

An instance of a relation is a row of a relation (table) with values. We will use the term "row" to refer to a line of output. Although database literature also uses the term "tuple" or "record" in place of row, we will most often use the word "row," because "row" is more commonly used in relational databases (and SQL Server 2005 is a relational database).

In the previous section, we showed you how to select or display particular columns from a table, but we did not explain how to select or display specific rows. Usually you would want to select or display only particular rows from a table. For example, you may want to list all the dependents who are older than five, or list all the dependents who are female. In such a case, you want only the rows WHERE the dependents are older than five, or, only the rows WHERE the dependents are female. That is, you want to display only the rows that meet a certain condition or criteria.

By using a WHERE clause in a SELECT statement, you can selectively choose rows that you wish to display based on a criterion. For additional filtering, the WHERE clause can be used with logical operators like AND and OR, and the BETWEEN operator and its negation, NOT BETWEEN.

[bookmark: learnsqlsvr05-CHP-2-SECT-2.1]

2.2.1. Filtering with WHERE

The WHERE clause is a row filter that is used to restrict the output of rows (or tuples[bookmark: IDX-CHP-2-0089]

[bookmark: IDX-CHP-2-0090]

) in a result set. When the WHERE clause is used, the SQL Server database engine selects the rows from the table for the result set that meet the conditions listed in the WHERE clause. So, as we have previously illustrated, if no WHERE clause is used in a query, the query will return all rows from the table.

Following is the general syntax of a SELECT statement with a WHERE clause:

SELECT column-names

FROM Table

WHERE criteria

For example, consider the following query:

SELECT *

FROM Dependent

WHERE sex = 'F'

This query produces 22 rows of output (of which we show the first 10 rows):

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

2 Mary Daughter F 9

2 Beena Spouse F 31

10 Shantu Daughter F 5

14 Rani F 3

17 Susan Daughter F 4

34 Susan Daughter F 5

34 Monica Daughter F 1

62 Hillary Daughter F 16

62 Phoebe Daughter F 12

128 Mita Daughter F NULL

.

.

.

(22 row(s) affected)

The output for this query lists all the columns of the Dependent table, but only the rows WHERE the sex attribute has been assigned a value of F.

The WHERE clause can be used with several comparison operators:

			> (greater than)

			<> not equal

			= equal

			>= greater than or equal to

			<= less than or equal to

WHERE may be used in a query in addition to ORDER BY. Following is an example of a query that displays the dname and age from the Dependent table where the age of the dependent is less than or equal to 5, ordered by age:

SELECT dname, age

FROM Dependent

WHERE age <= 5

ORDER BY age

This query produces 19 rows of output (of which we show the first 11 rows):

dname age

-------------------- ------

Raju 1

Sam 1

Monica 1

Prakash 1

Mithu 1

Nita 2

Rakhi 2

Jake 2

Jon 2

Mahesh 2

Rani 3

.

.

.

(19 row(s) affected)

So far we have shown you how to include only one condition in your WHERE clause. If you want to include multiple conditions in your WHERE clause, you can use logical operators like AND and OR, and other operators like BETWEEN and its negation, NOT BETWEEN. The following sections discuss and illustrate the use of the AND, OR, and BETWEEN operators, and also the NOT BETWEEN in the WHERE clause.

[bookmark: learnsqlsvr05-CHP-2-SECT-2.2]

2.2.2. The AND Operator

[bookmark: IDX-CHP-2-0091]

[bookmark: IDX-CHP-2-0092]

[bookmark: IDX-CHP-2-0093]

The AND is a way of combining conditions in a WHERE clause. An AND operator is used in a WHERE clause if more that one condition is required. Using the AND further restricts the output of rows (tuples) in the result set. For example, consider the following query:

SELECT *

FROM Dependent

WHERE age <= 5

AND sex = 'F'

which produces the following nine rows of output:

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

10 Shantu Daughter F 5

14 Rani F 3

17 Susan Daughter F 4

34 Susan Daughter F 5

34 Monica Daughter F 1

128 Nita Daughter F 2

142 Rakhi Daughter F 2

153 Madhu Daughter F 5

153 Mamta Daughter F 4

(9 row(s) affected)

The output for this query lists all the columns of the Dependent table, but only the rows WHERE the value of the age attribute is less than or equal to 5 and the sex is female. The AND means that both the criteria, age <= 5 and sex = 'F', have to be met for the row to be included in the result set. 'F' is in single quotes in this query because sex was defined as character data (CHAR) when the table was created. Text or character data has to be in single quotes in SQL Server 2005. Double quotes would not be acceptable in SQL Server 2005. Numeric data (e.g., age <= 5) should not be in quotes.

						[image:]			An extensive discussion of data types is presented in the next chapter.

[bookmark: learnsqlsvr05-CHP-2-SECT-2.3]

2.2.3. The OR Operator

[bookmark: IDX-CHP-2-0094]

[bookmark: IDX-CHP-2-0095]

[bookmark: IDX-CHP-2-0096]

The OR operator is another way of combining conditions in a WHERE clause. Unlike the AND operator, the OR operator allows the database engine to select the row to be included in the result set if either of the conditions in the WHERE clause are met. So, although you could also use the OR operator with your WHERE clause if you wanted to include more that one condition in your WHERE clause, either of the conditions in the WHERE clause can be met for a row to be included in the result set.

Consider the following query:

SELECT *

FROM Dependent

WHERE age >20

OR sex = 'F'

which produces 23 rows of output (of which we are showing the first 10):

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

2 Mary Daughter F 9

2 Beena Spouse F 31

10 Shantu Daughter F 5

14 Rani F 3

17 Susan Daughter F 4

34 Susan Daughter F 5

34 Monica Daughter F 1

62 Tom Husband M 45

62 Hillary Daughter F 16

62 Phoebe Daughter F 12

.

.

.

(23 row(s) affected)

This output lists of all dependents who are either greater than 20 years of age or are female. The OR means that either of the criteria, age > 20 or sex = 'F', has to be met for the row to be included in the output.

[bookmark: learnsqlsvr05-CHP-2-SECT-2.4]

2.2.4. The BETWEEN Operator

[bookmark: IDX-CHP-2-0097]

[bookmark: IDX-CHP-2-0098]

[bookmark: IDX-CHP-2-0099]

The BETWEEN operator is yet another way of combining filtering conditions in a WHERE clause. In SQL Server 2005, the BETWEEN operator allows you to determine whether a value falls within a given range of values (inclusive). The general syntax of the BETWEEN operator is:

SELECT...

FROM

WHERE

BETWEEN value1 AND value2

For example, if we want to find all the dependents between the ages of 3 and 5, we would type the following:

SELECT dname, age

FROM Dependent

WHERE age

BETWEEN 3 AND 5

This query produces the following nine rows of output:

dname age

-------------------- ------

Amit 3

Shantu 5

Rani 3

Susan 4

Susan 5

James 5

Sebastian 4

Madhu 5

Mamta 4

(9 row(s) affected)

						[image:]			In SQL Server 2005, value1 in the BETWEEN clause has to be less than value2. In some SQL languages (for example, in Access SQL), value1 does not have to be less than value2.

Because the operator is inclusive, the end points of the comparison have been included in the output; that is, the BETWEEN clause takes the values from value1 and value2.

As we will often point out, SQL statements may be written in several ways. For example, the BETWEEN that we illustrated earlier may also be written as follows:

SELECT dname, age

FROM Dependent

WHERE age >=3

AND age <=5

This query produces the same output as the previous query. So, BETWEEN can be considered shorthand for "greater-than-or-equal-to AND less-than-or-equal-to some value."

[bookmark: learnsqlsvr05-CHP-2-SECT-2.5]

2.2.5. Negating the BETWEEN Operator

[bookmark: IDX-CHP-2-0100]

[bookmark: IDX-CHP-2-0101]

[bookmark: IDX-CHP-2-0102]

The BETWEEN operator can be negated by using the keyword NOT before the BETWEEN operator. NOT BETWEEN allows you to determine whether a value does not occur within a given range of values. The general syntax of the NOT BETWEEN is:

SELECT...

FROM

WHERE

NOT BETWEEN value1 AND value2

For example, if we want to find all the dependents who are not between the ages of 3 and 15, we would type the following:

SELECT dname, age

FROM Dependent

WHERE age

NOT BETWEEN 3 AND 15

which would give us the following 19 rows:

dname age

-------------------- ------

Beena 31

Raju 1

Sam 1

Monica 1

Tom 45

Hillary 16

Jon 2

Prakash 1

Mithu 1

Nita 2

Barbara 26

Rakhi 2

Susan 22

Susie 22

Xi du 22

Barbara 23

Jake 2

Mahesh 2

Sally 22

(19 row(s) affected)

Here the end points of the comparison are not included in the result set. The previous NOT BETWEEN query could also be written as follows:

SELECT sname, class

FROM Student

WHERE class <1

OR class >3

NOT BETWEEN could be considered shorthand for "less-than OR greater-than some value."

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-3]

2.3. The COUNT Function

[bookmark: IDX-CHP-2-0103]

[bookmark: IDX-CHP-2-0104]

The COUNT function is used to return a count of the number of rows that the output will produce, without actually displaying all of the output (rows) themselves. This function often comes in handy when you have large tables, or you expect a large output. In such situations, it is desirable to determine the number of rows of output that you will be getting before actually displaying the output. In this section, we introduce the COUNT function and we also take another look at the concept of null values.

If you type the following command:

SELECT *

FROM Dependent

you will get an output that includes all the rows of the Dependent table plus all the values for all columns in those rows. If you want to know only the number of rows in the output (rather than view the actual rows themselves), type the following:

SELECT COUNT(*)

FROM Dependent

This query produces the following output:

39

(1 row(s) affected)

This output says that there are 39 rows in the Dependent table. Note that the actual rows themselves are not displayed.

It is often useful to count the occurrence of column values that have a value. For example, suppose we want to find how many nonnull rows are in a particular column. With this query:

SELECT COUNT(age)

FROM Dependent

we get:

36

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

COUNT(age) counts only the rows in which age is not null, meaning that it counts only the rows that have a defined value. Therefore, the preceding output is 36 rows rather than 39 rows because the age column in the Dependent table includes 3 null values. If you want COUNT to count rows and include rows that have fields with null values, you would use COUNT(*). In the next section, we discuss null values in more detail.

[bookmark: learnsqlsvr05-CHP-2-SECT-3.1]

2.3.1. IS NULL

[bookmark: IDX-CHP-2-0105]

[bookmark: IDX-CHP-2-0106]

[bookmark: IDX-CHP-2-0107]

[bookmark: IDX-CHP-2-0108]

Null values are used to designate missing data in columns. The IS NULL condition is the only condition that directly tests for nulls. Null values are unmatched by all other conditions in WHERE clauses. Rows with null values cannot be retrieved by using = NULL in a WHERE clause, because NULL signifies a missing value. No value is considered to be equal to, greater than, or less than NULL. Even a space is not considered to be a NULL, and a null is not considered to be a space. Nulls are not considered like any other value in a table either, since nulls do not have data types. Also, because nulls do not have data types, there is no distinction between nulls in numeric columns and nulls in text columns or date columns.

The following query provides dependent names and the ages of dependents (from the Dependent table) that have null values for their age columns:

SELECT dname, age

FROM Dependent

WHERE age IS NULL

This produces the following three rows of output:

dname age

-------------------- ------

Donald II NULL

Mita NULL

Losmith NULL

(3 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-3.2]

2.3.2. IS NOT NULL

To retrieve all rows that are not nulls, IS NOT NULL can be used. The following query will give all the rows that are not nullsthe remaining 36 rows of the table (of which we show the first 10 rows):

SELECT dname, age

FROM Dependent

WHERE age IS NOT NULL

which produces 36 rows of output (of which the first 10 rows are shown):

dname age

-------------------- ------

Matt 8

Mary 9

Beena 31

Amit 3

Shantu 5

Raju 1

Rani 3

Susan 4

Sam 1

Chris 6

.

.

.

(36 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-4]

2.4. The ROWCOUNT Function

[bookmark: IDX-CHP-2-0109]

[bookmark: IDX-CHP-2-0110]

In an earlier section, we discussed how to limit the number of rows that are returned by a SELECT statement with the use of a WHERE clause and logical operators. In this section, we introduce the ROWCOUNT function, another way of limiting the number of rows that can be the returned by a SELECT statement.

The WHERE clause assumes that you have knowledge of the actual data values present in a data set. But what if you want to see only a sample of a result set, and you have no idea which range of values are present in the table? In this case, the ROWCOUNT function can come in handy.

For example, to see the first 10 rows of the Dependent table, you can type:

SET ROWCOUNT 10

SELECT *

FROM Dependent

This query returns the following 10 rows of output:

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

2 Matt Son M 8

2 Mary Daughter F 9

2 Beena Spouse F 31

10 Amit Son M 3

10 Shantu Daughter F 5

14 Raju Son M 1

14 Rani F 3

17 Susan Daughter F 4

17 Sam Son M 1

20 Donald II Son M NULL

(10 row(s) affected)

After using ROWCOUNT, you should reset the ROWCOUNT property by:

SET ROWCOUNT 0

						[image:]			If you do not reset the ROWCOUNT property, you will keep getting whatever you set your ROWCOUNT to for the remainder of this session (that is, until you log off).

If you set ROWCOUNT and issue multiple queries in the same batch, the rows are limited for all queries within the batch.

Other important functions are discussed in Chapter 5.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-5]

2.5. Using Aliases

Column aliases and table aliases are temporary names assigned within a query to columns and tables respectively. They are created on the fly in a query, and do not exist after the query is run. In this section, we discuss column aliases[bookmark: IDX-CHP-2-0111]

[bookmark: IDX-CHP-2-0112]

 and table aliases.

[bookmark: learnsqlsvr05-CHP-2-SECT-5.1]

2.5.1. Column Aliases

Column aliases are used to improve the readability of a query and its output. In SQL Server 2005, a column alias can be declared either before or after the column designation in the SELECT statement.

We will first display a query without a column alias:

SELECT dname, age, sex

FROM Dependent

WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

dname age sex

-------------------- ------ ----

Matt 8 M

Mary 9 F

Beena 31 F

Chris 6 M

Tom 45 M

James 14 M

Hillary 16 F

Phoebe 12 F

Om 6 M

Barbara 26 F

.

.

.

(17 row(s) affected)

Notice that SQL Server 2005 (by default) uses the column names from the Dependent table for the column headings. These column names may not be so explicit or descriptive. For example, what is dname? We would probably assume it's a name of something, but what does the "d" in front of name stand for? Using more descriptive headings in the output would considerably increase readability. To use more descriptive column headings, you can include column aliases just before or after the column name by using AS in the SELECT statement, as shown next (in the first few examples, we place the descriptive column headings after the column names):

SELECT dname AS Dependent_name, age AS Dependent_age, sex AS Dependent_sex

FROM Dependent

WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Dependent_name Dependent_age Dependent_sex

-------------------- ------------- -------------

Matt 8 M

Mary 9 F

Beena 31 F

Chris 6 M

Tom 45 M

James 14 M

Hillary 16 F

Phoebe 12 F

Om 6 M

Barbara 26 F

.

.

.

(17 row(s) affected)

That output has more descriptive headings.

To embed a blank in the column alias, you have to put the column alias in single or double quotes, as shown in the following example:

SELECT dname AS "Dependent Name", age AS "Dependent Age", sex AS "Dependent Sex"

FROM Dependent

WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Dependent Name Dependent Age Dependent Sex

-------------------- ------------- -------------

Matt 8 M

Mary 9 F

Beena 31 F

Chris 6 M

Tom 45 M

James 14 M

Hillary 16 F

Phoebe 12 F

Om 6 M

Barbara 26 F

.

.

.

(17 row(s) affected)

In fact, if you use single quotes in the previous query, you can also omit the AS. That is, typing in the following query gives you the same output as does the previous query:

SELECT dname 'Dependent Name', age 'Dependent Age', sex 'Dependent Sex'

FROM Dependent

WHERE age > 5

Column aliases can also be placed in square brackets, as shown in the following query:

SELECT dname AS [Dependent Name], age AS [Dependent Age], sex AS [Dependent Sex]

FROM Dependent

WHERE age > 5

Finally, column aliases can be placed in square brackets before = column name, as shown here:

SELECT [Dependent Name] = dname, [Dependent Age] = age, [Dependent Sex] = sex

FROM Dependent

WHERE age > 5

These previous two queries produce the same output (and headings) as the query before them.

If we wish to eliminate the brackets in the previous query, we can use only a one-word alias before the = column name, as shown:

SELECT Name = dname, Age = age, Sex = sex

FROM Dependent

WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Name Age Sex

-------------------- ------ ----

Matt 8 M

Mary 9 F

Beena 31 F

Chris 6 M

Tom 45 M

James 14 M

Hillary 16 F

Phoebe 12 F

Om 6 M

Barbara 26 F

.

.

.

(17 row(s) affected)

[bookmark: learnsqlsvr05-CHP-2-SECT-5.2]

2.5.2. Table Aliases

A table alias, usually used in multi-table queries (we discuss multi-table queries in Chapter 4 onwards), allows us to use a shorter name for a table when we reference the table in the query. A table alias is temporary, and does not exist after the query is run. We will explore multi-table queries in future chapters. Following is an example of the previous query written with a one-letter table alias:

SELECT d.dname

FROM Dependent d

WHERE d.age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

dname

Matt

Mary

Beena

Chris

Tom

James

Hillary

Phoebe

Om

Barbara

.

.

.

(17 row(s) affected)

In this query, the table alias is the letter d after the table name, Dependent. A table alias can also be defined by a short, meaningful word or expression after the table name, rather than a one-letter table alias, but the one-letter table alias is commonly used by SQL programmers. Once a table alias has been defined in a query, it can be used in place of the table name. So, d could be used in place of Dependent if the table name needed to be used again in this particular query, but it is not reusable in multiple queries within the same batch. Again note that the table alias is not valid outside this query (or, after this query is executed). That is, if you type SELECT * from d, you will get an error message. There is no such table as d (d was locally defined as the table alias for that particular query, and is valid only in that particular query).

[bookmark: learnsqlsvr05-CHP-2-SECT-5.3]

2.5.3. Table Aliases Used as Table Qualifiers

[bookmark: IDX-CHP-2-0113]

[bookmark: IDX-CHP-2-0114]

[bookmark: IDX-CHP-2-0115]

[bookmark: IDX-CHP-2-0116]

In the previous example, the construction d.dname contains a table qualifier (the d. part). Table qualifiers are needed when the same column name has been used in more than one table. Table qualifiers before the column names determine which table the column is from. For example, if TableA has a column called Field1 and TableB also has a column Field1, if we do not use a table qualifier in a multi-table query, there is no way that the query engine can know which Field1 the query is referring to. To correctly handle this situation, we would have to use a table qualifier in the form Table1.FieldA, where Table1 is the table qualifier (this is also an alias, in a way).

						[image:]			Once again, multi-table queries will be discussed from Chapter 4 onward.

Following is an example of a query with a table qualifier used for the age column:

SELECT *

FROM Dependent

WHERE Dependent.age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

PNO DNAME RELATIONSHIP SEX AGE

------ -------------------- ------------ ---- ------

2 Matt Son M 8

2 Mary Daughter F 9

2 Beena Spouse F 31

20 Chris Son M 6

62 Tom Husband M 45

62 James Son M 14

62 Hillary Daughter F 16

62 Phoebe Daughter F 12

126 Om Son M 6

128 Barbara Wife F 26

.

.

.

(17 row(s) affected)

It is also very common in SQL to alias a table and then also use the table alias as a table qualifier, as illustrated here:

SELECT *

FROM Dependent d

WHERE d.age > 5

The output of this query will be the same as the output of the previous query.

In this query, d (the table alias) is also the table qualifier. Not only is a construction like this very common, but it also helps to circumvent typing errors when writing commands.

The advantages of using table qualifiers and table aliases may not be so apparent in the examples presented in this chapter, because we are working only with single tables here. As we start working with multiple tables (from Chapter 4 onwards), their advantages will become more obvious.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-6]

2.6. Synonyms

In the last section, we discussed one way of referring to a tablethrough the use of table aliases. Table aliases are not permanent, in the sense that they do not exist after the query has been executed. In this section, we show you another way of referring to a table--synonyms[bookmark: IDX-CHP-2-0117]

. Synonyms are more permanent; they are available for use until they are deleted. In this section, we show you how to create, use, and delete synonyms.

SQL Server 2005 allows you to create synonyms for your tables. Synonyms are usually shorter names that can be used in place of the table name. If a change is made in the original table or its data, this change will be reflected when the synonym is used. And, if a change is made in the data of the table using a synonym, this change will be reflected in the original table. But, you cannot alter the table's definition using the synonym. Alter table commands (covered in Chapter 3) can be used only on the actual tables.

The general syntax to create a synonym is:

CREATE SYNONYM synonym_name

FOR Table_name

For example, to create a synonym for the Student table called s1, type:

CREATE SYNONYM s1

FOR Student

To view the synonym that you just created, from the Object Explorer, expand Student_course database and then Synonyms (as shown in Figure 2-2), and you will see the synonym, s1.

[bookmark: learnsqlsvr05-CHP-2-FIG-2]

Figure 2-2. The synonym

[image:]

You can now type:

SELECT *

FROM s1

And you will get the same output as if you typed:

SELECT *

FROM Student

A synonym will exist until you delete it. The general syntax to delete a synonym is:

DROP SYNONYM synonym_name

So, if you want to delete the synonym s1, type:

DROP SYNONYM s1

You can also delete the synonym by right-clickingon the synonym and selecting Delete.

If you forget which synonym has been created for which table, right-clickon the synonym and select Properties.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-7]

2.7. Adding Comments to SQL Statements

[bookmark: IDX-CHP-2-0118]

Comments are nonexecutable words or phrases included in SQL queries to make the queries easier to understand (particularly by other people). Comments are ignored by the SQL engine, but they are very useful to programmers in determining what the statement does, when it was written, who wrote it, and so on. There are two ways of including comments[bookmark: IDX-CHP-2-0119]

 in SQL Server 2005. The first way is by the use of dashes, as shown here:

SELECT * -- displays "all" attributes

FROM Dependent d -- of the Dependent table

WHERE d.age > 5 -- where the age of the dependent is greater than 5.

The second way of including comments in Server SQL 2005 is by the use of /*...*/ construction. Following is an example of a commented statement that uses this format:

SELECT dname, age /* displays the dependent name and age */

FROM Dependent d /* from the Dependent table */

WHERE d.age > 5 /* where the age of the dependent is greater than 5 */

						[image:]			SQL Server 2005 allows you to include comments even before the first line in a query and after the last line in a query.

We wish to encourage the use of comments in writing SQL queries, particularly for complex queries, and when queries will be debugged or enhanced by others.

SQL Server 2005 also has icons to turn lines into comment lines. For example, if you type in the query as shown in Figure 2-3, and then you wish to make the last line a comment line, highlight the last line and clickthe Make Comment button and the last line will become a comment line. If you wish to remove the comment, clickthe button beside it, the Remove Comment button, and the comment will be removed, turning the line into a regular line.

[bookmark: learnsqlsvr05-CHP-2-FIG-3]

Figure 2-3. Icons for adding/removing comments

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-8]

2.8. Some Conventions for Writing SQL Statements

[bookmark: IDX-CHP-2-0120]

Although SQL statements often contain multiple commands and multiple lines, there are no fixed rules for writing[bookmark: IDX-CHP-2-0121]

 SQL statements; SQL is a "free-form" language. We suggest that you use the following conventions to increase the readability of your queries, especially as your statements or queries become more complex:

			Use uppercase letters for the keywords, which inclues SELECT, FROM, and WHERE. Use lowercase letters for the user-supplied words (SQL Server 2005 is not case-sensitive for commands).

			Align the keywords SELECT, FROM, and WHERE on separate lines, like this:

SELECT *

FROM Dependent

WHERE age > 5

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2-SECT-9]

2.9. A Few Notes About SQL Server 2005 Syntax

A few things that you need to know about syntax[bookmark: IDX-CHP-2-0122]

 in SQL Server 2005:

			SQL Server 2005 allows blank lines in the SQL window.

			Queries in SQL Server 2005 do not have to end in a semicolon.

			SQL Server 2005 allows you to include comments anywhere in a SQL script or query. Many other SQL languages will not let you include a comment as the first line of a script or query (other SQL languages will look for a SQL statement beginning with a command like SELECT on the first line of a script or query), but SQL Server 2005 will allow you to include a comment on the first line of a script or query. SQL Server 2005 also allows comments after the semi-colon (which may have been used to end a query). Many SQL languages will not accept anything typed after the semi-colon.

			SQL Server 2005 will allow you to type in multiple queries on the query editor screen at one time, and you may only execute the ones that you wish to execute. For example, if you type in the following three queries on the query editor screen:

SELECT *

FROM Dependent

SELECT *

FROM Student

SELECT *

FROM Course

To first execute the middle query, SELECT * FROM Student, you may highlight this query and clickthe Execute button. If you then wish to execute the first query, SELECT * FROM Dependent, you may highlightthis query and clickon the Execute button. You can, of course, do this as many times as you wish, and in any combination that you wish.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-2]

Chapter 2. Beginning SQL Commands in SQL Server

In this chapter, we discuss how to write (build) simple SQL query statements in SQL Server 2005 using the SELECT statement. We examine how to retrieve data from a table by the use of SELECT statements, how to SELECT fields (columns) and rows from tables, how to use the ORDER BY and WHERE clauses, and how to use the AND, OR, and BETWEEN operators. The concept of COUNT and null values is also to be established. Then, to make writing queries simpler, we discuss how to use table and column aliases, table qualifiers, synonyms, and finally we present a convention for writing SQL statements.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-1]

3.1. Data Types in SQL Server 2005

Every column in a table has a data type. The data type of a column specifies what kind of information or values can be stored in the column, and what kind of operations can be performed on those values. It is a matter of mapping the domain values you need to store to the corresponding data type. In selecting a data type, you should avoid wasting storage space, while allowing enough space for a sufficient range of possible values over the life of your application. SQL Server 2005 supports 30 different data types. We will discuss the most commonly used data types by dividing the data types into four major categories: numeric, character, date and time, and miscellaneous.

						[image:]			Domain values are the set of all possible values that a column can have. For example, the domain values for a GPA column may be 0 to 4.

Several of the primary data types also have valid synonyms that can be used instead of the regular data types. The synonyms are external names that are intended to make one SQL product compatible with another.

The more specific you are when selecting a data type for a column, the more accurate the information in your database will be. The following sections briefly describe each data type and its valid synonyms.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.1]

3.1.1. Numeric Data Types

[bookmark: IDX-CHP-3-0124]

[bookmark: IDX-CHP-3-0125]

[bookmark: IDX-CHP-3-0126]

[bookmark: IDX-CHP-3-0127]

Numeric data types should be used for storing numeric data, for data on which you want to perform numeric comparisons or arithmetic operations. Numeric data types can be divided into two groups: integers and decimals.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.1.1]

3.1.1.1. Integer data types

Integer data types have no digits after the decimal point, and range in size from 1 to 8 bytes of internal storage. Integer data types in SQL Server 2005 include:

			BIGINT, which uses 8 bytes of storage and can be used to store numbers from -263 to 263 -1. Avoid using the BIGINT data type unless you really need its additional storage capacity.

			INT, which uses 4 bytes of storage and can be used to store numbers from -231 to 231 -1.

			SMALLINT, which uses 2 bytes of storage and can be used to store numbers from -215 to 215 -1.

			TINYINT, which uses 1 byte of storage and can be used to store numbers from 0 to 255.

			MONEY, which uses 8 bytes of storage.

			SMALLMONEY, which uses 4 bytes of storage.

MONEY and SMALLMONEY are included among integer types because they are internally stored the same way as integers.

						[image:]			The synonym for INT is INTEGER.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.1.2]

3.1.1.2. Decimal data types

Decimal data types allow a larger range of values as well as a higher degree of accuracy than integer data types[bookmark: IDX-CHP-3-0128]

. For decimal data types,[bookmark: IDX-CHP-3-0129]

 you can specify a precision and a scale. Precision is the total number of digits stored, and scale is the maximum number of digits to the right of the decimal point. The storage space of decimal data varies according to the precision. Decimals with a precision of 1 to 9 would take up 5 bytes of storage space; decimals with a precision of 10 to 19 would take up 9 bytes of storage, and so on.

Decimal data types include:

			REAL, which uses 4 bytes for storage and has a precision of 7 digits. The synonym for REAL is FLOAT[(n)] for n = 1 to 7.

			FLOAT, which uses 8 bytes for storage and has a precision of 15 digits. The synonym for FLOAT is DOUBLE PRECISION and FLOAT[(n)] for n = 8 to 15.

			DECIMAL, whose storage size varies based on the specified precision and uses 217 bytes for storage. The synonyms for DECIMAL are DEC and NUMERIC.

Rounding errors can occur when using the FLOAT or REAL data types. NUMERIC or DECIMAL are better in such cases, because they give the precision and scale, without the problems of FLOAT or REAL.

When you are trying to select the numeric data type to use, your decision should be based on the maximum range of possible values that you want to store, and the precision and scale that you need. But, at the same time, you have to realize that data types that can store a greater range of values take up more space.

						[image:]			NUMERIC most closely resembles Oracle's NUMBER data type.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2]

3.1.2. Character Data Types

Character data types are used to store any combination of letters, numbers and symbols. Single quotes have to be used when entering character data. SQL Server 2005 has five types of character data types: CHAR, VARCHAR, TEXT, NCHAR, NVARCHAR.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.1]

3.1.2.1. The CHAR data type

[bookmark: IDX-CHP-3-0130]

[bookmark: IDX-CHP-3-0131]

[bookmark: IDX-CHP-3-0132]

CHAR(n)s are fixed-length single-byte character strings that can be used to store up to 8,000 bytes of data. CHAR data is used when the column length is known and unvarying; for example, a Social Security number could be of CHAR(9) data type. Because CHARs use a fixed storage length, CHARs are accessed faster than VARCHARs (varying length character strings). You can and should specify the maximum byte length of a CHAR(n) data type with a value for n; otherwise, the default size will be used and the default size may be set to a size much higher than what you need. The synonym for CHAR is CHARACTER.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.2]

3.1.2.2. The VARCHAR data type[bookmark: IDX-CHP-3-0133]

[bookmark: IDX-CHP-3-0134]

[bookmark: IDX-CHP-3-0135]

VARCHAR(n)s are variable length single-byte character strings that can also be used to store up to 8000 bytes of data. You can and should also specify the maximum byte length of VARCHARs with n, too; otherwise, as with the CHAR data type, the default size will be used, and the default size may be set to a size much higher than what you need. Variable length means that if less data than the specified n bytes is used, the storage size will be the actual length of the data entered. The synonym for VARCHAR is CHAR VARYING. VARCHAR is the most commonly used character (string) type.

						[image:]			VARCHAR2 is the Oracle equivalent of VARCHAR.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.3]

3.1.2.3. The TEXT data type

[bookmark: IDX-CHP-3-0136]

[bookmark: IDX-CHP-3-0137]

[bookmark: IDX-CHP-3-0138]

[bookmark: IDX-CHP-3-0139]

[bookmark: IDX-CHP-3-0140]

TEXTs are also variable-length single-byte character strings, but may be used to store more than 8,000 bytes. The TEXT data type, in SQL Server 2005, is a large object data type, better used if you need to store large strings of data. TEXT has extra overhead that drags down performance. Therefore, the use of the TEXT data type is not encouraged.

						[image:]			LONG is the Oracle equivalent of TEXT.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.4]

3.1.2.4. The NCHAR data type

[bookmark: IDX-CHP-3-0141]

[bookmark: IDX-CHP-3-0142]

[bookmark: IDX-CHP-3-0143]

NCHARs are fixed-length Unicode character strings[bookmark: IDX-CHP-3-0144]

[bookmark: IDX-CHP-3-0145]

[bookmark: IDX-CHP-3-0146]

[bookmark: IDX-CHP-3-0147]

. You can also specify the maximum byte length of NCHAR with n. The synonym for NCHAR is NATIONAL CHAR.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.5]

3.1.2.5. The NVARCHAR data type[bookmark: IDX-CHP-3-0148]

[bookmark: IDX-CHP-3-0149]

[bookmark: IDX-CHP-3-0150]

NVARCHARs are variable-length Unicode character strings. You can specify the maximum byte of NVARCHAR length with n. The synonym for NVARCHAR is NATIONAL CHARACTER VARYING.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.6]

3.1.2.6. Unicode character strings

Unicode character strings need two bytes for each stored character. Most English and European alphabets can, however, be stored in single-byte characters. Single-byte character strings can store up to 8,000 characters, and Unicode character strings can store up to 4,000 characters.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.2.7]

3.1.2.7. Selecting the character data types

Some general rules that you can follow to determine which character data type to use:

			Use the variable-length data types (VARCHAR) over fixed-length data types (CHAR) when you expect a lot of null values or a lot of variation in the size of data.

			If a column's data does not vary widely in number of characters, consider using CHAR instead of VARCHAR.

			NVARCHAR or NCHAR data types should not be used unless you need to store 16-bit character (Unicode) data. NVARCHARs and NCHARs take up twice as much space as VARCHAR or CHAR data types, reducing I/O performance.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.3]

3.1.3. Date and Time Data Types

SQL Server 2005 has two data types for storing date and time information: DATETIME and SMALLDATETIME. DATETIME uses 8 bytes. SMALLDATETIME uses 4 bytes of storage. Internally, the DATETIME and SMALLDATETIME values are stored completely differently from how you enter them or how they are displayed. They are stored as two separate components, a date component and a time component.

						[image:]			DATE is the Oracle equivalent of DATETIME.

When creating primary keys, do not consider using the DATETIME and SMALLDATETIME data types. From a performance standpoint, it is better to use a data type that uses less space for a primary key. The less the space used for a primary key, the smaller the table and index, and the less I/O overhead will be required to access the primary key.

						[image:]			Creation of primary keys will be discussed in Chapter 11.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4]

3.1.4. Miscellaneous Data Types

[bookmark: IDX-CHP-3-0151]

[bookmark: IDX-CHP-3-0152]

Among other data types available in SQL Server 2005 are BINARY, IMAGE, BIT, TABLE, SQL_VARIANT, UNIQUEIDENTIFIER, and the XML data type (one of SQL Server 2005's newest enhancements).

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.1]

3.1.4.1. The BINARY data type[bookmark: IDX-CHP-3-0153]

[bookmark: IDX-CHP-3-0154]

[bookmark: IDX-CHP-3-0155]

The BINARY data types are BINARY and VARBINARY.

BINARY data types are used to store strings of bits, and values are entered and displayed using their hexadecimal (hex) representation. The maximum length of the BINARY data type is 8,000 bytes. You can specify the maximum byte length of BINARY data with n.

The VARBINARY data type can store up to 8,000 bytes of variable-length binary data. Once again, you can also specify the maximum byte length with n. The VARBINARY data type should be used (instead of the BINARY data type) when you expect to have null values or a variation in data size.

						[image:]			RAW is the Oracle equivalent of VARBINARY.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.2]

3.1.4.2. The IMAGE data type[bookmark: IDX-CHP-3-0156]

[bookmark: IDX-CHP-3-0157]

[bookmark: IDX-CHP-3-0158]

The IMAGE data type is a large object binary data type that stores more than 8000 bytes. The IMAGE data type is used to store binary values and is also used to store pictures.

						[image:]			LONG RAW is the Oracle equivalent of IMAGE.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.3]

3.1.4.3. The BIT data type

[bookmark: IDX-CHP-3-0159]

[bookmark: IDX-CHP-3-0160]

[bookmark: IDX-CHP-3-0161]

The BIT data type is actually an integer data type that can store only a 0 or a 1 and can consume only a single bit of storage space. However, if there is only a one bit column in a table, it will actually take up a whole byte. Up to 8-bit columns are stored in a single byte. The BIT data type is usually used for true/false or yes/no types of data. BIT columns cannot be NULL and cannot have indexes on them.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.4]

3.1.4.4. The monetary data types[bookmark: IDX-CHP-3-0162]

[bookmark: IDX-CHP-3-0163]

[bookmark: IDX-CHP-3-0164]

Monetary data types are generally used to store monetary values. SQL Server 2005 has two monetary data types:

			MONEY, which uses 8 bytes of storage

			SMALLMONEY, which uses 4 bytes of storage

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.5]

3.1.4.5. The TABLE data type[bookmark: IDX-CHP-3-0165]

[bookmark: IDX-CHP-3-0166]

[bookmark: IDX-CHP-3-0167]

The TABLE data type can be used to store the result of a function and can be used as the data type of local variables. Columns in tables, however, cannot be of type TABLE. Table variables are sometimes preferable to temporary tables, because table variables are cleaned up automatically at the end of a function or stored procedure.

						[image:]			Temporary tables are covered in Chapter 6. Discussing functions and stored procedures is beyond the scope of this book.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.6]

3.1.4.6. The SQL_VARIANT data type[bookmark: IDX-CHP-3-0168]

[bookmark: IDX-CHP-3-0169]

[bookmark: IDX-CHP-3-0170]

Values stored in a SQL_VARIANT column can be any data type except TEXT or IMAGE. The usage of the SQL_VARIANT data type should be avoided for several reasons: (a) a SQL_VARIANT column cannot be part of a primary or foreign key; (b) a SQL_VARIANT column cannot be part of a computed column; (c) a SQL_VARIANT column can be used in indexes or as other unique keys only if they are shorter than 900 bytes; (d) a SQL_VARIANT column must convert the data to another data type when moving data to objects with other data types.

						[image:]			Foreign keys are discussed in Chapter 11.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.7]

3.1.4.7. The UNIQUEIDENTIFIER data type[bookmark: IDX-CHP-3-0171]

[bookmark: IDX-CHP-3-0172]

[bookmark: IDX-CHP-3-0173]

[bookmark: IDX-CHP-3-0174]

[bookmark: IDX-CHP-3-0175]

The UNIQUEIDENTIFIER data type, also referred to as globally unique identifier (GUID) or universal unique identifier (UUID), is a 128-bit generated value that guarantees uniqueness worldwide, even among unconnected computers.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.4.8]

3.1.4.8. The XML data type

[bookmark: IDX-CHP-3-0176]

[bookmark: IDX-CHP-3-0177]

The XML data type is a new data type that has been added to SQL Server 2005 to handle XML data. XML can model complex data. The XML column can be typed or untyped. Like other data types, the XML data type must meet specific formatting criteria. It must conform to well-formatted XML criteria (which is untyped) and you can optionally add additional conformance criteria by specifying a Schema collection (typed). SQL Server will also allow you to store XML documents associated with multiple schema definitions. The XML data type will allow you to store complete XML documents or fragments of XML documents. XML documents are limited to two gigabytes of data.

[bookmark: learnsqlsvr05-CHP-3-SECT-1.5]

3.1.5. Selecting Data Types

Here we present some general rules that you can follow to determine which data type to use to define a column:

			Use the smallest possible column sizes. The smaller the column size, the lesser the amount of data that SQL Server has to store and process, and the faster SQL Server will be able to read and write the data. In addition, the narrower the column, the faster a sort will be performed on a column.

			Use the smallest possible data type for a column that will hold your data. For example, if you are going to be storing numbers from 1 to 99 in a column, you would be better off selecting the TINYINT data type instead of the INT data type.

			For numeric data, it is better to use a numeric data type such as INTEGER, instead of using VARCHAR or CHAR, because numeric data types generally require less space to hold numeric values then character data types. This saves space, and smaller columns can improve performance when the columns are searched, joined with other columns, or sorted.

						[image:]			Joins are discussed in Chapter 4.

			FLOATs or REALs should not be used to define primary keys. Integer data types can be used for primary keys.

			Avoid selecting the fixed length columns--CHAR or NCHAR--if your column will have a lot of nulls. The NULL in a CHAR or NCHAR field will take up the entire fixed length of 255 characters. This wastes much space and reduces SQL Server's overall performance.

			If you are going to be using a column for frequent sorts, consider an integer-based column rather than a character-based column. SQL Server sorts integer data faster than character data. [1]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-10]

3.10. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			Create a table called Cust with a customer number as a fixed-length character string of 3, an address with a variable-length character string of up to 20, and a numeric balance.

			Insert values into the table with INSERT INTO .. VALUES option. Use the form of INSERT INTO .. VALUES option that requires you to have a value for each column; therefore, if you have a customer number, address, and balance, you must insert three values with INSERT INTO .. VALUES option.

			Create at least five tuples (rows in the table) with customer numbers 101 to 105 and balances between 200 to 2000.

			Display the table with a simple SELECT.

			Show the balances for customers with customer numbers 103 and 104.

			Add a customer number 90 to your Cust table.

			Show a listing of the customers in balance order (high to low), using ORDER BY in your SELECT. (Result: Five tuples, or however many you created.)

			From the Student table (from our Student_course database), display the student names, classes, and majors for freshmen or sophomores (class <= 2) in descending order of class.

			From your Cust table, show a listing of only the customer balances in ascending order where balance > 400. (You can choose some other constant or relation if you want, such as balance <= 600.) The results will depend on your data.

			Create another two tables with the same data types as Cust but without the customer addresses. Call one table Cust1 and the other Cust2. Use column names cnum for customer number and bal for balance. Load the table with the data you have in the Cust table with one less tuple. Use an INSERT INTO .. SELECT with appropriate columns and an appropriate WHERE clause.

			Display the resulting tables.

			Alter the Cust1 table by adding a date_opened column of type DATETIME. View the table definition of Cust1.

			Add some more data to the Cust1 table by using the INSERT INTO .. VALUES option.

After each of the following, display the table.

			Set the date_opened value in all rows to '01-JAN-06'.

			Set all balances to zero.

			Set the date_opened value of one of your rows to '21-OCT-06'.

			Change the type of the balance column in the Cust1 table to FLOAT. Display the table definition. Set the balance for one row to 888.88 and display the table data.

			Try changing the type of balance to INTEGER. Does this work in SQL Server?

			Delete the date_opened column of the Cust1 table.

			When you are finished with the exercise (but be sure you are finished), delete the tables Cust, Cust1, and Cust2.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-11]

3.11. References

[1] Data Type Performance Tuning Tips for Microsoft SQL Server: http://www.sql-server-performance.com/datatypes.asp

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-2]

3.2. Creating a Table

[bookmark: IDX-CHP-3-0178]

In SQL Server 2005, a relational database, data is loaded into tables that are created in a database. In Chapter 1, we showed you how to create a database. In this section we will concentrate on creating[bookmark: IDX-CHP-3-0179]

 a table within an existing database.

In SQL, the CREATE TABLE[bookmark: IDX-CHP-3-0180]

 command is used to create a table. In SQL Server 2005, the CREATE TABLE command has to be typed in the query editor screen.

The general syntax of the CREATE TABLE statement is:

CREATE TABLE Tablename

 (column_name type, column_name, type,)

To demonstrate how this CREATE TABLE command works, we provide two examples.

For the first example, we will create a table called Employee that has four columns (attributes). First, type the following in the query editor screen (make sure that you have selected the Student_course database before typing this; if you do not remember how to select the Student_Course database, refer to Figure 1-16 of Chapter 1):

CREATE TABLE Employee (names VARCHAR(20),

 address VARCHAR(20),

 employee_number INT,

 salary SMALLMONEY)

Execute the query.

You will get:

Command(s) completed successfully.

This CREATE TABLE query created a table called Employee with four columns (in the Student_course database): names, address, employee_number, and salary. The data type of names is VARCHAR (variable-length character), with a maximum length of 20 characters. The data type of address is VARCHAR, with a maximum length of 20 characters. The data type of employee_number is INT and the data type of salary is SMALLMONEY.

To view the Employee table in the Student_course database, expand the Student_course node (under the Object Explorer) and the Tables node, and you should be able to see the Employee table, as shown in Figure 3-1.

[bookmark: learnsqlsvr05-CHP-3-FIG-1]

Figure 3-1. Viewing the Employee table

[image:]

To look at the table definition of the table you just created, right-click on the table, Employee, and select Modify. Figure 3-2 shows the table definition of the Employee table.

[bookmark: learnsqlsvr05-CHP-3-FIG-2]

Figure 3-2. Table Definition of Employee table

[image:]

For the second example to demonstrate the use of the CREATE TABLE command, we will create a table called Names (type the following query):

CREATE TABLE Names

 (fullname VARCHAR(20))

This table has only one column, fullname. Its data type is VARCHAR and the maximum length of a name in this table is 20 characters.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-3]

3.3. Inserting Values into a Table

[bookmark: IDX-CHP-3-0181]

[bookmark: IDX-CHP-3-0182]

There are several ways to insert values into a table using SQL in SQL Server 2005. We will illustrate the two most commonly used ways: using INSERT INTO .. VALUES and using INSERT INTO .. SELECT.

[bookmark: learnsqlsvr05-CHP-3-SECT-3.1]

3.3.1. Using INSERT INTO .. VALUES

One way to insert values into one row of a table is to use the INSERT INTO command with the VALUES option. The INSERT INTO .. VALUES option needs the column list and all the columns in the correct order.

The general syntax for the INSERT INTO .. VALUES option is:

INSERT INTO TableName

VALUES ('character_attribute_value', numeric_attribute_value, ...)

We will first illustrate inserting data with the INSERT INTO .. VALUES option using the Names table we created in the preceding section. So, type the following in the query editor:

INSERT INTO Names

VALUES ('Joe Smith')

where:

			INSERT is the SQL command to insert data

			INTO is a necessary keyword

			Names is the name of an existing table

			VALUES is another necessary keyword

			'Joe Smith' is a string of letters corresponding to the VARCHAR data type

Then click the Execute button. You will get a message that will tell you how many rows were inserted by the query:

(1 row(s) affected)

Now, if you type the following SQL query:

SELECT *

FROM Names

You will get:

fullname

Joe Smith

(1 row(s) affected)

The INSERT INTO .. VALUES option appends rows to a table (that is, rows are added to the end of the table). So, if you use the INSERT INTO .. VALUES option again as follows:

INSERT INTO Names

VALUES ('Sudip Kumar')

And then type:

SELECT *

FROM Names

You get this result:

fullname

Joe Smith

Sudip Kumar

(2 row(s) affected)

If you created a table with n attributes (columns), you usually would have n values in the INSERT INTO .. VALUES statement, in the order of the definition of the columns in the table. For example, to insert into the Employee table that you created earlier, the INSERT INTO .. VALUES statement to insert a row would have to match column for column and would look like this:

INSERT INTO Employee

VALUES ('Joe Smith', '123 4th St.', 101, 2500)

Note that character data is entered with single quotes around it. Numeric data does not use quotes (as shown by 101 and 2500).

Now if you type:

SELECT *

FROM Employee

You get the following:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

(1 row(s) affected)

An INSERT that looks like the following is incorrect, because it does not include all four columns of the Employee table:

INSERT INTO Employee

VALUES ('Joe Smith', '123 4th St.')

You may INSERT a row with less than all the columns by naming the columns you want to insert into, like this:

INSERT INTO Employee (names, address)

VALUES ('Joe Smith', '123 4th St.')

In this case, the row will contain nulls or default values for the values left out, which you will see if you type:

SELECT *

FROM Employee

This will give:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

Joe Smith 123 4th St. NULL NULL

(2 row(s) affected)

An INSERT that looks like the following is incorrect, because it does not have the values in the same order as the definition of the table:

INSERT INTO Employee

VALUES (2500, 'Joe Smith', 101, '123 4th St.')

If for some reason the data had to be entered in this order, the previous statement could be corrected by specifying the column names, as shown here:

INSERT INTO Employee (salary, names, employee_number, address)

VALUES (2500, 'Joe Smith', 101, '123 4th St.')

At this point, typing:

SELECT *

FROM Employee

would give us the following output:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

Joe Smith 123 4th St. NULL NULL

Joe Smith 123 4th St. 101 2500.00

(3 row(s) affected)

You may actually include the keyword, null, if the address and the salary were unknown:

INSERT INTO Employee

VALUES ('Joe Smith', null, 101, null)

Now having added four rows to our table, type:

SELECT *

FROM Employee

This query will give the following output:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

Joe Smith 123 4th St. NULL NULL

Joe Smith 123 4th St. 101 2500.00

Joe Smith NULL 101 NULL

(4 row(s) affected)

To delete all the rows in the Employee table as well as in the Names table, type:

DELETE FROM Employee

Then:

DELETE FROM Names

We will revisit the DELETE command later in the chapter.

For the rest of this chapter, we will set up our Employee table with more meaningful data. Suppose we deleted all the test rows from the previous examples with a DELETE statement and then suppose we used the INSERT INTO .. VALUES option to insert valid data into the Employee table, making it look like this:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

Pradeep Saha 27 Shillingford 103 3300.00

Sumit Kumar 95 Oxford Rd 105 1200.00

Joya Das 23 Pesterfield Cr 114 2290.00

Terry Livingstone 465 Easter Ave 95 3309.00

(5 row(s) affected)

						[image:]			More than one INSERT INTO .. VALUES command can be typed in on one screen in SQL Server 2005.

[bookmark: learnsqlsvr05-CHP-3-SECT-3.2]

3.3.2. Using INSERT INTO .. SELECT

[bookmark: IDX-CHP-3-0183]

[bookmark: IDX-CHP-3-0184]

With the INSERT INTO .. VALUES option, you insert only one row at a time into a table. With the INSERT INTO .. SELECT option, you may (and usually do) insert many rows into a table at one time.

The general syntax for the INSERT INTO .. SELECT option is:

INSERT INTO target_table(column1, column2, column3, ...)

 "SELECT clause"

We will first illustrate inserting with the INSERT INTO .. SELECT by populating the Names table (the one that you created earlier in this chapter and then removed all rows from with a DELETE FROM Names). To copy all the names from the Employee table into the Names table, type the following:

INSERT INTO Names(fullname)

 SELECT names

 FROM Employee

And now if you type:

SELECT *

FROM Names

you will get the following five rows of output:

fullname

Joe Smith

Pradeep Saha

Sumit Kumar

Joya Das

Terry Livingstone

(5 row(s) affected)

We do not have to copy all the names from the Employee table to the Names table. For example, we could restrict the INSERT .. SELECT like this:

INSERT INTO Names(fullname)

 SELECT names

 FROM Employee

 WHERE salary > 2600

This would give us only the following two rows in Names:

fullname

Pradeep Saha

Terry Livingstone

(2 row(s) affected)

As with the INSERT INTO .. VALUES option, if you create a table with n columns, you usually would have n values in the INSERT INTO .. SELECT option in the order of the table definition, or you would have to name the columns you are inserting. For example, suppose we have a table called Emp1, created with three columns:

Emp1 (addr, sal, empno)

The columns, addr, sal, empno, stand for address, salary, and employee number, respectively.

Now suppose that we want to load the existing empty table called Emp1 from the Employee table with the appropriate columns.

						[image:]			As with the INSERT INTO .. VALUES option, the INSERT INTO .. SELECT option has to match column for column.

An INSERT INTO .. SELECT statement would look like this:

INSERT INTO Emp1(addr, sal, empno)

 SELECT address, salary, employee_number

 FROM Employee

The Emp1 table would now have the following five rows:

addr sal empno

-------------------- ------------ -----------

123 4th St. 2500.00 101

27 Shillingford 3300.00 103

95 Oxford Rd 1200.00 105

23 Pesterfield Cr 2290.00 114

465 Easter Ave 3309.00 95

(5 row(s) affected)

If we created a table, Emp2, with identical columns (or attributes) as Emp1, we could use the following INSERT to load data from table Emp1 to Emp2:

INSERT INTO Emp2

 SELECT *

 FROM Emp1

The Emp2 table would now have the same data as the Emp1 table. This is one way of creating a backup table.

Again, note that the Emp2 table has to exist (be created with the same columns and types) before loading it with the INSERT INTO .. SELECT option.

One caution must be pointed out, however. An erroneous INSERT INTO .. SELECT could succeed if the data types of the SELECT match the data types of the columns in the table to which we are inserting. For example, say we execute the following statement (remember that both sal and empno are numeric types):

INSERT INTO Emp1 (addr, sal, empno)

 SELECT address, employee_number, salary

 FROM Employee

This INSERT will succeed because the data types match. The following output results after executing the previous INSERT statement:

addr sal empno

-------------------- ------------ -----------

123 4th St. 101.00 2500

27 Shillingford 103.00 3300

95 Oxford Rd 105.00 1200

23 Pesterfield Cr 114.00 2290

465 Easter Ave 95.00 3309

(5 row(s) affected)

The wrong information has been inserted in Emp1's columns. The employee_number from Employee has been inserted into the sal column in Emp1, and the salary of Employee has been inserted into the empno column of Emp1. So, be careful and line up or match up the columns (attributes) in the INSERT INTO and SELECT statements when using an INSERT INTO .. SELECT.

As you might have already guessed from the INSERT INTO .. VALUES section, you do not have to insert the whole row with an INSERT INTO..SELECT. You may load fewer columns than a whole row of Employee with INSERT .. SELECT. Once again, if we delete all rows from Emp1, and then execute a statement like this:

INSERT INTO Emp1 (addr, sal)

 SELECT address, salary

 FROM Employee

This INSERT would leave the other column, empno (of the Emp1 table), with nulls as shown here:

SELECT *

FROM Emp1

This query produces the following output:

addr sal empno

-------------------- ------------ -----------

123 4th St. 2500.00 NULL

27 Shillingford 3300.00 NULL

95 Oxford Rd 1200.00 NULL

23 Pesterfield Cr 2290.00 NULL

465 Easter Ave 3309.00 NULL

(5 row(s) affected)

In conclusion, you must be careful with the INSERT INTO .. SELECT option, because, unlike the INSERT INTO .. VALUES option (which inserts one row at a time), you almost always insert multiple rows, and if types match, the insert will take place whether it makes sense or not.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-4]

3.4. The UPDATE Command

[bookmark: IDX-CHP-3-0185]

[bookmark: IDX-CHP-3-0186]

Another common command used for setting/changing data values in a table is the UPDATE command. As with INSERT INTO .. SELECT, you often UPDATE more than one row. To examine how the UPDATE command works, we will use the tables we created in the previous section.

The general format for the UPDATE command is:

UPDATE TableName

SET fieldname...

For example, if you want to set all salaries in the table Emp2 to zero, you may do so with one UPDATE command:

UPDATE Emp2

SET sal = 0

Now, if you type:

SELECT *

FROM Emp2

You will get:

addr sal empno

-------------------- ------------ -----------

123 4th St. 0.00 101

27 Shillingford 0.00 103

95 Oxford Rd 0.00 105

23 Pesterfield Cr 0.00 114

465 Easter Ave 0.00 95

(5 row(s) affected)

This UPDATE command sets all salaries in all rows of the Emp2 table to zero, regardless of previous values. As with any statement that affects all rows, this may be viewed as a dangerous command and caution should be observed.

It is often useful to include a WHERE clause in the UPDATE command so that values are set selectively. For example, if we assume that employee numbers are unique, we can UPDATE a specific employee from the Employee table with the following statement:

UPDATE Employee

SET salary = 0

WHERE employee_number=101

This query produces the following output:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 0.00

Pradeep Saha 27 Shillingford 103 3300.00

Sumit Kumar 95 Oxford Rd 105 1200.00

Joya Das 23 Pesterfield Cr 114 2290.00

Terry Livingstone 465 Easter Ave 95 3390.00

(5 row(s) affected)

Only employee number 101's row is updated. Once again, note that we do not use the quotes around 101, since employee_number is defined as an INT column (a numeric column). Quotes would have to be used around any character or string columns.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-5]

3.5. The ALTER TABLE Command

In the last few sections we looked at how to add, change, and update rows in a table with the INSERT and UPDATE commands. In this section, we discuss how you can add, change (modify), and delete columns in a table's definition by using SQL's ALTER TABLE command. ALTER TABLE commands are known as data definition (DDL) commands, because they change the definition of a table.

[bookmark: learnsqlsvr05-CHP-3-SECT-5.1]

3.5.1. Adding a Column to a Table

You may add columns to a table with little difficulty. The general syntax for adding[bookmark: IDX-CHP-3-0187]

 a column to a table is:

ALTER TABLE[bookmark: IDX-CHP-3-0188]

 Tablename

ADD column-name type

For example, to add a column called bonus (a SMALLMONEY column) to the Employee table, you type in the following:

ALTER TABLE Employee

ADD bonus SMALLMONEY

This command alters the table definition of the Employee table, as shown in Figure 3-3 (to get Figure 3-3, click on the + beside the Employee table and then click on the + beside Columns--in the Object Explorer on the left side of your screen):

[bookmark: learnsqlsvr05-CHP-3-FIG-3]

Figure 3-3. Column added to Employee table

[image:]

When columns are added to existing tables, they will initially contain null values. Data may be added to the new column using an UPDATE command.

[bookmark: learnsqlsvr05-CHP-3-SECT-5.2]

3.5.2. Changing a Column's Data Type in a Table

[bookmark: IDX-CHP-3-0189]

[bookmark: IDX-CHP-3-0190]

[bookmark: IDX-CHP-3-0191]

[bookmark: IDX-CHP-3-0192]

In SQL Server 2005, you can change a column's data type with existing data in it, provided that the new column data type will accommodate the existing data. The general syntax for changing a column's data type in a table is:

ALTER TABLE Tablename

ALTER COLUMN column-name new_type

For example, to change the data type of the bonus column from SMALLMONEY to FLOAT, you would type the following:

ALTER TABLE EMPLOYEE

ALTER COLUMN bonus FLOAT

This query would produce the table definition of the Employee table shown in Figure 3-4.

[bookmark: learnsqlsvr05-CHP-3-FIG-4]

Figure 3-4. Altered column's data type for bonus column in the Employee table

[image:]

						[image:]			You may have to refresh the Employee table before you can see this change made to the table definition. To refresh the Employee table, right click on the Employee table and then select Refresh. Then, select the Employee table and select Modify.

[bookmark: learnsqlsvr05-CHP-3-SECT-5.2.1]

3.5.2.1. Changing a column's length in a table

You may want to change the size of a column in a table. You typically make a column larger, and SQL Server 2005 will not have a problem with that, because larger columns will accommodate existing data. But, if you want to make a column smaller (which is unusual), sometimes SQL Server 2005 will let you do it and other times it will not.

When will SQL Server 2005 allow you to reduce the length of your column without any problems?

			When you do not have any data in that column yet (it's all NULL).

			When all the data in that column is still less than the size you are changing the column to.

If you try to reduce the column size to a size where you would be cutting off some of the data, SQL Server 2005 will give you an error and will not let you do it.

For example, if you type in the following ALTER TABLE command, trying to change the names column of the Employee table to a size of 5 (where you would be losing some data):

ALTER TABLE Employee

ALTER COLUMN names VARCHAR(5)

You will get the following error message:

Msg 8152, Level 16, State 14, Line 1

String or binary data would be truncated.

The statement has been terminated.

And, upon viewing the table definition of the Employee table, you will find that the column size of the names column was not altered.

If, however, you type:

ALTER TABLE[bookmark: IDX-CHP-3-0193]

 Employee

ALTER COLUMN names VARCHAR(19)

You will get the message:

Command(s) completed successfully.

Now if you look at the table definition of the Employee table, you will see that the names column has been changed to a size of 19 characters, as shown in Figure 3-5.

[bookmark: learnsqlsvr05-CHP-3-FIG-5]

Figure 3-5. Altering a column's length in the Employee table

[image:]

But before you can view this change, you may have to refresh the Employee table.

SQL Server 2005 allowed this reduction in column size, as all the data in the names column was less than 19 characters in length.

Before you proceed to the following section, please change the size of the names column back to 20.

[bookmark: learnsqlsvr05-CHP-3-SECT-5.3]

3.5.3. Deleting a Column from a Table

[bookmark: IDX-CHP-3-0194]

[bookmark: IDX-CHP-3-0195]

The following is the general syntax for deleting[bookmark: IDX-CHP-3-0196]

 a column from a table:

ALTER TABLE Tablename

DROP column column-name

For example, to delete the column called bonus from the Employee table, type the following:

ALTER TABLE Employee

DROP column bonus

This query produces the definition of the Employee table shown in Figure 3-6, which matches the original design for the table shown in Figure 3-2.

[bookmark: learnsqlsvr05-CHP-3-FIG-6]

Figure 3-6. Design of Employee table after dropping a column

[image:]

						[image:]			The DROP column command will also delete a column even if there is data in it, so you have to be very careful when using it. This is another one of the commands that affects multiple rows and caution must be observed.

We will discuss a few other uses of the ALTER TABLE command in subsequent chapters. For example, you can use it to define or change a default column value, enable or disable an integrity constraint, manage internal space, and so on.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-6]

3.6. The DELETE Command

[bookmark: IDX-CHP-3-0197]

[bookmark: IDX-CHP-3-0198]

Earlier in the chapter, we saw that the DELETE command can be used to remove all rows of a table. In this section we revisit the powerful DELETE. Keep in mind as you read this that the DELETE statement can affect multiple rows as we have seen and hence, one must be careful when using it. Following is the general syntax of the DELETE command used to delete rows from a table:

DELETE FROM Table

WHERE (condition)

(condition) determines which rows of the table will be deleted. As you saw earlier, if no WHERE condition is used, all the rows of the table will be deleted.

						[image:]			Multiple rows can be affected by the DELETE command, so be careful when using it.

Here is an example of using the DELETE command on our original Employee table:

DELETE FROM Employee

WHERE salary < 1500

Now if you type:

SELECT *

FROM EMPLOYEE

You will get the following four rows of output:

names address employee_number salary

-------------------- -------------------- --------------- ------------

Joe Smith 123 4th St. 101 2500.00

Pradeep Saha 27 Shillingford 103 3300.00

Joya Das 23 Pesterfield Cr 114 2290.00

Terry Livingstone 465 Easter Ave 95 3390.00

(4 row(s) affected)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-7]

3.7. Deleting a Table

The general syntax to delete or remove an entire table and its contents is:

DROP TABLE Tablename

For example, to delete the table called Names from your database, you would type the following:

DROP TABLE Names

There are times when it is appropriate to delete all the data in a table and there are times when the entire table should be eradicated. When a table is dropped, it no longer exists; its definition is removed from the database. But, when data is deleted from a table with a DELETE[bookmark: IDX-CHP-3-0199]

 statement (maybe with a WHERE condition), the table may be repopulated, because only the data from the table was removed, but the definition is intact.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-8]

3.8. Summary

[bookmark: IDX-CHP-3-0200]

[bookmark: IDX-CHP-3-0201]

[bookmark: IDX-CHP-3-0202]

In this chapter, we dealt with basic table manipulations. We showed you how to create tables, insert data into tables, update data in tables, add and delete columns from tables, alter column types and sizes, and delete entire tables. We also discussed the basic data types available in SQL Server 2005.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3-SECT-9]

3.9. Review Questions

			The INSERT INTO .. VALUES option will insert rows into the _________ of a table.

			While you are inserting values into a table with the INSERT INTO .. VALUES option, does the order of the columns in the INSERT statement have to be the same as the order of the columns in the table?

			While you are inserting values into a table with the INSERT INTO .. SELECT option, does the order of the columns in the INSERT statement have to be the same as the order of the columns in the table?

			When would you use an INSERT INTO .. SELECT option versus an INSERT INTO .. VALUES option? Give an example of each.

			What does the UPDATE command do?

			Can you change the data type of a column in a table after the table has been created? If so, which command would you use?

			Will SQL Server 2005 allow you to reduce the size of a column?

			What integer data types are available in SQL Server 2005?

			What is the default value of an integer data type in SQL Server 2005?

			What decimal data types are available in SQL Server 2005?

			What is the difference between a CHAR and a VARCHAR datatype?

			Does Server SQL treat CHAR as a variable-length or fixed-length column? Do other SQL implementations treat it in the same way?

			If you are going to have too many nulls in a column, what would be the best data type to use?

			When columns are added to existing tables, what do they initially contain?

			What command would you use to add a column to a table in SQL Server?

			In SQL Server, which data type is used to store large object data types?

			If I do not need to store decimal places, what would be a good numeric data type to use?

			If I need to store decimal places, but am not worried about rounding errors, what would be a good data type to use?

			Should a column be defined as a FLOAT if it is going to be used as a primary key?

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-3]

Chapter 3. Creating, Populating, Altering, and Deleting Tables

In the SQL Server 2005 database, data is stored in tables (also known as relations in relational database theory). In Chapter 2, we discussed how to write queries to retrieve data from existing tables by using the SELECT statement. In this chapter, we will discuss how to create tables and insert data into them, and how to alter, update, and delete tables and their data using SQL. We start the chapter with a discussion of data types[bookmark: IDX-CHP-3-0123]

. You need to know the different data types before you can use the CREATE TABLE command to create tables. In the CREATE TABLE command, in addition to the column names, the data types and sizes of the columns have to be included.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-1]

4.1. The JOIN

[bookmark: IDX-CHP-4-0204]

In SQL Server 2005, the join is accomplished using the ANSI JOIN SQL syntax[bookmark: IDX-CHP-4-0205]

 (based on ANSI Standard SQL-92), which uses the JOIN keyword and an ON clause. The ANSI JOIN syntax requires the use of an ON clause for specifying how the tables are related. One ON clause is used for each pair of tables being joined. The general form of the ANSI JOIN SQL syntax is:

SELECT columns

FROM table1 JOIN table2

ON table1.column1=table2.column1

The basic idea of a join is as follows: Suppose we have the following two tables, Table 4-1 and Table 4-2.

[bookmark: learnsqlsvr05-CHP-4-TABLE-1]

Table 4-1. The XYZ Table

			columnA

			columnB

			columnC

			X1

			Y1

			Z1

			X2

			Y2

			Z2

			X3

			Y3

			Z3

[bookmark: learnsqlsvr05-CHP-4-TABLE-2]

Table 4-2. The XDE Table

			columnA

			columnD

			columnE

			X1

			D1

			E1

			X2

			D2

			E2

			X3

			D3

			E3

The common column between the two tables (Table 4-1 and Table 4-2) is columnA. So the join would be performed on columnA. A SQL JOIN would give a table where columnA of Table1 = columnA of Table2. This would produce the new table, Table 4-3, the result of the join, as shown below:

[bookmark: learnsqlsvr05-CHP-4-TABLE-3]

Table 4-3. Joining XYZ with XDE

			columnA

			columnB

			columnC

			columnA

			columnD

			columnE

			X1

			Y1

			Z1

			X1

			D1

			E1

			X2

			Y2

			Z2

			X2

			D2

			E2

			X3

			Y3

			Z3

			X3

			D3

			E3

There are several types of joins[bookmark: IDX-CHP-4-0206]

 in SQL. To be precise, the previous model refers to an inner join, where the two tables being joined must share at least one common column. The columns of the two tables being joined by the JOIN command are matched using an ON clause. SQL Server will actually translate the example JOIN statement to an unambiguous INNER JOIN form, as you shall see. When inner-joining two tables, the JOIN returns rows from both tables only if there is a corresponding value in both tables as described by the ON clause column. In other words, the JOIN disregards any rows in which the specific join condition, specified in the ON clause, is not met.

To illustrate the JOIN using our database (Student_course database), we present the following two examples.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.1]

4.1.1. Example 1

[bookmark: IDX-CHP-4-0207]

[bookmark: IDX-CHP-4-0208]

[bookmark: IDX-CHP-4-0209]

[bookmark: IDX-CHP-4-0210]

[bookmark: IDX-CHP-4-0211]

To find the student names and dependent names of all the students who have dependents, we need to join the Student table with the Dependent table, because the data that we want to display is spread across these two tables. Before we can formulate the JOIN query, we have to examine both tables and find out what relationship exists between the two tables. Usually this relationship is where one table has a column as a primary key and the other table has a column as a foreign key. A primary key is a unique identifier for a row in a table. A foreign key is so called because the key it references is "foreign" to the table where it exists.

Let us first look at the table descriptions of the Student and Dependent tables, shown in Figures 4-1 and 4-2, respectively.

[bookmark: learnsqlsvr05-CHP-4-FIG-1]

Figure 4-1. Description of Student table

[image:]

[bookmark: learnsqlsvr05-CHP-4-FIG-2]

Figure 4-2. Description of Dependent table

[image:]

In examining these two tables, we note that student number (stno in the Student table) is the primary key of the Student table. stno is the unique identifier for each student. The Dependent table, which was not created with a primary key of its own, contains a reference to the Student table in that for each dependent, a parent number (pno) is recorded. pno in the Dependent table is a foreign keyit represents a primary key from the table it is referencing, Student. pno in the Dependent table is not unique, because a student can have more than one dependent; that is, one stno can be linked to more than one pno.

From the table descriptions, we can see that the Student table (which has columns stno, sname, major, class, and bdate) can be joined with the Dependent table (which has columns pno, dname, relationship, sex, and age) by columns stno from the Student table and pno from the Dependent table. Following the ANSI JOIN syntax, we can join the two tables as follows:

SELECT stno, sname, relationship, age

FROM Student s JOIN Dependent d

ON s.stno=d.pno

In this construction, Student refers to the Student table and s is the table alias of the Student table. Likewise, Dependent refers to the Dependent table and d is the table alias of the Dependent table. The table alias simplifies writing queries or expressions using single-letter table aliases. We very strongly recommend using table aliases in all multi-table queries. This query requests the student number (stno) and student name (sname) from the Student table, and the relationship and age from the Dependent table when the student number in the Student table (stno) matches a parent number (pno) in the Dependent table.

						[image:]			Table aliases were discussed in Chapter 2.

When the previous query is typed and executed, you will get the following output showing the dependents of the students:

stno sname relationship age

------ -------------------- ------------ ------

2 Lineas Son 8

2 Lineas Daughter 9

2 Lineas Spouse 31

10 Richard Son 3

10 Richard Daughter 5

14 Lujack Son 1

14 Lujack 3

17 Elainie Daughter 4

17 Elainie Son 1

20 Donald Son NULL

20 Donald Son 6

34 Lynette Daughter 5

34 Lynette Daughter 1

62 Monica Husband 45

62 Monica Son 14

62 Monica Daughter 16

62 Monica Daughter 12

123 Holly Son 5

123 Holly Son 2

126 Jessica Son 6

126 Jessica Son 1

128 Brad Son 1

128 Brad Daughter NULL

128 Brad Daughter 2

128 Brad Wife 26

132 George Daughter 6

142 Jerry Daughter 2

143 Cramer Daughter 7

144 Fraiser Wife 22

145 Harrison Wife 22

146 Francis Wife 22

147 Smithly Wife 23

147 Smithly Son 4

147 Smithly Son 2

147 Smithly Son NULL

153 Genevieve Daughter 5

153 Genevieve Daughter 4

153 Genevieve Son 2

158 Thornton wife 22

 (39 row(s) affected)

[bookmark: learnsqlsvr05-CHP-4-SECT-1.2]

4.1.2. Example 2

[bookmark: IDX-CHP-4-0212]

[bookmark: IDX-CHP-4-0213]

[bookmark: IDX-CHP-4-0214]

[bookmark: IDX-CHP-4-0215]

[bookmark: IDX-CHP-4-0216]

To find the course names and the prerequisites of all the courses that have prerequisites, we need to join the Prereq table with the Course table. Course names are in the Course table and the Prereq (prerequisites) table contains the relationship of each course to its prerequisite course. The descriptions of the Prereq table and Course tables are shown in Figures 4-3 and 4-4, respectively.

[bookmark: learnsqlsvr05-CHP-4-FIG-3]

Figure 4-3. Description of Prereq table

[image:]

[bookmark: learnsqlsvr05-CHP-4-FIG-4]

Figure 4-4. Description of Course table

[image:]

From these descriptions, we first note that the Course table has course_number as its primary keythe unique identifier for each course. The Prereq table also contains a course number, but the course number in the Prereq table is not uniquethere are often several prerequisites for any given course. The course number in the Prereq table is a foreign key referencing the primary key of the Course table. The Prereq table (which has columns course_number and prereq) can be joined with the Course table (which has columns course_name, course_number, credit_hours, and offering_dept) by the relationship column in both tables, course_number, as follows:

SELECT *

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

The same query could be written without the table alias (using a table qualifier) as follows:

SELECT *

FROM Course JOIN Prereq

ON Course.course_number=Prereq.course_number

However, the use of the table alias is so common that the table-alias form should be used. Also, aliases let you select columns that have the same names from the tables. This query will display those rows (12 rows) that have course_number in the Course table equal to course_number in the Prereq table, as follows:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ

-------------------- ------------- ------------ ------------- ------------- --------

MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220

ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM3001 CHEM2001

DATA STRUCTURES COSC3320 4 COSC COSC3320 COSC1310

DATABASE COSC3380 3 COSC COSC3380 COSC3320

DATABASE COSC3380 3 COSC COSC3380 MATH2410

ADA - INTRODUCTION COSC5234 4 COSC COSC5234 COSC3320

ENGLISH COMP II ENGL1011 3 ENGL ENGL1011 ENGL1010

FUND. TECH. WRITING ENGL3401 3 ENGL ENGL3401 ENGL1011

WRITING FOR NON MAJO ENGL3520 2 ENGL ENGL3520 ENGL1011

MATH ANALYSIS MATH5501 3 MATH MATH5501 MATH2333

AMERICAN GOVERNMENT POLY2103 2 POLY POLY2103 POLY1201

POLITICS OF CUBA POLY5501 4 POLY POLY5501 POLY4103

 (12 row(s) affected)

Rows from the Course table without a matching row in the Prereq table are not included from the JOIN result set. Courses that do not have prerequisites are not in the result set.

						[image:]			A primary key is a column or a minimal set of columns whose values uniquely identify a row in a table. A primary key cannot have a null value. Creation of primary keys is discussed in Chapter 11.

The inner join uses equality in the ON clause (the join condition). When an equal sign is used as a join condition, the join is called an equi-join. The use of equi-joins is so common that many people use the phrase "join" synonymously with "equi-join"; when the term "join" is used without qualification, "equi-join" is inferred.

When dealing with table combinations, specifically joins, it is a good idea to estimate the number of rows one might expect in the result set. To find out how many rows will actually occur in the result set, the COUNT function is used. For example:

SELECT COUNT(*)

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

will tell us that there are 12 rows in the result set.

In any equi join, let us suppose that the two tables to be joined have X number of rows and Y number of rows respectively. How many rows does one expect in the join? A good guideline is in the order of MAX(X,Y). In our case, we have 12 rows in the Prereq table and 32 rows in the Course table. MAX(12,32) = 32, but we actually got 12 rows. MAX(X,Y) is just a guideline. The actual and expected number of rows need not match exactly. It is possible that some Course-Prereq combinations might be repeated.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.3]

4.1.3. The INNER JOIN

[bookmark: IDX-CHP-4-0217]

[bookmark: IDX-CHP-4-0218]

[bookmark: IDX-CHP-4-0219]

[bookmark: IDX-CHP-4-0220]

In SQL Server, the keyword combination INNER JOIN behaves just like the JOIN discussed in the previous section. The general syntax for the INNER JOIN is:

SELECT columns

FROM table1 INNER JOIN table2

ON table1.column1=table2.column1

Using the INNER JOIN, the JOIN query presented in the previous section also could be written as:

SELECT *

FROM Course INNER JOIN Prereq

ON Course.course_number=Prereq.course_number

And, this query too, would produce the same results as given in the previous section.

						[image:]			As with the JOIN, the INNER JOIN cannot be used without the ON clause.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.4]

4.1.4. Using a WHERE Clause Instead of a JOIN

Another way of joining tables in SQL Server is to use a WHERE clause instead of using the JOIN or INNER JOIN command. According to the SQL-92 standard, the inner join can be specified either with the JOIN/INNER JOIN construction or with a WHERE clause. To perform a join with a WHERE clause, the tables to be joined are listed in the FROM clause of a SELECT statement, and the "join condition" between the tables to be joined is specified in the WHERE clause.

The JOIN from the preceding section could be written with a WHERE clause as follows:

SELECT *

FROM Course c, Prereq p

WHERE c.course_number= p.course_number

This command will display the same 12 rows as was previously shown (when the JOIN was used). You will soon see one of the reasons it is better not to use WHERE.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.5]

4.1.5. Associative Property of the JOIN

When two tables are being joined, it does not matter whether TableA is joined with TableB, or TableB is joined with TableA. For example, the following two queries would essentially give the same result set (output):

SELECT *

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

and:

SELECT *

FROM Prereq p JOIN Course c

ON p.course_number=c.course_number

The only difference in the two result sets would be the order of the columns[bookmark: IDX-CHP-4-0221]

. But the result set column order can be controlled by listing out the columns in the order that you want them after the SELECT instead of using the SELECT * syntax.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.6]

4.1.6. Column Types in Joins

[bookmark: IDX-CHP-4-0222]

[bookmark: IDX-CHP-4-0223]

Joins have to be performed on "compatible" columns; that is, a character column may be joined to another character column, a numeric column may be joined to another numeric column, and so forth. So, for example, a CHAR column can be joined to a VARCHAR column (both being character columns), or an INT column can be joined to a REAL column (both being numeric columns). Having made the point that compatible columns are required, and keeping in mind that SQL is not logical, it is up to the programmer to match semantics. In reality, why would you join two tables unless a relationship existed? If you ask SQL to join a job_title column with a last_name column, it will try to do so even though it makes no sense!

Some columns types--for example, IMAGE--cannot be joined, as these columns will generally not contain "like" columns. Joins cannot be operated on binary data types.

[bookmark: learnsqlsvr05-CHP-4-SECT-1.7]

4.1.7. Performance Hint for Efficient Joins

Join on the narrowest columns possible. The narrower the column, the less storage space is used by SQL Server, and SQL Server can read and write the data faster.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-10]

4.10. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			Create two tables, Stu(name, majorCode) and Major(majorCode, majorDesc), with the following data. Use VARCHAR for the codes and appropriate data types for the other columns.

			Stu

			

			name

			majorCode

			Jones

			CS

			Smith

			AC

			Evans

			MA

			Adams

			CS

			Sumon

			

			Major

			

			majorCode

			majorDesc

			AC

			Accounting

			CS

			Computer Science

			MA

			Math

			HI

			History

			Display the Cartesian product (no WHERE clause) of the two tables. Use SELECT *.... How many rows did you get? How many rows will you always get when combining two tables with n and m rows in them (Cartesian product)?

			Display an equi-join of the Stu and Major tables on majorCode. First do this using the INNER JOIN, and then display the results using the equi-join with an appropriate WHERE clause. Use appropriate table aliases. How many rows did you get?

			Display whatever you get if you leave off the column qualifiers (the aliases) on the equi-join in question 1b. (Note: This will give an error because of ambiguous column names.)

			Use the COUNT(*) function instead of SELECT * in the query. Use COUNT to show the number of rows in the result set of the equi-join.

			Display the name, majorCode, and majorDesc of all students regardless of whether or not they have a declared major (even if the major column is null). (Hint: You need to use a LEFT OUTER JOIN here if Stu is the first table in your equi-join query.)

			Display a list of majorDescs available (even if the majorDesc does not have students yet) and the students in each of the majors. (Hint: You need to use a RIGHT OUTER JOIN here.)

			Display the Cartesian product of the two tables using a CROSS JOIN.

			Create two tables, T1(name, jobno) and T2(jobno, jobdesc). Let jobno be data type INT, and use appropriate data types for the other columns. Put three rows in T1 and two rows in T2. Give T1.jobno values 1, 2, 3 for the three rows: <..., 1>,<..., 2,>,<..., 3>, where ... represents any value you choose. Give T2.jobno the values 1, 2: <1,...>,<2,...>.

			How many rows are in the equi-join (on jobno) of T1 and T2?

			If the values of T2.jobno were <2,...>, <2,...> (with different jobdesc values), how many rows would you expect to get, and why? Why would the rows have to have different descriptions?

			If the values of T2.jobno were 4, 5 as in <4,...>,<5,...>, how many rows would you expect to get?

			If the values of T1.jobno were <..., 1>,<..., 1>,<..., 1> (with different names) and the values of T2.jobno were <1,...>,<1...> with different descriptions, how many rows would you expect to get?

			If you have two tables, what is the number of rows you may expect from an equi-join operation (and with what conditions)? A Cartesian product?

			The number of rows in an equi-join of two tables, whose sizes are m and n rows, is from ___ to ____ depending on these conditions: _________ .

			Use tables T1 and T2 in this exercise. Create another table called T3(jobdesc, minpay). Let minpay be of data type SMALLMONEY. Populate the table with at least one occurrence of each jobdesc from table T2 plus one more jobdesc that is not in T2. Write and display the result of a triple equi-join of T1, T2, and T3. Use an appropriate comment on each of the lines of the WHERE clause on which there are equi-join conditions. (Note: You will need two equi-join conditions.)

			How many rows did you get in the equi-join?

			Use the COUNT(*) function and display the number of rows in the equi-join.

			How many rows would you get in this meaningless, triple Cartesian product (use COUNT(*))?

			In an equi-join of n tables, you always have _______ _ equi-join conditions in the WHERE clause.

In the preceding three exercises, you created tables T1, T2, T3, Stu, and Major. When you have completed the three exercises, delete these tables.

Answer questions 4 through 8 by using the Student_course database.

			Display a list of course names for all of the prerequisite courses.

			Use a JOIN or INNER JOIN to join the Section and Course tables.

			List the course names, instructors, the semesters and years they were teaching in.

			List the instructor, course names, and offering departments of each of the courses the instructors were teaching.

			Use a LEFT OUTER JOIN to join the Section and Course tables.

			List the course names, instructors, and the semesters and years they were teaching in. Sort in descending order by instructors.

			List the instructor, course names, and offering departments of each of the courses the instructors were teaching.

			Use a RIGHT OUTER JOIN to join the Section and Course tables.

			For each instructor, list the name of each course they teach and the semester and year in which they teach that course.

			For each course, list the name of the instructor and the name of the department in which it is offered.

			

			Are there any differences in the answers for questions 5, 6, and 7? Why? Explain.

			Use a FULL OUTER JOIN to join the Section and Course tables. How do the results vary from the results of questions 5, 6, and 7?

			Discuss the output that the following query would produce:

SELECT *

FROM Course AS c, Prereq AS p

WHERE c.course_number<>p.course_number

			Find all the sophomores who are more senior than other students. (Hint: Use a self-join.)

			Find all the courses that have more credit hours than other courses. (Hint: Use a self-join.)

			Display a list of the names of all students who have dependents, the dependents name, relationship and age, ordered by the age of the dependent.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-2]

4.2. The Cartesian Product

In a SQL statement, a Cartesian product[bookmark: IDX-CHP-4-0224]

 is where every row of the first table in the FROM clause is joined with each and every row of the second table in the FROM clause. A Cartesian product is produced when the WHERE form of the JOIN is used without the WHERE. An example of a Cartesian product (join) would be:

SELECT *

FROM Course c, Prereq p

The preceding command combines all the data in both the tables and makes a new result set. All rows in the Course table are matched with all rows in the Prereq table (a Cartesian product). This produces 384 rows of output, of which we show the first 10 rows here:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ

-------------------- ------------- ------------ ------------- ------------- -------

ACCOUNTING I ACCT2020 3 ACCT ACCT3333 ACCT2220

ACCOUNTING II ACCT2220 3 ACCT ACCT3333 ACCT2220

MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220

ACCOUNTING INFO SYST ACCT3464 3 ACCT ACCT3333 ACCT2220

INTRO TO CHEMISTRY CHEM2001 3 CHEM ACCT3333 ACCT2220

ORGANIC CHEMISTRY CHEM3001 3 CHEM ACCT3333 ACCT2220

INTRO TO COMPUTER SC COSC1310 4 COSC ACCT3333 ACCT2220

TURBO PASCAL COSC2025 3 COSC ACCT3333 ACCT2220

ADVANCED COBOL COSC2303 3 COSC ACCT3333 ACCT2220

DATA STRUCTURES COSC3320 4 COSC ACCT3333 ACCT2220

.

.

.

 (384 row(s) affected)

As we pointed out earlier, before combining tables, it is a good idea to get a count of the number of rows one might expect. This can be done by:

SELECT COUNT(*) AS [COUNT OF CARTESIAN]

FROM Course c, Prereq p

which produces the following output:

COUNT OF CARTESIAN

384

(1 row(s) affected)

From these results, we can see that the results of a Cartesian "join" will be a relation, say Q, which will have n*m rows (where n is the number of rows from the first relation, and m is the number of rows from the second relation). In the preceding example, the result set has 384 rows (32 times 12), with all possible combinations of rows from the Course table and the Prereq table. If we compare these results with the results of the earlier query (with the WHERE clause), we can see that both the results have the same structure, but the earlier one has been row-filtered by the WHERE clause to include only those rows where there is equality between Course.course_number and Prereq.course_number. Put another way, the earlier results make more sense because they present only those rows that correspond to one another. In this example, the Cartesian product produces extra, meaningless rows.

Oftentimes, the Cartesian product is the result of a user having forgotten to use an appropriate WHERE clause in the SELECT statement when formulating a join using the WHERE format. Note that if the JOIN or INNER JOIN syntax (ANSI JOIN syntax) is used, one cannot avoid the ON clause (no ON clause produces a syntax error). Hence, producing a Cartesian product inadvertently in SQL Server 2005 using the JOIN/INNER JOIN is much harder to do.

[bookmark: learnsqlsvr05-CHP-4-SECT-2.1]

4.2.1. Uses of the Cartesian Product

[bookmark: IDX-CHP-4-0225]

Though the Cartesian product is generally regarded as not so useful in SQL per se, if harnessed properly, a Cartesian product can be used to produce exceptionally useful result sets, for example:

			The Cartesian product can be used to generate sample or test data.

			The simplest Cartesian product of two sets is a two-dimensional table or a cross-tabulation whose cells may be used to enter frequencies or to designate possibilities.

			The Cartesian product is needed if you want a collection of all ordered n-tuples (rows with n columns) that can be formed so that they contain one element of the first set, one element of the second set, . . ., and one element of the nth set. For example, if set (or table) X is the 13-element set { A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} and set (or table) Y is the 4-element set {spades, hearts, diamonds, clubs}, then the Cartesian product of those two sets is the 52-element set { (A, spades), (K, spades), . . ., (2, spades), (A, hearts), . . ., (3, clubs), (2, clubs) }.

[bookmark: learnsqlsvr05-CHP-4-SECT-2.2]

4.2.2. CROSS JOIN Used to Generate a Cartesian Product

[bookmark: IDX-CHP-4-0226]

[bookmark: IDX-CHP-4-0227]

In SQL Server, a CROSS JOIN can be used to return a Cartesian product of two tables. The form of the CROSS JOIN is:

SELECT *

FROM Table1 CROSS JOIN Table2

Using our database, Student_course, the following CROSS JOIN would produce the same result (Cartesian product) as the query (without the WHERE clause) used in the earlier section:

SELECT *

FROM Course CROSS JOIN Prereq p

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-3]

4.3. Equi-Joins and Non-Equi-Joins

Joins with comparison (non-equal) operatorsthat is, =, >, >=, <, <=, and <>--on the WHERE or ON clauses are called theta joins, where theta represents the relational operator. Inner joins with an = operator are called equi-joins[bookmark: IDX-CHP-4-0228]

[bookmark: IDX-CHP-4-0229]

 and joins with an operator other than an = sign are called non-equi-joins[bookmark: IDX-CHP-4-0230]

[bookmark: IDX-CHP-4-0231]

.

[bookmark: learnsqlsvr05-CHP-4-SECT-3.1]

4.3.1. Equi-Joins

[bookmark: IDX-CHP-4-0232]

[bookmark: IDX-CHP-4-0233]

[bookmark: IDX-CHP-4-0234]

The most common join involves join conditions with equality comparisons. Such a join, where the comparison operator is = in the WHERE or ON clause, is called an equi-join. The following is an example:

SELECT *

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

Another way to look at a join of any kind is that it is the Cartesian product with an added condition. The output for this query has been shown earlier in this chapter. You will note that the result of the join is simply the Cartesian product with the rows where the course numbers are equal. Per the output, you will see that this query displays all rows that have course_number in the Course table equal to course_number in the Prereq table. All the join columns have been included in this result set. This means that course_number has been shown twiceonce from the Course table, and once from the Prereq tableand, this duplicate column is of course redundant.

[bookmark: learnsqlsvr05-CHP-4-SECT-3.2]

4.3.2. Non-Equi-Joins

Joins that do not test for equality are non-equi-joins. Non-equi-joins are rare. The following section on self joins provides an example of a theta join without an equality (=) operator (a non-equi join).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-4]

4.4. Self Joins

On some occasions, you will need to join a table with itself. Joining a table with itself is known as a self join.

In a regular join, a row of a table (Table A) is joined with a row of another table (Table B) if the column value used for the join in Table A matches the column value used for the join in Table B. One row of a table is processed at a time. But, if the information that you need is contained in several different rows of the same table, for example if you need to compare row1, column1, with row2, column1, you will need to join the table with itself.

Suppose that we want to find all the students who are more senior than other students. We have to join the Student table with itself. Logically, we need to take a row from the Student table and look through the rest of the Student table to see which rows fit the criterion ("more senior"). To accomplish this, we will use two versions of the Student table. Here is our query:

SELECT 'SENIORITY' = x.sname + ' is in a higher class than ' + y.sname

FROM Student AS x, Student AS y

WHERE y.class = 3

AND x.class > y.class

First we alias the Student table as x, and then we alias another instance of the Student table as y. Then we join where x.class is greater than y.class and we added the WHERE qualifier y.class = 3, so this effectively gives us only the seniors. We restricted the result to "just seniors" to keep the result set smaller). The use of the > sign is also an example of a non-equi-join.

						[image:]			+ is a string concatenation operator in SQL Server. String concatenation is discussed in detail in the next chapter.

This query produces the 70 rows of output (of which we show a sample):

SENIORITY

Mary is in a higher class than Susan

Kelly is in a higher class than Susan

Donald is in a higher class than Susan

Chris is in a higher class than Susan

Jake is in a higher class than Susan

Holly is in a higher class than Susan

Jerry is in a higher class than Susan

Harrison is in a higher class than Susan

Francis is in a higher class than Susan

Benny is in a higher class than Susan

Mary is in a higher class than Monica

Kelly is in a higher class than Monica

Donald is in a higher class than Monica

.

.

.

Mary is in a higher class than Phoebe

Kelly is in a higher class than Phoebe

Donald is in a higher class than Phoebe

.

.

.

Mary is in a higher class than Rachel

Kelly is in a higher class than Rachel

Donald is in a higher class than Rachel

.

.

.

Mary is in a higher class than Cramer

Kelly is in a higher class than Cramer

Donald is in a higher class than Cramer

.

.

.

(70 row(s) affected)

In this join, all the rows where x.class is greater than y.class (which is restricted to 3) are joined to the rows that have y.class = 3. So Mary, the first row that has x.class = 4, is joined to the first row where class = 3 (y.class = 3), which is Susan. Then, the next row in the Student table with x.class = 4 is Kelly, so Kelly is joined to Susan (y.class = 3), etc.

						[image:]			To more fully understand how the self join is working, view the data in the Student table.

The alternative INNER JOIN syntax for this non-equi-join is:

SELECT 'SENIORITY' = x.sname + ' is more senior than ' + y.sname

FROM Student AS x INNER JOIN Student AS y

ON x.class > y.class

WHERE y.class = 3

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-5]

4.5. Using ORDER BY with a Join

[bookmark: IDX-CHP-4-0235]

[bookmark: IDX-CHP-4-0236]

As with other SELECT statements, the ORDER BY clause can be used in joins to order the result set. For example, to order the result set (output) of one of the queries presented earlier in this chapter by the course_number column, we would type the following:

SELECT c.course_name, c.course_number, c.credit_hours, c.offering_dept, p.prereq

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

ORDER BY c.course_number

Or this alternative:

SELECT c.course_name, c.course_number, c.credit_hours, c.offering_dept, p.prereq

FROM Course c JOIN Prereq p

ON c.course_number=p.course_number

ORDER BY 2

ORDER BY 2 means to order by the second column of the result set. This query produces the same 12 rows as the previous query, but ordered alphabetically in the order of course_number:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT PREREQ

-------------------- ------------- ------------ ------------- --------

MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT2220

ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM2001

DATA STRUCTURES COSC3320 4 COSC COSC1310

DATABASE COSC3380 3 COSC COSC3320

DATABASE COSC3380 3 COSC MATH2410

ADA - INTRODUCTION COSC5234 4 COSC COSC3320

ENGLISH COMP II ENGL1011 3 ENGL ENGL1010

FUND. TECH. WRITING ENGL3401 3 ENGL ENGL1011

WRITING FOR NON MAJO ENGL3520 2 ENGL ENGL1011

MATH ANALYSIS MATH5501 3 MATH MATH2333

AMERICAN GOVERNMENT POLY2103 2 POLY POLY1201

POLITICS OF CUBA POLY5501 4 POLY POLY4103

(12 row(s) affected)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-6]

4.6. Joining More Than Two Tables

You will frequently need to perform a join in which you have to get data from more than two tables. A join is a pair-wise, binary operation. In SQL Server, you can join more than two tables in either of two ways: by using a nested JOIN, or by using a WHERE clause. Joins are always done pair-wise.

[bookmark: learnsqlsvr05-CHP-4-SECT-6.1]

4.6.1. Joining Multiple Tables Using a Nested JOIN

The simplest form of the nested JOIN is as follows:

SELECT columns

FROM table1 JOIN

(table2 JOIN table3

ON table3.column3=table2.column2)

ON table1.column1=table2.column2

Here Tables 2 and 3 are joined to form a virtual table that is then joined to Table 1 to create your result set. Note that the join in parentheses is completed first.

As an example of a nested join, if we want to see the courses (course names and numbers) that have prerequisites and the departments (department names) offering those courses, we will have to join three tables--Course, Prereq, and Department_to_major, because the data that we want to display is spread among these three tables. We could choose to first join the Course table with the Prereq table, and then join that result to the Department_to_major table. The Department_to_major table contains the names of the departments. To determine which columns of the Department_to_major table can be used in the join, we have to also look at the description of the Department_to_major table, which is shown in Figure 4-5.

[bookmark: learnsqlsvr05-CHP-4-FIG-5]

Figure 4-5. Description of Department_to_major table

[image:]

The query to join the Course table to the Prereq table to the Department_to_major table with the Course/Prereq join done first is:

SELECT c.course_name, c.course_number, d2m.dname

FROM department_to_major d2m JOIN

(course c JOIN prereq p

ON c.course_number=p.course_number)

ON c.offering_dept=d2m.dcode

In the nested JOIN, the part within the parentheses, course c JOIN prereq p ON c.course_number=p.course_number, is performed first to produce a result set. The internal result is then used to join to the third table, Department_to_major.

The result of the join is the following 12 rows:

course_name course_number dname

-------------------- ------------- --------------------

MANAGERIAL FINANCE ACCT3333 Accounting

ORGANIC CHEMISTRY CHEM3001 Chemistry

DATA STRUCTURES COSC3320 Computer Science

DATABASE COSC3380 Computer Science

DATABASE COSC3380 Computer Science

ADA - INTRODUCTION COSC5234 Computer Science

ENGLISH COMP II ENGL1011 English

FUND. TECH. WRITING ENGL3401 English

WRITING FOR NON MAJO ENGL3520 English

Math Analysis MATH5501 Mathematics

AMERICAN GOVERNMENT POLY2103 Political Science

POLITICS OF CUBA POLY5501 Political Science

 (12 row(s) affected)

Which join is performed first has performance implications. We could choose to do the Course/Department_to_major table join first, in which case the query could be written as follows:

SELECT c.course_name, c.course_number, d.dname

FROM (course c JOIN department_to_major d

ON c.offering_dept = d.dcode)

JOIN prereq p

ON p.course_number = c.course_number

For larger tables and multi-table joins, the order will determine which version of the query would be most efficient.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-7]

4.7. The OUTER JOIN

[bookmark: IDX-CHP-4-0237]

[bookmark: IDX-CHP-4-0238]

[bookmark: IDX-CHP-4-0239]

In an equi-inner join, rows without matching values are eliminated from the join result. For example, with the following join, we did not see information on any course that did not have a prerequisite:

SELECT *

FROM Course c, Prereq p

WHERE c.course_number = p.course_number

In some cases, it may be desirable to include rows from one table even if it does not have matching rows in the other table. This is done by the use of an OUTER JOIN. OUTER JOINs are used when we want to keep all the rows from the one table, such as Course, or all the rows from the other, regardless of whether they have matching rows in the other table. In SQL Server, an OUTER JOIN in which we want to keep all the rows from the first (left) table is called a LEFT OUTER JOIN,[bookmark: IDX-CHP-4-0240]

[bookmark: IDX-CHP-4-0241]

[bookmark: IDX-CHP-4-0242]

 and an OUTER JOIN in which we want to keep all the rows from the second table (or right relation) is called the RIGHT OUTER JOIN. The term FULL OUTER JOIN is used to designate the union of the LEFT and RIGHT OUTER JOINs. In the following subsections, we illustrate the LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN.

[bookmark: learnsqlsvr05-CHP-4-SECT-7.1]

4.7.1. The LEFT OUTER JOIN

[bookmark: IDX-CHP-4-0243]

LEFT OUTER JOINs include all the rows from the first (left) of the two tables, even if there are no matching values for the rows in the second (right) table. LEFT OUTER JOINs are performed in SQL Server using a LEFT OUTER JOIN statement.

						[image:]			LEFT JOIN is the same as LEFT OUTER JOIN. The inclusion of the word OUTER is optional in SQL Server SQL, but we will use LEFT OUTER JOIN instead of LEFT JOIN for clarity.

The following is the simplest form of a LEFT OUTER JOIN statement:

SELECT columns

FROM table1 LEFT OUTER JOIN table2

ON table1.column1=table2.column1

For example, if we want to list all the rows in the Course table (the left, or first table), even if these courses do not have prerequisites, we type the following LEFT OUTER JOIN statement:

SELECT *

FROM Course c LEFT OUTER JOIN Prereq p

ON c.course_number = p.course_number

Here the LEFT OUTER JOIN is processed as follows: First, all the rows from the Course table that have course_number equal to the course_number in the Prereq table are joined. Then, when a row (with a course_number) from the Course table (first table) has no match in Prereq table (second table), the rows from the Course table are anyway included in the result set with a row of null values joined to the right side. This means that the courses that do not have prerequisites will get a set of null values for prerequisites. So, the output (result set) of a LEFT OUTER JOIN includes all rows from the left (first) table, which in this case is the Course table with matching Prereq rows where applicable.

						[image:]			The use of the *= operator for the LEFT OUTER JOIN is considered old syntax, and hence its use is not encouraged. It is prone to ambiguities, especially when joining three or more tables.

The previous query will produce the following 33 rows of output (of which we show the first 13 rows here):

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ

-------------------- ------------- ------------ ------------- ------------- -------

ACCOUNTING I ACCT2020 3 ACCT NULL NULL

ACCOUNTING II ACCT2220 3 ACCT NULL NULL

MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220

ACCOUNTING INFO SYST ACCT3464 3 ACCT NULL NULL

INTRO TO CHEMISTRY CHEM2001 3 CHEM NULL NULL

ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM3001 CHEM2001

INTRO TO COMPUTER SC COSC1310 4 COSC NULL NULL

TURBO PASCAL COSC2025 3 COSC NULL NULL

ADVANCED COBOL COSC2303 3 COSC NULL NULL

DATA STRUCTURES COSC3320 4 COSC COSC3320 COSC1310

DATABASE COSC3380 3 COSC COSC3380 COSC3320

DATABASE COSC3380 3 COSC COSC3380 MATH2410

OPERATIONS RESEARCH COSC3701 3 COSC NULL NULL

.

.

.

(33 row(s) affected)

Note the nulls added to courses (due to the LEFT OUTER JOIN) like ACCOUNTING I, ACCOUNTING II, ACCOUNTING INFO SYST, and so on, which are the courses (in the Course table) that do not have prerequisites.

[bookmark: learnsqlsvr05-CHP-4-SECT-7.2]

4.7.2. The RIGHT OUTER JOIN

[bookmark: IDX-CHP-4-0244]

[bookmark: IDX-CHP-4-0245]

[bookmark: IDX-CHP-4-0246]

[bookmark: IDX-CHP-4-0247]

RIGHT OUTER JOINs include all the rows from the second (right) of the two tables, even if there are no matching values for the rows in the first (left) table. RIGHT OUTER JOINs are performed in SQL Server using a RIGHT OUTER JOIN statement.

						[image:]			RIGHT JOIN is the same as RIGHT OUTER JOIN. The inclusion of the word OUTER is optional in SQL Server SQL, but we will use RIGHT OUTER JOIN instead of RIGHT JOIN for clarity's sake.

The following is the simplest form of a RIGHT OUTER JOIN statement:

SELECT columns

FROM table1 RIGHT OUTER JOIN table2

ON table1.fieldcolumn1=table2.column1

As an example, we will redo the previous query from the right side. If we want to list all the rows in the Course table (the right, or second table), even if these courses do not have prerequisites, we may type the following RIGHT OUTER JOIN statement:

SELECT *

FROM Prereq p RIGHT OUTER JOIN Course c

ON p.course_number = c.course_number

Here, the RIGHT OUTER JOIN is processed as follows. First, all the rows from the Prereq table that have course_number equal to the course_number in the Course table are joined. Then, when a row (with a course_number) from the Course table (second table) has no match in the Prereq table (first table), the rows from the Course table are anyway included in the result set with a row of null values joined to the left side. This means that courses that do not have prerequisites will get a set of null values joined to the left side. The output of a RIGHT OUTER JOIN includes all rows from the right (second) table, which in this case is the Course table, producing output similar to that obtained in the previous section.

The output consists of 33 rows (of which the first 13 rows are shown here):

COURSE_NUMBER PREREQ COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT

------------- -------- -------------------- ------------- ------------ ------------

NULL NULL ACCOUNTING I ACCT2020 3 ACCT

NULL NULL ACCOUNTING II ACCT2220 3 ACCT

ACCT3333 ACCT2220 MANAGERIAL FINANCE ACCT3333 3 ACCT

NULL NULL ACCOUNTING INFO SYST ACCT3464 3 ACCT

NULL NULL INTRO TO CHEMISTRY CHEM2001 3 CHEM

CHEM3001 CHEM2001 ORGANIC CHEMISTRY CHEM3001 3 CHEM

NULL NULL INTRO TO COMPUTER SC COSC1310 4 COSC

NULL NULL TURBO PASCAL COSC2025 3 COSC

NULL NULL ADVANCED COBOL COSC2303 3 COSC

COSC3320 COSC1310 DATA STRUCTURES COSC3320 4 COSC

COSC3380 COSC3320 DATABASE COSC3380 3 COSC

COSC3380 MATH2410 DATABASE COSC3380 3 COSC

NULL NULL OPERATIONS RESEARCH COSC3701 3 COSC

.

.

.

(33 row(s) affected)

Once again, note the NULLs added to the unmatched rows from the second table due to the use of the RIGHT OUTER JOIN.

[bookmark: learnsqlsvr05-CHP-4-SECT-7.3]

4.7.3. The FULL OUTER JOIN

[bookmark: IDX-CHP-4-0248]

[bookmark: IDX-CHP-4-0249]

[bookmark: IDX-CHP-4-0250]

[bookmark: IDX-CHP-4-0251]

The FULL OUTER JOIN includes the rows that are equi-joined from both tables, plus the remaining rows from the first table and the remaining rows from the second table. NULLs are added to the unmatched rows from both the first and second tables.

The following is the simplest form of a FULL OUTER JOIN statement:

SELECT columns

FROM table1 FULL OUTER JOIN table2

ON table1.column1=table2.column1

If we want to list all the rows for which a connection exists between the Prereq table and the Course table (result of a regular JOIN), and in addition, we want all rows from the Prereq table for which there is no corresponding row in the Course table (LEFT OUTER JOIN), and in addition, we want all rows in the Course table for which there is no corresponding row in the Prereq table (RIGHT OUTER JOIN), we would use the following FULL OUTER JOIN statement:

SELECT *

FROM Prereq p FULL OUTER JOIN Course c

ON p.course_number = c.course_number

We will get 33 rows:

COURSE_NUMBER PREREQ COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT

------------- -------- -------------------- ------------- ------------ ------------

NULL NULL ACCOUNTING I ACCT2020 3 ACCT

NULL NULL ACCOUNTING II ACCT2220 3 ACCT

ACCT3333 ACCT2220 MANAGERIAL FINANCE ACCT3333 3 ACCT

NULL NULL ACCOUNTING INFO SYST ACCT3464 3 ACCT

NULL NULL INTRO TO CHEMISTRY CHEM2001 3 CHEM

CHEM3001 CHEM2001 ORGANIC CHEMISTRY CHEM3001 3 CHEM

NULL NULL INTRO TO COMPUTER SC COSC1310 4 COSC

NULL NULL TURBO PASCAL COSC2025 3 COSC

NULL NULL ADVANCED COBOL COSC2303 3 COSC

COSC3320 COSC1310 DATA STRUCTURES COSC3320 4 COSC

COSC3380 COSC3320 DATABASE COSC3380 3 COSC

COSC3380 MATH2410 DATABASE COSC3380 3 COSC

NULL NULL OPERATIONS RESEARCH COSC3701 3 COSC

NULL NULL ADVANCED ASSEMBLER COSC4301 3 COSC

NULL NULL SYSTEM PROJECT COSC4309 3 COSC

COSC5234 COSC3320 ADA - INTRODUCTION COSC5234 4 COSC

NULL NULL NETWORKS COSC5920 3 COSC

NULL NULL ENGLISH COMP I ENGL1010 3 ENGL

ENGL1011 ENGL1010 ENGLISH COMP II ENGL1011 3 ENGL

ENGL3401 ENGL1011 FUND. TECH. WRITING ENGL3401 3 ENGL

NULL NULL TECHNICAL WRITING ENGL3402 2 ENGL

ENGL3520 ENGL1011 WRITING FOR NON MAJO ENGL3520 2 ENGL

NULL NULL CALCULUS 1 MATH1501 4 MATH

NULL NULL CALCULUS 2 MATH1502 3 MATH

NULL NULL CALCULUS 3 MATH1503 3 MATH

NULL NULL ALGEBRA MATH2333 3 MATH

NULL NULL DISCRETE MATHEMATICS MATH2410 3 MATH

MATH5501 MATH2333 Math Analysis MATH5501 3 MATH

NULL NULL AMERICAN CONSTITUTIO POLY1201 1 POLY

NULL NULL INTRO TO POLITICAL S POLY2001 3 POLY

POLY2103 POLY1201 AMERICAN GOVERNMENT POLY2103 2 POLY

NULL NULL SOCIALISM AND COMMUN POLY4103 4 POLY

POLY5501 POLY4103 POLITICS OF CUBA POLY5501 4 POLY

 (33 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-8]

4.8. Summary

After reading this chapter, you should have an appreciation of the concept of the join, a concept very fundamental to understanding relational databases. We have illustrated, with examples, the regular JOIN, CROSS JOIN and the Cartesian product, equi-joins and non-equi-joins, the self join, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. We have also discussed how multiple tables can be joined using a nested join.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4-SECT-9]

4.9. Review Questions

			What is a join? Why do you need a join?

			What is an INNER JOIN?

			Which clause[s] can be used in place of the JOIN in Server SQL?

			What is the Cartesian product?

			What would be the Cartesian product of a table with 15 rows and another table with 23 rows?

			List some uses of the Cartesian product.

			What is an equi-join?

			What is a non-equi-join? Give an example of an non-equi-join.

			What is a self join? Give an example of a self join.

			What is a LEFT OUTER JOIN?

			What is a RIGHT OUTER JOIN?

			What is a CROSS JOIN?

			What is a FULL OUTER JOIN?

			Does Server SQL allow the use of *= to perform outer joins?

			What is the maximum number of rows that a self join can produce?

			For what kinds of joins will the associative property hold?

			What would be the Cartesian product of the two sets {a,b,c} and {c,d,e}?

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-4]

Chapter 4. Joins

This chapter discusses joins[bookmark: IDX-CHP-4-0203]

--a common way to combine tables in SQL. In Chapter 2, you learned how to write simple query statements in SQL using just one table. In "real" databases, however, data is usually spread over many tables. This chapter shows you how to join tables in a database so that you can retrieve related data from more than one table. The join operation is used to combine related rows from two tables into a result set. Join is a binary operation. More than two tables can be combined using multiple join operations. Understanding the join function is fundamental to understanding relational databases, which are made up of many tables.

We start out the chapter by discussing the JOIN command. Then, we show how the same join could also be achieved with an INNER JOIN and using a WHERE clause. The concepts of the Cartesian product, equi-joins and non-equi joins, self joins, and natural joins are also introduced. We also show how multiple table joins can be performed with nested JOINs and with a WHERE clause. Finally, the concept of OUTER JOINs, with specific illustrations of the LEFT and RIGHT OUTER joins and the FULL OUTER JOIN, is also discussed.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-1]

5.1. Aggregate Functions

[bookmark: IDX-CHP-5-0253]

An aggregate function (or group function) is a function that returns a result (one number) after calculations based on multiple rows. We use the term "aggregate" (instead of "group"), because it avoids confusion later in the book (we discuss other GROUP functions in Chapter 9). An aggregate function basically combines multiple rows into a single number. Aggregate functions can be used to count the number of rows, find the sum or average of all the values in a given numeric column, and find the largest or smallest of the entries in a given column. In SQL, these aggregate functions are: COUNT,[bookmark: IDX-CHP-5-0254]

[bookmark: IDX-CHP-5-0255]

 SUM, AVG, MAX, and MIN, respectively. In this section, we examine several of these aggregate functions.

[bookmark: learnsqlsvr05-CHP-5-SECT-1.1]

5.1.1. The COUNT Function

The COUNT function is used to count how many (rows) of something there are, or the number of rows in a result set. Following is the general syntax for the COUNT function.

 SELECT COUNT(*)

 FROM Table-name(s)

COUNT(*) returns a count of the number of rows in the table(s).

The following query counts the number of rows in the table, Grade_report:

 SELECT COUNT(*) AS [Count]

 FROM Grade_report

The following is its output:

 Count

 209

 (1 row(s) affected)

COUNT(*) counts all rows, including rows that have some (or even all) null values in some columns.

In Figure 5-1, we present the table definition of the Grade_report table to remind you of the columns available in the Grade_report table.

[bookmark: learnsqlsvr05-CHP-5-FIG-1]

Figure 5-1. Table definition of the Grade_report table

[image:]

Sometimes we want to count how many items we have in a specific column. The general syntax for counting the number of items in a specific column is:

 SELECT COUNT(attribute_name)

 FROM Table-name(s)

For example, to count the number of grades in the grade column of the Grade_report table, we could type the following:

 SELECT COUNT(grade) AS [Count of Grade]

 FROM Grade_report

This produces the following output:

 Count of Grade

 114

 (1 row(s) affected)

COUNT(column) counts only non null columns. Although the Grade_report table has 209 rows, you get a count of 114 grades rather than 209 grades, because there are some null grades in the grade column.

The COUNT feature can be quite useful because it can save you from unexpectedly long results. Also, you can use it to answer "how many" queries without looking at the row-values themselves. In Chapter 4, which showed how Cartesian products are generated, you learned that SQL does not prevent programmers from asking questions that have very long or even meaningless answers. Thus, when dealing with larger tables, it is good to first ask the question, "How many rows can I expect in my answer?" This question may be vital if a printout is involved. For example, consider the question, "How many rows are there in the Cartesian product of the Student, Section, and Grade_report tables in our database?" This is answered by the query:

 SELECT COUNT(*) AS Count

 FROM Student, Section, Grade_report

The following output shows the count from this query, which will be equal to the product of the table sizes of the three tables (the Cartesian product of the three tables). Obviously, in this example, it would be a good idea to first find out the number of rows in this result set before printing it.

 Count

 321024

 (1 row(s) affected)

Contrast the previous COUNTing-query and its Cartesian product result to this query:

 SELECT COUNT(*) AS [Count]

 FROM Student, Grade_report, Section

 WHERE Student.stno = Grade_report.student_number

 AND Grade_report.section_id = Section.section_id

The following is the result of this query:

 Count

 209

 (1 row(s) affected)

What is requested here is a count of a three-way equi-join rather than a three-way Cartesian product, the result of which is something you probably would be much more willing to work with. Note also that you expect a count of about 209 from the sizes of the tables involved: Student (48 rows), Grade_report (209 rows), and Section (32 rows). The expected count of a join operation is of the order of magnitude of the larger number of rows in the tables.

SQL syntax will not allow you to count two or more columns at the same time. The following query will not work:

 SELECT COUNT (grade, section_id)

 FROM Grade_report

You will get the following error message:

 Msg 174, Level 15, State 1, Line 2

 The COUNT function requires 1 argument(s).

[bookmark: learnsqlsvr05-CHP-5-SECT-1.2]

5.1.2. The SUM Function

[bookmark: IDX-CHP-5-0256]

[bookmark: IDX-CHP-5-0257]

[bookmark: IDX-CHP-5-0258]

[bookmark: IDX-CHP-5-0259]

[bookmark: IDX-CHP-5-0260]

[bookmark: IDX-CHP-5-0261]

[bookmark: IDX-CHP-5-0262]

[bookmark: IDX-CHP-5-0263]

[bookmark: IDX-CHP-5-0264]

[bookmark: IDX-CHP-5-0265]

[bookmark: IDX-CHP-5-0266]

[bookmark: IDX-CHP-5-0267]

The SUM function totals the values in a numeric column. For example, suppose you have another table called Employee that looks like this:

 names wage hours

 --------------- ------------ -----------

 Sumon Bagui 10.0000 40

 Sudip Bagui 15.0000 30

 Priyashi Saha 18.0000 NULL

 Ed Evans NULL 10

 Genny George 20.0000 40

 (5 row(s) affected)

In this Employee table, names is defined as a NVARCHAR column, wage is defined as a SMALLMONEY column, and hours is defined as SMALLINT.

						[image:]			This Employee table has not been created for you in the Student_course database. You have to create and insert rows into it in order to run the following queries.

To find the sum of hours worked, use the SUM function like this:

 SELECT SUM(Hours) AS [Total hours]

 FROM Employee

This query produces the following output:

 Total hours

 120

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

Columns that contain null values are not included in the SUM function (and not in any aggregate numeric functions except COUNT(*)).

						[image:]			AS [Total hours] is an illustration of an alternative way of giving a title to a column.

[bookmark: learnsqlsvr05-CHP-5-SECT-1.3]

5.1.3. The AVG Function

[bookmark: IDX-CHP-5-0268]

[bookmark: IDX-CHP-5-0269]

[bookmark: IDX-CHP-5-0270]

The AVG function calculates the arithmetic mean (the sum of non null values divided by the number of non null values) of a set of values contained in a numeric column (or attribute) in the result set of a query. For example, if you want to find the average hours worked from the Employee table, type:

 SELECT AVG(hours) AS [Average hours]

 FROM Employee

This produces the following output:

 Average hours

 30

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

Again, note that the null value is ignored (not used) in the calculation of the average, so the total hours (120) is divided by 4 rather than 5.

[bookmark: learnsqlsvr05-CHP-5-SECT-1.4]

5.1.4. The MIN and MAX Functions

The MIN function finds the minimum value from a column, and the MAX function finds the maximum value (once again, nulls are ignored). For example, to find the minimum and maximum wage from the Employee table, you could type the following:

 SELECT MIN(wage) AS [Minimum Wage], MAX(wage) AS [Maximum Wage]

 FROM Employee

This query produces the following output:

 Minimum Wage Maximum Wage

 ------------ ------------

 20.0000

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

The MIN and MAX functions also work with character and datetime columns. For example, if we type:

 SELECT "First name in alphabetical order" = MIN(names)

 FROM Employee

We will get:

 First name in alphabetical order

 Ed Evans

 (1 row(s) affected)

And, if we type:

 SELECT "Last name in alphabetical order" = MAX(names)

 FROM Employee

We will get:

 Last name in alphabetical order

 Sumon Bagui

 (1 row(s) affected)

In the case of strings, the MIN and MAX are related to the collating sequence of the letters in the string. Internally, the column that we are trying to determine the MIN or MAX of is sorted alphabetically. Then, MIN returns the first (top) of the alphabetical list, and MAX returns the last (bottom) of the alphabetical list.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-2]

5.2. Row-Level Functions

Whereas aggregate functions operate on multiple rows for a result, row-level functions[bookmark: IDX-CHP-5-0271]

[bookmark: IDX-CHP-5-0272]

 operate on values in single rows, one row at a time. In this section, we look at row-level functions that are used in calculationsfor example, row-level functions that are used to add a number to a column, the ROUND function, the ISNULL function, and others.

[bookmark: learnsqlsvr05-CHP-5-SECT-2.1]

5.2.1. Arithmetic Operations on a Column

A row-level "function" can be used to perform an arithmetic operation on a column.

						[image:]			Strictly speaking a row-level "function" is not a function, but an operation performed in a result set. But the use of arithmetic operations in result sets behaves like functions.

For example, in the Employee table, if we wanted to display every person's wage plus 5, we could type the following:

 SELECT wage, (wage + 5) AS [wage + 5]

 FROM Employee

In this query, from the Employee table, first the wage is displayed, then the wage is incremented by five with (wage + 5), and displayed.

This query produces the following output:

 wage wage + 5

 ------------ ------------

 10.0000 15.0000

 15.0000 20.0000

 18.0000 23.0000

 NULL NULL

 20.0000 25.0000

 (5 row(s) affected)

						[image:]			Similarly, values can be subtracted (with the - operator), multiplied (with the * operator), and divided (with the / operator) to and from columns.

Once again, note that (wage + 5) is only a "read-only" or "display-only" function, because we are using it in a SELECT statement. The wage in the Employee table is not actually changing. We are only displaying what the wage + 5 is. To actually increase the wage in the Employee table by 5, we would have to use the UPDATE command. Any other arithmetic operation may be performed on numeric data.

[bookmark: learnsqlsvr05-CHP-5-SECT-2.2]

5.2.2. The ROUND Function

[bookmark: IDX-CHP-5-0273]

[bookmark: IDX-CHP-5-0274]

[bookmark: IDX-CHP-5-0275]

The ROUND function rounds numbers to a specified number of decimal places. For example, in the Employee table, if you wanted to divide every person's wage by 3 (a third of the wage), you would type (wage/3). Then, to round this, you could use ROUND(wage/3), and include the precision (number of decimal places) after the comma. In query form, this would be:

 SELECT names, wage, ROUND((wage/3), 2) AS [wage/3]

 FROM Employee

This query produces the following output:

 names wage wage/3

 -------------------- --------------------- ---------------------

 Sumon Bagui 10.00 3.33

 Sudip Bagui 15.00 5.00

 Priyashi Saha 18.00 6.00

 Ed Evans NULL NULL

 Genny George 20.00 6.67

 (5 row(s) affected)

In this example, the values of (wage/3) are rounded up to two decimal places because of the "2" after the comma after ROUND(wage/3).

[bookmark: learnsqlsvr05-CHP-5-SECT-2.3]

5.2.3. Other Common Numeric Functions

[bookmark: IDX-CHP-5-0276]

[bookmark: IDX-CHP-5-0277]

Other very common numeric[bookmark: IDX-CHP-5-0278]

 functions include:

			CEILING(attribute), which returns the next larger integer value when a number contains decimal places.

			FLOOR(attribute), which returns the next lower integer value when a number contains decimal places.

			SQRT(attribute), which returns the square root of positive numeric values.

			ABS(attribute), which returns the absolute value of any numeric value.

			SQUARE(attribute), which returns a number squared.

[bookmark: learnsqlsvr05-CHP-5-SECT-2.4]

5.2.4. The ISNULL Function

[bookmark: IDX-CHP-5-0279]

[bookmark: IDX-CHP-5-0280]

The results of the queries in the preceding sections show not only that nulls are ignored, but that if a null is contained in a calculation on a row, the result is always null. We will illustrate, with a couple of examples, how to handle this NULL issue.

[bookmark: learnsqlsvr05-CHP-5-SECT-2.4.1]

5.2.4.1. Example 1

In the first example, we will illustrate how to handle the NULL problem and also illustrate how to create variables on the fly. SQL Server 2005 allows you to create variables on the fly using a DECLARE statement followed by a @, the variable name (a or b, in our example) and then data type of the variable (both declared as FLOAT in our example). Variables are assigned values using the SET statement. And variables can be added in the SELECT statement.

						[image:]			A variable is a special place in memory used to hold data temporarily.

So, type the following sequence to declare the variables (a and b), assign values to them, and then add them together:

 DECLARE @a FLOAT, @b FLOAT

 SET @a = 3

 SET @b = 2

 SELECT @a + @b AS 'A + B = '

This query gives the result:

 A + B =

 5

 (1 row(s) affected)

SQL Server allows the use of SELECT with no FROM clause for such calculations as we have illustrated.

Now, if you set the variable a to null, as follows:

 DECLARE @a FLOAT, @b FLOAT

 SET @a = NULL

 SET @b = 2

 SELECT @a + @b AS 'A + B = '

You get this:

 A + B =

 NULL

 (1 row(s) affected)

To handle the null issue, SQL Server 2005 provides a row-level function, ISNULL, which returns a value if a table value is null. The ISNULL function has the following form:

 ISNULL(expression1, ValueIfNull)

The ISNULL function says that if the expression (or column value) is not null, return the value, but if the value is null, return ValueIfNull. Note that the ValueIfNull must be compatible with the data type. For example, if you wanted to use a default value of zero for a null in the previous example, you could type this:

 DECLARE @a FLOAT, @b FLOAT

 SET @a = NULL

 SET @b = 2

 SELECT ISNULL(@a, 0) + ISNULL(@b, 0) AS 'A + B = '

Which would give:

 A + B =

 2

 (1 row(s) affected)

Here, @b is unaffected, but @a is set to zero for the result set as a result of the ISNULL function. @a is not actually changed, it is replaced for the purposes of the query.

[bookmark: learnsqlsvr05-CHP-5-SECT-2.4.2]

5.2.4.2. Example 2

[bookmark: IDX-CHP-5-0281]

For the second example we will use the Employee table. To multiply the wage by hours and avoid the null-result problem by making the nulls act like zeros, a query could read:

 SELECT names, wage, hours, ISNULL(wage, 0)*ISNULL(hours,0) AS [wage*hours]

 FROM Employee

This query would produce the following output:

 names wage hours wage*hours

 --------------- ------------ ----------- ------------

 Sumon Bagui 10.00 40 400.00

 Sudip Bagui 15.00 30 450.00

 Priyashi Saha 18.00 NULL 0.00

 Ed Evans NULL 10 0.00

 Genny George 20.00 40 800.00

 (5 row(s) affected)

ISNULL does not have to have a ValueIfNull equal to zero. For example, if you want to assume that the number of hours is 40 if the value for hours is null, then you could use the following expression:

 SELECT names, wage, new_wage = ISNULL(wage, 40)

 FROM Employee

This query would give:

 names wage new_wage

 --------------- ------------ ------------

 Sumon Bagui 10.00 10.00

 Sudip Bagui 15.00 15.00

 Priyashi Saha 18.00 18.00

 Ed Evans NULL 40.00

 Genny George 20.00 20.00

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-2.5]

5.2.5. The NULLIF Function

[bookmark: IDX-CHP-5-0282]

[bookmark: IDX-CHP-5-0283]

SQL Server 2005 also has a NULLIF function, which returns a NULL if expression1 = expression2. If the expressions are not equal, then expression1 is returned. The NULLIF function has the following form:

 NULLIF(expression1, expression2)

For example, if we want to see whether the wage is 0, we would type:

 SELECT names, wage, new_wage = NULLIF(wage, 0)

 FROM Employee

This query would give:

 names wage new_wage

 --------------- ------------ ------------

 Sumon Bagui 10.00 10.00

 Sudip Bagui 15.00 15.00

 Priyashi Saha 18.00 18.00

 Ed Evans NULL NULL

 Genny George 20.00 20.00

 (5 row(s) affected)

From these results we can see that because none of the wages are equal to 0, the wage (expression1) is returned in every case. Even the NULL wage (Ed Evans's wage) is not equal to 0, but NULL is returned anyway, as the value in question is NULL.

If, for example, a wage 15 was unacceptable for some reason, you could null out the value of 15 using the NULLIF function like this:

 SELECT names, wage,

 new_wage = NULLIF(wage, 15)

 FROM Employee

This query would give:

 names wage new_wage

 --------------- ------------ ------------

 Sumon Bagui 10.00 10.00

 Sudip Bagui 15.00 NULL

 Priyashi Saha 18.00 18.00

 Ed Evans NULL NULL

 Genny George 20.00 20.00

 (5 row(s) affected)

Again, as can be noted from the previous set of results, you have to be very careful about the interpretation of the output obtained from a NULLIF function if there were already nulls present in the columns being tested. Ed Evans's wage was not equal to15, but had a NULL originally (and this may be wrongly interpreted when the NULLIF function is being used).

[bookmark: learnsqlsvr05-CHP-5-SECT-2.6]

5.2.6. Other Row-Level Functions

Other row-level functions in SQL Server 2005 include ABS, which returns the absolute value of a numeric expression. For example, if we wanted to find the absolute value of -999.99, we could type the following:

 SELECT ABS(-999.99) AS [Absolute Value]

This query would produce the following output:

 Absolute Value

 999.99

 (1 row(s) affected)

There are also several other row-level trigonometric functions available in Server SQL 2005, including SIN, COS, TAN, LOG, and so forth. But, as these functions are less commonly used, we will not discuss them.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-3]

5.3. Other Functions

[bookmark: IDX-CHP-5-0284]

This section discusses some other useful functions, such as TOP,[bookmark: IDX-CHP-5-0285]

[bookmark: IDX-CHP-5-0286]

 TOP with PERCENT, and DISTINCT. These functions help us in selecting rows from a larger set of rows.

[bookmark: learnsqlsvr05-CHP-5-SECT-3.1]

5.3.1. The TOP Function

This function returns a certain number of rows. Often, the TOP function is used to display or return from a result set the rows that fall at the top of a range specified by an ORDER BY clause. Suppose you want the names of the "top 2" (first two) employees with the lowest wages from the Employee table (top 2 refers to the results in the first two rows). You would type:

 SELECT TOP 2 names, wage

 FROM Employee

 ORDER BY wage ASC

This query would produce the following output:

 names wage

 --------------- ------------

 Ed Evans NULL

 Sumon Bagui 10.00

 (2 row(s) affected)

To get this output, first the wage column was ordered in ascending order, and then the "top" two wages were selected from that ordered result set. The columns with the null wages are placed first with the ascending (ASC) command.

With the TOP command, if you do not include the ORDER BY clause (and the table has no primary key), the query will return rows based on the order in which the rows appear in the table (probably, but not guaranteed to be, the order in which the rows were entered in the table). For example, the following query does not include the ORDER BY clause:

 SELECT TOP 2 names, wage

 FROM Employee

And this query returns the following output:

 names wage

 --------------- ------------

 Sumon Bagui 10.00

 Sudip Bagui 15.00

 (2 row(s) affected)

Remember that in relational database, you can never depend on where rows in a table are. Tables are sets of rows and at times the database engines may insert rows in unoccupied physical spaces. You should never count on retrieving rows in some order and always use ORDER BY if you desire an ordering.

[bookmark: learnsqlsvr05-CHP-5-SECT-3.1.1]

5.3.1.1. Handling the "BOTTOM"

Since there is only a TOP command, and no similar BOTTOM command, if you want to get the "bottom" two employees meaning, the employees with the highest wages (the values in the last two ordered rows) instead of the top two employees from the Employee table, the top two employees (the highest wages) would have to be selected from the table ordered in descending order, as follows:

 SELECT TOP 2 names, wage

 FROM Employee

 ORDER BY wage DESC

This query would produce the following output:

 names wage

 --------------- ------------

 Genny George 20.00

 Priyashi Saha 18.00

 (2 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-3.1.2]

5.3.1.2. Handling a tie

This section answers an interesting questionwhat if there is a tie? For example, what if you are looking for the top two wages, and two employees have the same amount in the wage column? To handle ties, SQL Server has a WITH TIES option that can be used with the TOP function.

To demonstrate WITH TIES, make one change in the data in your Employee table, so that the value in the wage column of Sudip Bagui is also 10, as shown here:

 names wage hours

 --------------- ------------ ------------

 Sumon Bagui 10.0000 40

 Sudip Bagui 10.0000 30

 Priyashi Saha 18.0000 NULL

 Ed Evans NULL 10

 Genny George 20.0000 40

 (5 row(s) affected)

You can use the following UPDATE statement to make the change in the Employee table:

 UPDATE Employee

 SET WAGE = 10

 WHERE names LIKE '%Sudip%'

						[image:]			The LIKE operator is explained later in the chapter.

						[image:]			You can also make this change in the Employee table by right-clicking on the table from your Object Explorer and selecting Open Table and changing the data.

Now type the following query:

 SELECT TOP[bookmark: IDX-CHP-5-0287]

 2 WITH TIES names, wage

 FROM Employee

 ORDER BY wage ASC

Although you requested only the TOP 2 employees, this query produced three rows, because there was a tie in the column that you were looking for (and you used with the WITH TIES option), as shown by the following output:

 names wage

 --------------- ------------

 Ed Evans NULL

 Sumon Bagui 10.00

 Sudip Bagui 10.00

 (3 row(s) affected)

The WITH TIES option is not allowed without a corresponding ORDER BY clause.

						[image:]			Remember to change the data in your Employee table back to its original state if you are doing the exercises as you read the material.

[bookmark: learnsqlsvr05-CHP-5-SECT-3.2]

5.3.2. The TOP Function with PERCENT

[bookmark: IDX-CHP-5-0288]

[bookmark: IDX-CHP-5-0289]

PERCENT returns a certain percentage of rows that fall at the top of a specified range. For example, the following query returns the top 10 percent (by count) of the student names from the Student table based on the order of names:

 SELECT TOP 10 PERCENT sname

 FROM Student

 ORDER BY sname ASC

This query produces the following output:

 sname

 Alan

 Benny

 Bill

 Brad

 Brenda

 (5 row(s) affected)

Again, there is no BOTTOM PERCENT function, so in order to get the bottom 10 percent, you would have to order the sname column in descending order and then select the top 10 percent, as follows:

 SELECT TOP 10 PERCENT sname

 FROM Student

 ORDER BY sname DESC

This query would produce the following output:

 sname

 Zelda

 Thornton

 Susan

 Steve

 Stephanie

 (5 row(s) affected)

Note that the query can be used without the ORDER BY, but because the rows are unordered, the result is simply a sample of the first 10 percent of the data drawn from the table. Here is the same query without the use of the ORDER BY:

 SELECT TOP 10 PERCENT sname

 FROM Student

As output, this query returns the first 10 percent of the names based on the number of rows. But, as the rows are unordered (and there is no primary key in this table), your output would depend on where in the database these rows reside:

 sname

 Lineas

 Mary

 Zelda

 Ken

 Mario

 (5 row(s) affected)

Once again, ties in this section could be handled in the same way as they were handled in the preceding section, with the WITH TIES option as shown:

 SELECT TOP 10 PERCENT WITH TIES sname

 FROM Student

 ORDER BY sname DESC

						[image:]			The WITH TIES option cannot be used without a corresponding ORDER BY clause.

[bookmark: learnsqlsvr05-CHP-5-SECT-3.3]

5.3.3. The DISTINCT Function

[bookmark: IDX-CHP-5-0290]

[bookmark: IDX-CHP-5-0291]

The DISTINCT function omits rows in the result set that contain duplicate data in the selected columns. For example, to SELECT all grades from the Grade_report table, you could type:

 SELECT grade

 FROM Grade_report

This query results in 209 rows, all the grades in the Grade_report table.

To SELECT all distinct grades from the Grade_report table, you would type:

 SELECT DISTINCT grade

 FROM Grade_report

The result set would look like this:

 grade

 NULL

 A

 B

 C

 D

 F

 (6 row(s) affected)

Observe that the syntax requires you to put the word DISTINCT first in the string of attributes, because DISTINCT implies distinct rows in the result set. The preceding statement also produces a row for null grades (regarded here as a DISTINCT grade). Note also that the result set is sorted (ordered). The fact that the result set is sorted could cause some response inefficiency in larger table queries.

[bookmark: learnsqlsvr05-CHP-5-SECT-3.3.1]

5.3.3.1. Using DISTINCT with other aggregate functions

[bookmark: IDX-CHP-5-0292]

In SQL Server 2005, DISTINCT can also be used as an option with aggregate functions like COUNT, SUM and AVG. For example, to count the distinct grades from the Grade_report table, we can type:

 SELECT "Count of distinct grades" = COUNT(DISTINCT(grade))

 FROM Grade_report

This query will give:

 Count of distinct grades

 5

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

Because an aggregate function, COUNT, is being used here with an argument, NULL values are not included in this result set.

As another example, to sum the distinct wages from the Employee table, we can type:

 SELECT "Sum of distinct wages" = SUM(DISTINCT(wage))

 FROM Employee

This query will give:

 Sum of distinct wages

 63.00

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-4]

5.4. String Functions

[bookmark: IDX-CHP-5-0293]

SQL Server 2005 has several functions that operate on strings; for example, functions for the extraction of part of a string, functions to find the length of a string, functions to find matching characters in strings, etc. In this section, we explore some of these common and useful string functions. String functions are not aggregatesthey are row-level functions, as they operate on one value in one row at a time. String functions are read-only functions and will not change the underlying data in the database unless UPDATEs are performed. We start our discussion of string functions with string concatenation[bookmark: IDX-CHP-5-0294]

[bookmark: IDX-CHP-5-0295]

.

[bookmark: learnsqlsvr05-CHP-5-SECT-4.1]

5.4.1. String Concatenation

String manipulations often require concatenation, which means to connect things together. In this section we look at the string concatenation operator available in SQL Server 2005, the +.

To see an example of concatenation, using the Employee table, we will first list the names of the employees using the following statement:

 SELECT names

 FROM Employee

This query produces the following output:

 names

 Sumon Bagui

 Sudip Bagui

 Priyashi Saha

 Ed Evans

 Genny George

 (5 row(s) affected)

Now, suppose you would like to concatenate each of the names with ", Esq." Type the following:

 SELECT names + ', Esq.' AS [Employee Names]

 FROM Employee

This query produces:

 Employee Names

 Sumon Bagui, Esq.

 Sudip Bagui, Esq.

 Priyashi Saha, Esq.

 Ed Evans, Esq.

 Genny George, Esq.

 (5 row(s) affected)

As another example, suppose you want to add a series of dots (.....) to the left side of the names column. You would type:

 SELECT ('.....'+ names) AS [Employee Names]

 FROM Employee

to produce the following result set:

 Employee Names

 Sumon Bagui

 Sudip Bagui

 Priyashi Saha

 Ed Evans

 Genny George

 (5 row(s) affected)

Similarly, to add to the right side of names column, type:

 SELECT (names + '.....') AS [Employee Names]

 FROM Employee

This query returns:

 Employee Names

 Sumon Bagui.....

 Sudip Bagui.....

 Priyashi Saha.....

 Ed Evans.....

 Genny George.....

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.2]

5.4.2. String Extractors

SQL has several string extractor functions. This section briefly describes some of the more useful string extractors, like SUBSTRING,[bookmark: IDX-CHP-5-0296]

[bookmark: IDX-CHP-5-0297]

 LEFT, RIGHT, LTRIM, RTRIM, and CHARINDEX. Now suppose (again) that the Employee table has the following data:

 names wage hours

 --------------- ------------ -----------

 Sumon Bagui 10.0000 40

 Sudip Bagui 15.0000 30

 Priyashi Saha 18.0000 NULL

 Ed Evans NULL 10

 Genny George 20.0000 40

 (5 row(s) affected)

And suppose you want to display the names in the following format:

 Employee Names

 Sumon, B.

 Sudip, B.

 Priyashi, S.

 Ed, E.

 Genny, G.

 (5 row(s) affected)

You can achieve this output by using a combination of the string functions to break down names into parts, re-assemble (concatenate) those parts, and then concatenate a comma and period in their respective (appropriate) locations. Before we completely solve this particular problem, in the next few sections we will explain the string functions that you will need to get this output. Then we will show you how to get this result.

[bookmark: learnsqlsvr05-CHP-5-SECT-4.2.1]

5.4.2.1. The SUBSTRING function

[bookmark: IDX-CHP-5-0298]

[bookmark: IDX-CHP-5-0299]

[bookmark: IDX-CHP-5-0300]

[bookmark: IDX-CHP-5-0301]

The SUBSTRING function returns part of a string. Following is the format for the SUBSTRING function:

 SUBSTRING(stringexpression, startposition, length)

stringexpression is the column that we will be using, startposition tells SQL Server where in the stringexpression to start retrieving characters from, and length tells SQL Server how many characters to extract. All three parameters are required in SQL Server 2005's SUBSTRING function. For example, type the following:

 SELECT names, SUBSTRING(names,2,4) AS [middle of names]

 FROM Employee

This query returns:

 names middle of names

 --------------- ---------------

 Sumon Bagui umon

 Sudip Bagui udip

 Priyashi Saha riya

 Ed Evans d Ev

 Genny George enny

 (5 row(s) affected)

SUBSTRING(names,2,4) started from the second position in the column, names, and extracted four characters starting from position 2.

Strings in SQL Server 2005 are indexed from 1. If you start at position 0, the following query will show you what you will get:

 SELECT names, "first letter of names" = SUBSTRING(names,0,2)

 FROM Employee

You will get:

 names first letter of names

 --------------- ---------------------

 Sumon Bagui S

 Sudip Bagui S

 Priyashi Saha P

 Ed Evans E

 Genny George G

 (5 row(s) affected)

In the previous output, we got the first letter of the names because the SUBSTRING function started extracting characters starting from position zero (the position before the first letter) and went two character positionswhich picked up the first letter of the names field.

We could have also achieved the same output with:

 SELECT names, "first letter of names" = SUBSTRING(names,1,1)

 FROM Employee

Here the SUBSTRING function would start extracting characters starting from position 1 and go only one character position, hence ending up with only one characterwhich picks up the first letter of the names field.

SQL Server 2005's SUBSTRING function actually allows you to start at a negative position relative to the string. For example, if you typed:

 SELECT names, "first letter of names" = SUBSTRING(names,-1,3)

 FROM Employee

You would get the same output as the previous query also, because you are starting two positions before the first character of names, and going three character places, so you get the first letter of the name.

[bookmark: learnsqlsvr05-CHP-5-SECT-4.2.2]

5.4.2.2. The LEFT and RIGHT functions

[bookmark: IDX-CHP-5-0302]

[bookmark: IDX-CHP-5-0303]

[bookmark: IDX-CHP-5-0304]

[bookmark: IDX-CHP-5-0305]

These functions return a portion of a string, starting from either the left or right side of stringexpression. Following are the general formats for the LEFT and RIGHT functions respectively:

 LEFT(stringexpression, n)

Or:

 RIGHT(stringexpression, n)

The LEFT function starts from the LEFT of the stringexpression or column and returns n characters, and the RIGHT function starts from the right of the stringexpression or column and returns n characters.

For example, to get the first three characters from the names column, type:

 SELECT names, LEFT(names,3) AS [left]

 FROM Employee

This query produces:

 names left

 --------------- ----

 Sumon Bagui Sum

 Sudip Bagui Sud

 Priyashi Saha Pri

 Ed Evans Ed

 Genny George Gen

 (5 row(s) affected)

To get the last three characters from the names column (here the count will start from the right of the column, names), type:

 SELECT names, RIGHT(names,3) AS [right]

 FROM Employee

This query produces:

 names right

 --------------- -------

 Sumon Bagui gui

 Sudip Bagui gui

 Priyashi Saha aha

 Ed Evans ans

 Genny George rge

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.2.3]

5.4.2.3. The LTRIM and RTRIM functions

[bookmark: IDX-CHP-5-0306]

[bookmark: IDX-CHP-5-0307]

[bookmark: IDX-CHP-5-0308]

[bookmark: IDX-CHP-5-0309]

[bookmark: IDX-CHP-5-0310]

[bookmark: IDX-CHP-5-0311]

[bookmark: IDX-CHP-5-0312]

[bookmark: IDX-CHP-5-0313]

LTRIM removes blanks from the beginning (left) of a string. For example, if three blank spaces appear to the left of a string such as ' Ranu', you can remove the blank spaces with the following query:

 SELECT LTRIM(' Ranu') AS names

which produces:

 names

 Ranu

 (1 row(s) affected)

It does not matter how many blank spaces precede the non-blank character. All leading blanks will be excised.

Similarly, RTRIM removes blanks from the end (right) of a string. For example, if blank spaces appear to the right of Ranu in the names column, you could remove the blank spaces using the RTRIM, and then concatenate "Saha" with the + sign, as shown here:

 SELECT RTRIM('Ranu ') + ' Saha' AS names

This query produces:

 names

 Ranu Saha

 (1 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.2.4]

5.4.2.4. The CHARINDEX function

[bookmark: IDX-CHP-5-0314]

[bookmark: IDX-CHP-5-0315]

[bookmark: IDX-CHP-5-0316]

The CHARINDEX function returns the starting position of a specified pattern. For example, if we wish to find the position of a space in the employee names in the Employee table, we could type:

 SELECT names, "Position of Space in Employee Names" = CHARINDEX(' ',names)

 FROM Employee

This query would give:

 names Position of Space in Employee Names

 --------------- -----------------------------------

 Sumon Bagui 6

 Sudip Bagui 6

 Priyashi Saha 9

 Ed Evans 3

 Genny George 6

 (5 row(s) affected)

						[image:]			In Oracle, CHARINDEX is called INSTR.

Now that you know how to use quite a few string extractor functions, you can combine them to produce the following output, which will require a nesting of string functions:

 Employee Names

 Sumon, B.

 Sudip, B.

 Priyashi, S.

 Ed, E.

 Genny, G.

 (5 row(s) affected)

Following is the query to achieve the preceding output:

 SELECT "Employee Names" = SUBSTRING(names,1,CHARINDEX(' ',names)-1) + ', ' +

 SUBSTRING(names, CHARINDEX(' ',names)+1,1) + '.'

 FROM Employee

In this query, we get the first name with the SUBSTRING(names,1,CHARINDEX(' ',names)-1) portion. SUBSTRING begins in the first position of names. CHARINDEX(' ',names) finds the first space. We need only the characters up to the first space, so we use CHARINDEX(' ',names) -1. We then concatenate the comma and a space with + (', '). Then, to extract the first character after the first space in the original names column, we use SUBSTRING(names, CHARINDEX(' ',names)+1,1), followed by concatenation of a period.

To display the names in a more useful mannerthat is, the last name, comma, and then the first initialwe would have to use the following query:

 SELECT "Employee Names" = SUBSTRING(names, (CHARINDEX(' ',names)+1), (CHARINDEX(' ',

 names))) + ', ' + SUBSTRING(names,1,1) + '.'

 FROM Employee

which would produce the following output:

 Employee Names

 Bagui, S.

 Bagui, S.

 Saha, P.

 Eva, E.

 George, G.

 (5 row(s) affected)

In this query, we get the last name with SUBSTRING(names, (CHARINDEX(' ',names)+1), (CHARINDEX(' ', names))). The SUBSTRING begins at the space and picks up the rest of the characters after the space. Then a comma and a space are concatenated, and then the first letter of the first name and a period are concatenated.

[bookmark: learnsqlsvr05-CHP-5-SECT-4.3]

5.4.3. The UPPER and LOWER Functions

[bookmark: IDX-CHP-5-0317]

[bookmark: IDX-CHP-5-0318]

[bookmark: IDX-CHP-5-0319]

[bookmark: IDX-CHP-5-0320]

To produce all the fields in the result set (output) in uppercase or in lowercase, you can use the UPPER or LOWER functions. For example, to produce all the names in the Employee table in uppercase, type:

 SELECT UPPER(names) AS [NAMES IN CAPS]

 FROM Employee

This query produces the following output:

 NAMES IN CAPS

 SUMON BAGUI

 SUDIP BAGUI

 PRIYASHI SAHA

 ED EVANS

 GENNY GEORGE

 (5 row(s) affected)

To produce all the names in lowercase, you would type:

 SELECT LOWER(names) AS [NAMES IN SMALL]

 FROM Employee

To further illustrate the nesting of functions, and to produce, in all uppercase, the first name followed by the first letter of the last name, type:

 SELECT "Employee Names" = UPPER(SUBSTRING(names,1,CHARINDEX(' ',names)-1)) + ', ' +

 SUBSTRING(names,CHARINDEX(' ',names)+1,1) + '.'

 FROM Employee

This query produces the following output:

 Employee Names

 SUMON, B.

 SUDIP, B.

 PRIYASHI, S.

 ED, E.

 GENNY, G.

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.4]

5.4.4. The LEN Function

[bookmark: IDX-CHP-5-0321]

[bookmark: IDX-CHP-5-0322]

[bookmark: IDX-CHP-5-0323]

[bookmark: IDX-CHP-5-0324]

[bookmark: IDX-CHP-5-0325]

The LEN function returns the length (number of characters) of a desired string excluding trailing blanks. For example, to list the lengths of the full names (including any spaces) in the Employee table, type:

 SELECT names, LEN(names) AS [Length of Names]

 FROM Employee

This query produces the following output:

 names Length of Names

 --------------- ---------------

 Sumon Bagui 11

 Sudip Bagui 11

 Priyashi Saha 13

 Ed Evans 8

 Genny George 12

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5]

5.4.5. Matching Substrings Using LIKE

[bookmark: IDX-CHP-5-0326]

[bookmark: IDX-CHP-5-0327]

[bookmark: IDX-CHP-5-0328]

[bookmark: IDX-CHP-5-0329]

Often we want to use part of a string as a condition in a query. For example, consider the Section table (from our Student_course database), which has the following data:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM

 ---------- ---------- -------- ---- ---------- ------ ------

 85 MATH2410 FALL 98 KING 36 123

 86 MATH5501 FALL 98 EMERSON 36 123

 87 ENGL3401 FALL 98 HILLARY 13 101

 .

 .

 .

We might want to know something about Math coursescourses with the prefix MATH. In this situation, we need an operator that can determine whether a substring exists in an attribute. Although we have seen how to handle this type of question with both the SUBSTRING and CHARINDEX functions, another common way to handle this situation in a WHERE clause is by using the LIKE function.

Using LIKE as an "existence" match entails finding whether a character string exists in a string or valueif the string exists, the row is SELECTed for inclusion in the result set. Again of course, we could use SUBSTRING and/or CHARINDEX for this, but LIKE is a powerful, common and flexible alternative. This existence-type of the LIKE query is useful when the position of the character string sought may be in various places in the substring. SQL Server 2005 uses the wildcard character, %, at the beginning or end of a LIKE-string, when looking for the existence of substrings. For example, suppose we want to find all names that have "Smith" in our Student table, type the following:

 SELECT *

 FROM Student

 WHERE sname = 'SMITH'

which produces the following output:

 STNO SNAME MAJOR CLASS BDATE

 ----- ----------- ------ ----- -------------------------------

 88 Smith NULL NULL 10/15/1979 12:00:00 AM

 (1 row(s) affected)

Note that the case (upper or lower) in the statement WHERE sname = 'SMITH' does not matter, because SQL Server 2005 is handled as if it is all uppercase (this is by default, and can be changed), although it is displayed in mixed case (and even if it had been entered in mixed case). In other words, we can say that data in SQL Server 2005 is not case-sensitive by default.

To count how many people have a name of "Smith," type:

 SELECT COUNT(*) AS Count

 FROM Student

 WHERE sname = 'Smith'

which produces:

 Count

 1

 (1 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5.1]

5.4.5.1. Using the wildcard character with LIKE

The percentage sign (%) is SQL Server 2005's wildcard character. For example, if we wanted to find all the names that had some form of "Smith" in their names from the Student table, we would use % on both ends of "Smith," as shown here:

 SELECT *

 FROM Student

 WHERE sname LIKE '%Smith%'

This query produces the following output, showing any "Smith" pattern in sname:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 88 Smith NULL NULL 1979-10-15 00:00:00

 147 Smithly ENGL 2 1980-05-13 00:00:00

 151 Losmith CHEM 3 1981-01-15 00:00:00

 (3 row(s) affected)

To find any pattern starting with "Smith" from the Student table, you would type:

 SELECT *

 FROM Student

 WHERE sname LIKE 'Smith%'

This query would produce:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 88 Smith NULL NULL 1979-10-15 00:00:00

 147 Smithly ENGL 2 1980-05-13 00:00:00

 (2 row(s) affected)

						[image:]			By default, it is not necessary to use UPPER or LOWER before sname in the previous query since data in SQL Server 2005 is not case sensitive. You can change this however, by changing SQL Server 2005's database configurations.

To find the Math courses (any course_num starting with MATH) from the Section table, you could pose a wildcard match with a LIKE as follows:

 SELECT *

 FROM Section

 WHERE course_num LIKE 'MATH%'

This query would produce the following output:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM

 ---------- ---------- -------- ---- ---------- ----- -----

 85 MATH2410 FALL 98 KING 36 123

 86 MATH5501 FALL 98 EMERSON 36 123

 107 MATH2333 SPRING 00 CHANG 36 123

 109 MATH5501 FALL 99 CHANG 36 123

 112 MATH2410 FALL 99 CHANG 36 123

 158 MATH2410 SPRING 98 NULL 36 123

 (6 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5.2]

5.4.5.2. Finding a range of characters

SQL Server 2005 allows some POSIX-compliant regular expression patterns in LIKE clauses. We will illustrate some of these extensions for pattern matching.

LIKE can be used to find a range of characters. For example, to find all grades between C and F in the Grade_report table, type:

 SELECT DISTINCT student_number, grade

 FROM Grade_report

 WHERE grade LIKE '[c-f]'

 AND student_number > 100

This query produces 15 rows of output:

 student_number grade

 -------------- -----

 125 C

 126 C

 127 C

 128 F

 130 C

 131 C

 145 F

 147 C

 148 C

 151 C

 153 C

 158 C

 160 C

 161 C

 163 C

 (15 row(s) affected)

						[image:]			By default, note that LIKE is also case-insensitive. You can change this, however, by changing SQL Server 2005's database configurations.

To find all grades from the Grade_report table that are not between C and F, we use a caret (^) before the range we do not want to find:

 SELECT DISTINCT student_number, grade

 FROM Grade_report

 WHERE grade LIKE '[^c-f]'

 AND student_number > 100

This query produces the following 21 rows of output:

 student_number grade

 -------------- -----

 121 B

 122 B

 123 A

 123 B

 125 A

 125 B

 126 A

 126 B

 127 A

 127 B

 129 A

 129 B

 132 B

 142 A

 143 B

 144 B

 146 B

 147 B

 148 B

 155 B

 157 B

 (21 row(s) affected)

As another example, to find all the courses from the Section table that start with "C," but do not have "h" as the second character, we could type:

 SELECT *

 FROM Section

 WHERE course_num LIKE 'C[^h]%'

This query would give the following 10 rows of output:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM

 ---------- ---------- -------- ---- ---------- ----- -----

 90 COSC3380 SPRING 99 HARDESTY 79 179

 91 COSC3701 FALL 98 NULL 79 179

 92 COSC1310 FALL 98 ANDERSON 79 179

 93 COSC1310 SPRING 99 RAFAELT 79 179

 96 COSC2025 FALL 98 RAFAELT 79 179

 98 COSC3380 FALL 99 HARDESTY 79 179

 102 COSC3320 SPRING 99 KNUTH 79 179

 119 COSC1310 FALL 99 ANDERSON 79 179

 135 COSC3380 FALL 99 STONE 79 179

 145 COSC1310 SPRING 99 JONES 79 179

 (10 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5.3]

5.4.5.3. Finding a particular character

To find a particular character using LIKE, we would place the character in square brackets []. For example, to find all the names from the Student table that begin with a B or G and end in "ill," we could type:

 SELECT sname

 FROM Student

 WHERE sname LIKE '[BG]ill'

We would get:

 sname

 Bill

 (1 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5.4]

5.4.5.4. Finding a single character or single digitthe underscore wildcard character

A single character or digit can be found in a particular position in a string by using an underscore, _, for the wildcard in that position in the string. For example, to find all students with student_numbers in the 130s (130...139) range from the Student table, type:

 SELECT DISTINCT student_number, grade

 FROM Grade_report

 WHERE student_number LIKE '13_'

This query would produce the following:

 student_number grade

 -------------- -----

 130 C

 131 C

 132 B

 (3 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-4.5.5]

5.4.5.5. Using NOT LIKE

In SQL Server 2005, the LIKE operator can be negated with the NOT. For example, to get a listing of the non math courses and the courses that do not start in "C" from the Section table, we would type:

 SELECT *

 FROM Section

 WHERE course_num NOT LIKE 'MATH%'

 AND Course_num NOT LIKE 'C%'

This query would give the following 14 rows of output:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM

 ---------- ---------- -------- ---- ---------- ------ ------

 87 ENGL3401 FALL 98 HILLARY 13 101

 88 ENGL3520 FALL 99 HILLARY 13 101

 89 ENGL3520 SPRING 99 HILLARY 13 101

 94 ACCT3464 FALL 98 RODRIGUEZ 74 NULL

 95 ACCT2220 SPRING 99 RODRIQUEZ 74 NULL

 97 ACCT3333 FALL 99 RODRIQUEZ 74 NULL

 99 ENGL3401 FALL 99 HILLARY 13 101

 100 POLY1201 FALL 99 SCHMIDT NULL NULL

 101 POLY2103 SPRING 00 SCHMIDT NULL NULL

 104 POLY4103 SPRING 00 SCHMIDT NULL NULL

 126 ENGL1010 FALL 98 HERMANO 13 101

 127 ENGL1011 SPRING 99 HERMANO 13 101

 133 ENGL1010 FALL 99 HERMANO 13 101

 134 ENGL1011 SPRING 00 HERMANO 13 101

 (14 row(s) affected)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-5]

5.5. CONVERSION Functions

[bookmark: IDX-CHP-5-0330]

Sometimes data in a table is stored in a particular data type, but you need to have the data in another data type. For example, let us suppose that columnA of TableA is of character data type, but you need to use this column as a numeric column in order to do some mathematical operations. Similarly, there are times where you have a table with numeric data types and you need characters. What do you do? SQL Server 2005 provides three functions for converting data types--CAST,[bookmark: IDX-CHP-5-0331]

[bookmark: IDX-CHP-5-0332]

 CONVERT, and STR. In the following subsections, we discuss each of these functions.

[bookmark: learnsqlsvr05-CHP-5-SECT-5.1]

5.5.1. The CAST Function

The CAST function is a very useful SQL Server 2005 function that allows you to change a data type of a column. The CAST result can then be used for:

			Concatenating strings

			Joining columns that were not envisioned as related

			Performing unions of tables (unions are discussed in Chapter 7)

			Performing mathematical operations on columns that were defined as character but which actually contain numbers that need to be calculated.

Some conversions are automatic and implicit, so using CAST is not necessary. For example, converting between numbers with types INT, SMALLINT, TINYINT, FLOAT, NUMERIC, and so on is done automatically and implicitly as long as an overflow does not occur. But, converting numbers with decimal places to integer data types truncates values to the right of the decimal place without a warning, so you should use CAST if a loss of precision is possible.

The general form of the syntax for the CAST function is:

 CAST (original_expression AS desired_datatype)

To illustrate the CAST function, we will use the Employee table that we created earlier in this chapter. In this table, names was defined as a NVARCHAR column, wage was defined as a SMALLMONEY column, and hours was defined as a SMALLINT column. We will use CAST to change the display of the hours column to a character column so that we can concatenate a string to it, as shown in the following query:

 SELECT names, wage, hours = CAST(hours AS CHAR(2)) + ' hours worked per week'

 FROM Employee

This query will give us:

 names wage hours

 -------------------- ------------ ------------------------

 Sumon Bagui 10.0000 40 hours worked per week

 Sudip Bagui 15.0000 30 hours worked per week

 Priyashi Saha 18.0000 NULL

 Ed Evans NULL 10 hours worked per week

 Genny George 20.0000 40 hours worked per week

 (5 row(s) affected)

CAST will truncate the value or column if the character length is smaller than the size required for full display.

CAST is a subset of the CONVERT function, and was added to SQL Server 2005 to comply with ANSI-92 specifications.

[bookmark: learnsqlsvr05-CHP-5-SECT-5.2]

5.5.2. The STR Function

[bookmark: IDX-CHP-5-0333]

[bookmark: IDX-CHP-5-0334]

[bookmark: IDX-CHP-5-0335]

STR is a specialized conversion function that always converts from a number (for example, float or numeric) to a character data type. It allows you to explicitly specify the length and number of decimal places that should be formatted for the character string.

The general form of the syntax for the STR function is:

 STR(float_expression, character_length, number_of_decimal_places)

character_length and number_of_decimal_places are optional arguments.

character_length must include room for a decimal place and a negative sign. STR rounds a value to the number of decimal places requested.

We will illustrate the use of the STR function using the Employee table that we created earlier in this chapter. In this table, the hours column is a SMALLINT column. To format it to two decimal places, we can use STR. Note that we have to make the character length 5 in this case in order to accommodate the .00 (the decimal point and zeros). Following is the query showing this:

 SELECT names, wage, hours = STR(hours, 5, 2)

 FROM Employee

which produces:

 names wage hours

 -------------------- --------------------- -----

 Sumon Bagui 10.00 40.00

 Sudip Bagui 15.00 30.00

 Priyashi Saha 18.00 NULL

 Ed Evans NULL 10.00

 Genny George 20.00 40.00

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-5.3]

5.5.3. The CONVERT Function

[bookmark: IDX-CHP-5-0336]

[bookmark: IDX-CHP-5-0337]

[bookmark: IDX-CHP-5-0338]

Just like the CAST function, the CONVERT function is also used to explicitly convert to a given data type. But, the CONVERT function has additional limited formatting capabilities.

The general syntax for the CONVERT function is:

 CONVERT(desired_datatype[(length)], original_expression [, style])

CONVERT has an optional third parameter, style, which is used for formatting. If style is not specified, it will use the default style. Because the CONVERT function has formatting capabilities, it is widely used when displaying dates in a particular format. Examples of the use of the CONVERT function are presented in the section, "Default Date Formats and Changing Date Formats" later in this chapter.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-6]

5.6. DATE Functions

Using the DATETIME and SMALLDATETIME data type, SQL Server 2005 gives you the opportunity to use several date functions like DAY, MONTH, YEAR, DATEADD, DATEDIFF, DATEPART, and GEtdATE for extracting and manipulating dates (adding dates, taking the differences between dates, finding the day/month/year from dates, and so on).

Before we start discussing date functions, we will create a table, DateTable, using the SMALLDATETIME data type. Then we will discuss date formats and formatting dates.

[bookmark: learnsqlsvr05-CHP-5-SECT-6.1]

5.6.1. Creating a Table with the DATETIME Data Type

Suppose that you define SMALLDATETIME types in a table like this:

 CREATE TABLE DateTable (birthdate SMALLDATETIME,

 school_date SMALLDATETIME,

 names VARCHAR(20))

Data can now be entered into the birthdate and school_date columns, which are both SMALLDATETIME columns, and into the names column. Inserting dates is usually done by using an implicit conversion of character strings to dates. Following would be an example of an INSERT into DateTable:

 INSERT INTO DateTable

 VALUES ('10-oct-01', '12/01/2006', 'Mala Sinha')

You will get:

 (1 row(s) affected)

Note that single quotes are required around date values. As SMALLDATETIME is not really a character column, the character strings representing date are implicitly converted provided that the character string is in a form recognizable by SQL Server.

Now if you type:

 SELECT *

 FROM DateTable

The following appears in the DateTable table:

 birthdate school_date names

 --------------------- ----------------------- --------------------

 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha

 (1 row(s) affected)

The DateTable table has not been created for you. Create it and insert the following data into it:

 birthdate school_date names

 ----------------------- ----------------------- ------------------

 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha

 2002-02-02 00:00:00 2006-03-02 00:00:00 Mary Spencer

 2002-10-02 00:00:00 2005-02-04 00:00:00 Bill Cox

 1998-12-29 00:00:00 2004-05-05 00:00:00 Jamie Runner

 1999-06-16 00:00:00 2003-03-03 00:00:00 Seema Kapoor

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.2]

5.6.2. Default Date Formats and Changing Date Formats

[bookmark: IDX-CHP-5-0339]

[bookmark: IDX-CHP-5-0340]

[bookmark: IDX-CHP-5-0341]

[bookmark: IDX-CHP-5-0342]

[bookmark: IDX-CHP-5-0343]

By default, SQL Server 2005 reads and displays the dates in the yyyy/mm/dd format. We can change the format in which SQL Server reads in dates by using SET DATEFORMAT. DATEFORMAT controls only how SQL Server 2005 interprets date constants that are entered by you, but does not control how date values are displayed. For example, to have SQL Server 2005 first read the day, then month, and then year, we would type:

 SET DATEFORMAT dmy

 SELECT 'Format is yyyy/mon/dd' = CONVERT(datetime, '10/2/2003')

And we will get:

 Format is yyyy/mon/dd

 2003-02-10 00:00:00.000

 (1 row(s) affected)

In SQL Server 2005, if incorrect dates are used, we will get an out-of-range error. For example, if we tried to do the following insert with the 32nd day of a month:

 INSERT INTO DateTable

 VALUES ('10-oct-01', '32/01/2006', 'Mita Sinha')

We would get the following error message:

 Msg 296, Level 16, State 3, Line 1

 The conversion of char data type to smalldatetime data type resulted in an out-of-

 range smalldatetime value.

 The statement has been terminated.

In SQL Server 2005, if two-digit year dates are entered, SQL Server 2005's default behavior is to interpret the year as 19yy if the value is greater than or equal to 50 and as 20yy if the value is less than 50.

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3]

5.6.3. Date Functions

In this section we discuss some useful SQL Server 2005 date functions--DATEADD,[bookmark: IDX-CHP-5-0344]

[bookmark: IDX-CHP-5-0345]

 DATEDIFF, DATEPART, YEAR, MONTH, DAY, and GEtdATE.

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.1]

5.6.3.1. The DATEADD function

[bookmark: IDX-CHP-5-0346]

The DATEADD function produces a date by adding a specified number to a specified part of a date.

						[image:]			The date parts are: dd for day, mm for month, and yy for year.

The format for the DATEADD function is:

 DATEADD(datepart, number, date_field)

datepart would be either dd, mm, or yy. number would be the number that you want to add to the datepart. date_field would be the date field that you want to add to.

For example, to add 2 days to the birthdate of every person in DateTable we would type:

 SELECT names, 'Add 2 days to birthday' = DATEADD(dd, 2, birthdate)

 FROM Datetable

This query would give:

 names Add 2 days to birthday

 -------------------- -----------------------

 Mala Sinha 2001-10-12 00:00:00

 Mary Spencer 2002-02-04 00:00:00

 Bill Cox 2002-10-04 00:00:00

 Jamie Runner 1998-12-31 00:00:00

 Seema Kapoor 1999-06-18 00:00:00

 (5 row(s) affected)

You can also subtract two days from the birthdate of every person in DateTable by adding a -2 (minus or negative 2) instead of a positive 2, as shown by the following query:

 SELECT names, 'Add 2 days to birthday' = DATEADD(dd, -2, birthdate)

 FROM Datetable

This query would give:

 names Add 2 days to birthday

 -------------------- -----------------------

 Mala Sinha 2001-10-08 00:00:00

 Mary Spencer 2002-01-31 00:00:00

 Bill Cox 2002-09-30 00:00:00

 Jamie Runner 1998-12-27 00:00:00

 Seema Kapoor 1999-06-14 00:00:00

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.2]

5.6.3.2. The DATEDIFF function

[bookmark: IDX-CHP-5-0347]

[bookmark: IDX-CHP-5-0348]

[bookmark: IDX-CHP-5-0349]

The DATEDIFF function returns the difference between two parts of a date. The format for the DATEDIFF function is:

 DATEDIFF(datepart, date_field1, date_field2)

Here again, datepart would be either dd, mm, or yy. And, date_field1 and date_field2 would be the two date fields that you want to find the difference between.

For example, to find the number of months between the two fields, birthdate and school_date of every person in DateTable, we would type:

 SELECT names, 'Months between birth date and school date' = DATEDIFF(mm, birthdate,

 school_date)

 FROM Datetable

This query would give:

 names Months between birth date and school date

 -------------------- ---

 Mala Sinha 62

 Mary Spencer 49

 Bill Cox 28

 Jamie Runner 65

 Seema Kapoor 45

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.3]

5.6.3.3. The DATEPART function

[bookmark: IDX-CHP-5-0350]

[bookmark: IDX-CHP-5-0351]

[bookmark: IDX-CHP-5-0352]

[bookmark: IDX-CHP-5-0353]

The DATEPART function returns the specified part of the date requested. The format for the DATEPART function is:

 DATEPART(datepart, date_field)

Here too, datepart would be either dd, mm, or yy. And, date_field would be the date field that you want to request the dd, mm, or yy from.

For example, to find year from the birthdate of every person in DateTable we would type:

 SELECT names, 'YEARS' = DATEPART(yy, birthdate)

 FROM Datetable

This query would give:

 names YEARS

 -------------------- -----------

 Mala Sinha 2001

 Mary Spencer 2002

 Bill Cox 2002

 Jamie Runner 1998

 Seema Kapoor 1999

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.4]

5.6.3.4. The YEAR function

[bookmark: IDX-CHP-5-0354]

[bookmark: IDX-CHP-5-0355]

The YEAR(column) function will extract the year from a value stored as a SMALLDATETIME data type. For example, to extract the year from the school_date column of every person in DateTable, type:

 SELECT names, YEAR(school_date) AS [Kindergarten Year]

 FROM Datetable

This query produces the following output:

 names Kindergarten Year

 -------------------- -----------------

 Mala Sinha 2006

 Mary Spencer 2006

 Bill Cox 2005

 Jamie Runner 2004

 Seema Kapoor 2003

 (5 row(s) affected)

We can also use the YEAR function in date calculations. For example, if you want to find the number of years between when a child was born (birthdate) and when the child went to kindergarten (the school_date column) from DateTable, type the following query:

 SELECT names, YEAR(school_date)-YEAR(birthdate) AS [Age in Kindergarten]

 FROM DateTable

This query produces the following output:

 names Age in Kindergarten

 -------------------- -------------------

 Mala Sinha 5

 Mary Spencer 4

 Bill Cox 3

 Jamie Runner 6

 Seema Kapoor 4

 (5 row(s) affected)

Here, the YEAR(birthdate) was subtracted from YEAR(school_date).

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.5]

5.6.3.5. The MONTH function

[bookmark: IDX-CHP-5-0356]

[bookmark: IDX-CHP-5-0357]

[bookmark: IDX-CHP-5-0358]

[bookmark: IDX-CHP-5-0359]

The MONTH function will extract the month from a date. Then, to add six months to the birth month of every person in DateTable, we can first extract the month by MONTH(birthdate), and then add six to it, as shown here:

 SELECT names, birthdate, MONTH(birthdate) AS [Birth Month], ((MONTH(birthdate)) + 6)

 AS [Sixth month]

 FROM DateTable

This query produces the following output:

 names birthdate Birth Month Sixth month

 ------------------ ----------------------- ----------- -----------

 Mala Sinha 2001-10-10 00:00:00 10 16

 Mary Spencer 2002-02-02 00:00:00 2 8

 Bill Cox 2002-10-02 00:00:00 10 16

 Jamie Runner 1998-12-29 00:00:00 12 18

 Seema Kapoor 1999-06-16 00:00:00 6 12

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.6]

5.6.3.6. The DAY function

[bookmark: IDX-CHP-5-0360]

[bookmark: IDX-CHP-5-0361]

The DAY function extracts the day of the month from a date. For example, to find the day from the birthdate of every person in DateTable, type the following query:

 SELECT names, birthdate, DAY([birthdate]) AS [Date]

 FROM DateTable

which produces the following output:

 names birthdate Date

 -------------------- ----------------------- -----------

 Mala Sinha 2001-10-10 00:00:00 10

 Mary Spencer 2002-02-02 00:00:00 2

 Bill Cox 2002-10-02 00:00:00 2

 Jamie Runner 1998-12-29 00:00:00 29

 Seema Kapoor 1999-06-16 00:00:00 16

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.7]

5.6.3.7. The GETDATE function

[bookmark: IDX-CHP-5-0362]

[bookmark: IDX-CHP-5-0363]

[bookmark: IDX-CHP-5-0364]

The GEtdATE function returns the current system date and time.

For example:

 SELECT 'Today ' = GETDATE()

will give:

 Today

 2006-01-17 23:17:52.340

 (1 row(s) affected)

To find the number of years since everyone's birthdate entered in our Datetable, and the current date, we could type:

 SELECT names, 'Number of years ' = DATEDIFF(yy, birthdate, GETDATE())

 FROM Datetable

This query will give us:

 names Number of years

 -------------------- ----------------

 Mala Sinha 5

 Mary Spencer 4

 Bill Cox 4

 Jamie Runner 8

 Seema Kapoor 7

 (5 row(s) affected)

[bookmark: learnsqlsvr05-CHP-5-SECT-6.3.8]

5.6.3.8. Inserting the current date and time

Using the GETDATE() function, we can insert or update the current date and time into a column. To illustrate this, we will add a new record (row) to our DateTable, inserting the current date and time into the birthdate column of this row using the GETDATE() function, and then add five years to the current date for the school_date column of this new row. So type:

 INSERT INTO DateTable

 VALUES (GETDATE(), GETDATE()+YEAR(5), 'Piyali Saha')

Then type:

 SELECT *

 FROM DateTable

This query produces the following output (note the insertion of the sixth row):

 birthdate school_date names

 --------------------- --------------------- ------------------

 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha

 2002-02-02 00:00:00 2006-03-02 00:00:00 Mary Spencer

 2002-10-02 00:00:00 2005-02-04 00:00:00 Bill Cox

 1998-12-29 00:00:00 2004-05-05 00:00:00 Jamie Runner

 1999-06-16 00:00:00 2003-03-03 00:00:00 Seema Kapoor

 2006-01-17 23:19:00 2011-04-01 23:19:00 Piyali Saha

 (6 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-7]

5.7. Summary

This chapter provided an overview of the functions available in SQL Server 2005. In this chapter, we looked at several of SQL Server 2005's aggregate, row-level and other functions. We also presented conversion as well as date functions.

[bookmark: learnsqlsvr05-CHP-5-SECT-7.1]

5.7.1. Table of Functions

			Aggregate Functions

			AVG

			Averages a group of row values.

			COUNT

			Counts the total number of rows in a result set.

			MAX

			Returns the highest of all values from a column.

			MIN

			Returns the lowest of all values from a column.

			SUM

			Adds all the values in a column.

			Row-level Functions

			ABS

			Returns an absolute value.

			CEILING

			Returns the next larger integer value.

			FLOOR

			Returns the next lower integer value.

			ISNULL

			Returns a true value if a data item contains a NULL.

			NULLIF

			Returns a NULL if a certain condition is met in an expression.

			ROUND

			Rounds numbers to a specified number of decimal places.

			STR

			Converts from a number to a character data type.

			SQRT

			Returns the square root of positive numeric values.

			SQUARE

			Returns the square of a number.

			String Functions

			CHARINDEX

			Returns the starting position of a specified pattern.

			LEFT

			Returns the left portion of a string up to a given number of characters.

			LEN

			Returns the length of a string.

			LIKE

			Option that matches a particular pattern.

			LOWER

			Converts a string to lower case.

			RIGHT

			Returns the right portion of a string.

			RTRIM

			Removes blanks from the right end of a string.

			SUBSTRING

			Returns part of a string.

			UPPER

			Displays all output in upper case.

			Date Functions

			DATEADD

			Adds to a specified part of a date.

			DATEDIFF

			Returns the difference between two dates.

			DATEPART

			Returns the specified part of the date requested.

			DAY

			Extracts a day from a date.

			GEtdATE

			Returns the current system date and time.

			MONTH

			Extracts the month from a date.

			SET DATEFORMAT

			Changes the format in which SQL Server reads in dates.

			YEAR

			Extracts the year from a date.

			Conversion Functions

			CAST

			Changes a data type of a column in a result set.

			CONVERT

			Explicitly converts to a given data type in a result set.

			Other Functions

			DISTINCT

			Omits rows that contain duplicate data.

			PERCENT

			Return a certain percentage of records that fall at the top of a range specified.

			TOP

			Returns a specified number of records from the top of a result set.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-8]

5.8. Review Questions

			What are functions?

			What are aggregate functions? Give examples of aggregate functions. What is another term for an aggregate function?

			What are row-level functions? Give examples of row-level functions.

			Is COUNT an aggregate function or a row-level function? Explain why. Give at least one example of when the COUNT function may come in handy. Does the COUNT function take nulls into account?

			Is AVG an aggregate function or a row-level function?

			What is the NULLIF function? Explain.

			How are ties handled in SQL Server?

			How does the DISTINCT function work?

			Are string functions (for example, SUBSTRING, RIGHT, LTRIM) aggregate functions or row-level functions?

			What is the SUBSTRING function used for?

			What is the CHARINDEX function used for?

			What function would you use to find the leftmost characters in a string?

			What are the LTRIM/RTRIM functions used for?

			What function would produce the output in all lowercase?

			What function would you use to find the length of a string?

			What characters or symbols are most commonly used as wildcard characters in SQL Server 2005?

			What is the concatenation operator in Server SQL 2005?

			What does the YEAR function do?

			What does the MONTH function do?

			What does the GEtdATE function do?

			What will the following query produce in SQL Server 2005?

 SELECT ('.....'+ names) AS [names]

 FROM Employee

			Does Server SQL allow an expression like COUNT(DISTINCT column_name)?

			How is the ISNULL function different from the NULLIF function?

			What function would you use to round a value to three decimal places?

			Which functions can the WITH TIES option be used with?

			What clause does the WITH TIES option require?

			What is the default date format in SQL Server 2005?

			How do dates have to be entered in Server SQL 2005?

			What function is used to convert between data types?

			What function is useful for formatting numbers?

			What function is useful for formatting dates?

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5-SECT-9]

5.9. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			Display the COUNT of tuples (rows) in each of the tables Grade_report, Student, and Section. How many rows would you expect in the Cartesian product of all three tables? Display the COUNT (not the resulting rows) of the Cartesian product of all three and verify your result (use SELECT COUNT(*) ...).

			Display the COUNT of section-ids from the Section table. Display the COUNT of DISTINCT section-ids from the Grade_report table. What does this information tell you? (Hint: section_id is the primary key of the Section table.)

			Write, execute, and print a query to list student names and grades (just two attributes) using the table alias feature. Restrict the list to students that have either As or Bs in courses with ACCT prefixes only.

Here's how to complete this problem:

			Get the statement to work as a COUNT of a join of the three tables, Student, Grade_report, Section. Use table aliases in the join condition. Note that a join of n tables requires (n - 1) join conditions, so here you have to have two join conditions: one to join the Student and Grade_report tables, and one to join the Grade_report and Section tables. Note the number of rows that you get (expect no more rows than is in the Grade_report table). Why do you get this result?

			Modify the query and put the Accounting condition in the WHERE clause. Note the number of rows in the resultit should be a good bit less than in question 3a.

			Again, modify the query and add the grade constraints. The number of rows should decrease again. Note that if you have WHERE x and y or z, parentheses are optional, but then the criteria will be interpreted according to precedence rules.

The reason that we want you to "start small" and add conditions is that it gives you a check on what you ought to get and it allows you to output less nonsense. Your minimal starting point should be a count of the join with appropriate join conditions.

			Using the Student table, answer the following questions:

			How many students have names like Smith?

			How many have names that contain the letter sequence Smith?

			How many student names end in LD?

			How many student names start with S?

			How many student names do not have "i" as the second letter?

			Would SELECT * FROM Student WHERE sname LIKE 'Smith%' find someone whose name is:

			LA SMITH

			SMITH-JONES

			SMITH JR.

			SMITH, JR

			Using the Course table, answer the following questions:

			List the junior-level COSC courses (LIKE COSC3xxx) and the name of the courses.

			List all the courses except the junior-level COSC courses (use NOT LIKE).

			Using the COUNT feature, determine whether there are duplicate names or student numbers in the Student table.

			Assume that all math courses start with MATH. How many math courses are there in the Section table? From the count of courses, does it appear that there any math courses in the Section table that are not in the Course table? Again, using COUNTs, are there any math courses in the Course table that are not in the Section table? Does it appear that there are any courses at all that are in the Grade_report, Section, or Course tables that are not in the others? (We will study how to ask these questions in SQL in a later chapter.) Note that a query like the following would not work:

 SELECT g.section_id

 FROM Grade_report g, Section t

 WHERE g.section_id <> t.section_id

Explain why WHERE .. <> .. will not work to produce the desired output.

			For every table in the Student_course database, we would like to compile the following information: attributes, number of rows, number of distinct rows, and rows without nulls. Find this information using different queries and compile the information in a table as shown here:

			Table

			Attribute

			Rows

			Distinct Rows

			Rows without Nulls

			Student

			Stno

			48

			48

			48

			 			Sname

			48

			47

			48

			 			Major

			48

			8

			

			 			Class

			etc.

			etc.

			etc.

			Section

			Section_id

			etc.

			etc.

			etc.

The other tables in the Student_course database are Grade_report, Dependent, Section, Room, Course, Prereq, and Department_to_major.

Hint: You can use the following query:

 SELECT COUNT(*)

 FROM Student

 WHERE sname IS NULL

			Find the count, sum, average, minimum, and maximum capacity of rooms in the database. Format the output using the STR function.

			Where there is a null value for the capacity, assume the capacity to be 40, and find the average room size again.

			Using the Student table, display the first 10 rows with an appended initial. For the appended initial, choose the halfway letter of the name, so that if a name is Evans, the initial is A (half of the length +1). If the name is Conway, the initial is W (again, (half of the length +1)). You do not need to round up or down, just use (LEN(Name)/2)+1 as the starting place to create the initial. Use appropriate column aliases. Your result should look like this (actual names may vary depending on the current database):

 PERSON# NAMES

 --------- ------------------------

 1 Lineas, E.

 2 Mary, R.

 3 Brenda, N.

 4 Richard, H.

 5 Kelly, L.

 6 Lujack, A.

 7 Reva, V.

 8 Elainie, I.

 9 Harley, L.

 10 Donald, A.

			Display the preceding output in all capital letters.

			Find the names of the bottom 50 percent of the students, ordered by grade.

			Find the names of the top 25 percent of the seniors, ordered by grade.

			Now use the WITH TIES option with part (b). Is there any difference in the output?

			Count the number of courses taught by each instructor.

			Count the number of distinct courses taught by each instructor.

			Count the number of classes each student is taking.

			Display all the names that are less than five characters long from the Student table.

			List all the students with student numbers in the 140s range.

			Find all the students (the student names should be listed only once) who received As and Bs.

			Would you call TOP an aggregate function? Why or why not?

			Add an asterisk (*) to the names of all juniors and seniors who received at least one A. (This question will take a few steps, and you will have to approach this problem in a step-by-step manner.)

			In this chapter, we used a table called Employee. Add a birthdate column and an employment_date column to the Employee table. Insert values into both the columns.

			Display the current ages of all the employees.

			Find the youngest employee.

			Find the oldest employee.

			Find the youngest employee at the time of employment.

			Find the oldest employee at the time of employment.

			Add five years to the current ages of all employees. Will any of the employees be over 65 in five years?

			List the birth months and names of all employees.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-5]

Chapter 5. Functions

Functions are preprogrammed mini-programs that perform a certain task. As with mathematics, functions[bookmark: IDX-CHP-5-0252]

 transform values into another result. SQL Server 2005 has a wide range of built-in functions to carry out various tasks. In this chapter, we introduce several of SQL Server 2005's useful built-in functions, which can be divided into row-level functions, aggregate functions, and other special functions. Row-level functions operate on a row at a time, whereas aggregate functions operate on many rows at once.

In SQL Server, we can group the row-level functions into four types: numeric functions, string functions, conversion functions, and date functions. Numeric functions are used for calculations. An example of a numeric function is the SQUARE function, which would return the square (a row at a time) of every number (row) of a particular column. String functions are used to manipulate strings in a particular column (again, one row at a time). An example of a string function is SUBSTRING, which extracts characters from a string. Conversion functions are used to convert a particular column (a row at a time) from one data type to another. And, date functions (created using the DATETIME data type) operate on a particular data column or attribute, a row at a time. Date functions are also considered fundamental to the operations of a database.

The second category of functions that we will discuss is aggregate functions. Aggregate functions provide a one-number result after calculations based on multiple rows. Examples of aggregate functions are MIN or AVG, which stand for the minimum or average, respectively, and return the minimum or average value respectively, of multiple rows of a particular column.

The third category of functions that we will discuss is a special class of "other" functions. These other functions produce a smaller subset of rows from multiple rows. Example of these other kind of functions would be the DISTINCT function or the TOP function, both of which produce a smaller subset of rows from the complete set.

Note that most of the functions discussed in this chapter are placed in a SELECT statement, and so they are "read-only" or "display-only" functions. Any SELECT statement function will not change the underlying data in the database. To change the underlying data in a database, UPDATE (instead of SELECT) would have to be used (as shown in Chapter 3).

We begin the chapter by discussing aggregate functions. We discuss row-level functions later in the chapter.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-1]

6.1. Query Development

Queries are sometimes developed after some initial experimentation, yet other times they are the result of modifying previously stored queries. The best way to understand how the query building process works is to look at an example. Suppose we want to find the names of all students in the Student_course database who major in computer science (COSC) and have earned a grade of B in some course. To do so, we can follow these steps:

			Type the following query to find students who major in computer science:

 SELECT *

 FROM Student

 WHERE major = 'COSC'

This query produces the following 10 rows of output:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 3 Mary COSC 4 1978-07-16 00:00:00

 5 Zelda COSC NULL 1978-02-12 00:00:00

 8 Brenda COSC 2 1977-08-13 00:00:00

 14 Lujack COSC 1 1977-02-12 00:00:00

 17 Elainie COSC 1 1976-08-12 00:00:00

 31 Jake COSC 4 1978-02-12 00:00:00

 121 Hillary COSC 1 1977-07-16 00:00:00

 128 Brad COSC 1 1977-09-10 00:00:00

 130 Alan COSC 2 1977-07-16 00:00:00

 142 Jerry COSC 4 1978-03-12 00:00:00

 (10 row(s) affected)

			To find the student rows in the preceding output who have earned a B in a course, we first need to add the Grade_report table, shown in Figure 6-1, with a join (to get the grades of those students who are computer science majors).

[bookmark: learnsqlsvr05-CHP-6-FIG-1]

Figure 6-1. Table definition of the Grade_report table

[image:]

The join query now looks like (note the choice of columns in the SELECT statement, so that we can see the student names, majors, sections and grades):

SELECT stu.sname, stu.major, g.section_id, g.grade

FROM Student stu, Grade_report g

WHERE stu.major = 'COSC'

 AND stu.stno = g.student_number

This query produces 48 rows of output (of which we show the first 20 rows):

sname major section_id grade

-------------------- ----- ---------- -----

Mary COSC 85 A

Mary COSC 87 B

Mary COSC 90 B

Mary COSC 91 B

Mary COSC 92 B

Mary COSC 96 B

Mary COSC 101 NULL

Mary COSC 133 NULL

Mary COSC 134 NULL

Mary COSC 135 NULL

Zelda COSC 90 C

Zelda COSC 94 C

Zelda COSC 95 B

Brenda COSC 85 A

Brenda COSC 92 A

Brenda COSC 94 C

Brenda COSC 95 B

Brenda COSC 96 C

Brenda COSC 102 B

Brenda COSC 133 NULL

.

.

.

(48 row(s) affected)

			To add the condition for Bs, we need to add another AND clause in the WHERE condition, by adding a fifth line to the query:

SELECT stu.sname, major, section_id, grade

FROM Student stu, Grade_report g

WHERE stu.major = 'COSC'

 AND stu.stno = g.student_number

 AND g.grade = 'B'

This query produces the following 14 rows of output:

sname major section_id grade

-------------------- ----- ---------- -----

Mary COSC 87 B

Mary COSC 90 B

Mary COSC 91 B

Mary COSC 92 B

Mary COSC 96 B

Zelda COSC 95 B

Brenda COSC 95 B

Brenda COSC 102 B

Lujack COSC 102 B

Lujack COSC 145 B

Lujack COSC 158 B

Hillary COSC 90 B

Hillary COSC 94 B

Hillary COSC 95 B

(14 row(s) affected)

			To get only the student names from the preceding output, we reduce the result set by typing:

SELECT stu.sname

FROM Student stu, Grade_report g

WHERE stu.major = 'COSC'

 AND stu.stno = g.student_number

 AND g.grade = 'B'

This query produces the following output, a list of all the students who are majoring in COSC and received a grade of B:

sname

Mary

Mary

Mary

Mary

Mary

Zelda

Brenda

Brenda

Lujack

Lujack

Lujack

Hillary

Hillary

Hillary

(14 row(s) affected)

The point of this process is that it allows us to test as we go, verify that the query works up to that point, and ensure that we have a reasonable result before we move to the next enhancement.

			To get the answer in a more reasonable "easy-to-read" orderly manner, a final presentation using DISTINCT (to find the distinct names) and ORDER BY (to order by names) could be added to the query, as follows:

SELECT DISTINCT(stu.sname)

FROM Student stu, Grade_report g

WHERE stu.major = 'COSC'

 AND stu.stno = g.student_number

 AND g.grade = 'B'

 ORDER BY stu.sname

which would give:

sname

Brenda

Hillary

Lujack

Mary

Zelda

(5 row(s) affected)

But note that the DISTINCT and ORDER BY do not have to be used together. When the DISTINCT is used, the ORDER BY is not necessary. DISTINCT automatically orders the result set. So writing the previous query without the ORDER BY clause would give you the same output. Try it.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-2]

6.2. Parentheses in SQL Expressions

[bookmark: IDX-CHP-6-0366]

[bookmark: IDX-CHP-6-0367]

As queries get longer, they can become very ambiguous to humans without the appropriate use of parentheses. In programming languages like C, you can write a statement like this:

 x = y + z * w

How is this statement computed? The answer depends on precedence rules. Usually in programming languages (and in SQL), clauses in parentheses have the highest precedence. The authors of this book advocate fully parenthesized expressions for three reasons:

			It makes the expression easier to debug.

			It tells anyone else who looks at your expression that it is written as you intended, because you explicitly and unambiguously wrote the expression in a fully parenthesized way.

			There is no guarantee that another SQL language will behave like the one you learned.

In SQL, the precedence problem occurs when AND and OR are used in the same query. For example, what does the following query request? Does AND or OR have precedence or is the rule "left to right"?

 SELECT *

 FROM Student

 WHERE class = 3 OR class = 4 AND stno < 100

This query produces the following 12 rows of output:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 3 Mary COSC 4 1978-07-16 00:00:00

 13 Kelly MATH 4 1980-08-12 00:00:00

 20 Donald ACCT 4 1977-10-15 00:00:00

 24 Chris ACCT 4 1978-02-12 00:00:00

 31 Jake COSC 4 1978-02-12 00:00:00

 49 Susan ENGL 3 1980-03-11 00:00:00

 62 Monica MATH 3 1980-10-14 00:00:00

 122 Phoebe ENGL 3 1980-04-15 00:00:00

 131 Rachel ENGL 3 1980-04-15 00:00:00

 143 Cramer ENGL 3 1980-04-15 00:00:00

 151 Losmith CHEM 3 1981-01-15 00:00:00

 160 Gus ART 3 1978-10-15 00:00:00

 (12 row(s) affected)

The point is that you do not have to know the precedence rules to write an unambiguous expression. If you use parentheses appropriately, you make the expression clear and unambiguous. Consider the following examples. If we type the following:

 SELECT *

 FROM Student

 WHERE class = 3 OR (class = 4 AND stno < 100)

we get the following 12 rows of output:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 3 Mary COSC 4 1978-07-16 00:00:00

 13 Kelly MATH 4 1980-08-12 00:00:00

 20 Donald ACCT 4 1977-10-15 00:00:00

 24 Chris ACCT 4 1978-02-12 00:00:00

 31 Jake COSC 4 1978-02-12 00:00:00

 49 Susan ENGL 3 1980-03-11 00:00:00

 62 Monica MATH 3 1980-10-14 00:00:00

 122 Phoebe ENGL 3 1980-04-15 00:00:00

 131 Rachel ENGL 3 1980-04-15 00:00:00

 143 Cramer ENGL 3 1980-04-15 00:00:00

 151 Losmith CHEM 3 1981-01-15 00:00:00

 160 Gus ART 3 1978-10-15 00:00:00

 (12 row(s) affected)

The preceding query has the parentheses around the AND clause, the result of which is that the AND is performed first. The following query has the parentheses around the OR clause, meaning that the OR is performed first:

 SELECT *

 FROM Student

 WHERE (class = 3 OR class = 4) AND stno < 100

This query results in the following seven rows of output:

 STNO SNAME MAJOR CLASS BDATE

 ------ -------------------- ----- ------ -----------------------

 3 Mary COSC 4 1978-07-16 00:00:00

 13 Kelly MATH 4 1980-08-12 00:00:00

 20 Donald ACCT 4 1977-10-15 00:00:00

 24 Chris ACCT 4 1978-02-12 00:00:00

 31 Jake COSC 4 1978-02-12 00:00:00

 49 Susan ENGL 3 1980-03-11 00:00:00

 62 Monica MATH 3 1980-10-14 00:00:00

 (7 row(s) affected)

As the preceding two query statements demonstrate, appropriate placement of parentheses eliminates any ambiguity in queries that contain both AND and OR.

[bookmark: learnsqlsvr05-CHP-6-SECT-2.1]

6.2.1. Operator Precedence

[bookmark: IDX-CHP-6-0368]

[bookmark: IDX-CHP-6-0369]

[bookmark: IDX-CHP-6-0370]

In SQL Server 2005, when complex expressions use multiple operators, precedence rules determine the sequence in which the operations are performed. The order of execution can significantly affect the resulting value (as you saw in the example in the preceding section). Although we can usually control precedence with parentheses, it is important to learn, or have at least a reference, to the order of precedence.

Operators have the following precedence (the following list is shown from the highest level of precedence to the lowest level of precedence):

 * (multiply), / (divide), % (modulo)

 + (add), + (concatenate), - (subtract)

 =, >, <, >=, <=, != (not equal to), !>, !<

 NOT

 AND

 BETWEEN, IN, LIKE, OR

 = (assignment)

[bookmark: learnsqlsvr05-CHP-6-SECT-2.2]

6.2.2. Data Type Precedence

[bookmark: IDX-CHP-6-0371]

[bookmark: IDX-CHP-6-0372]

[bookmark: IDX-CHP-6-0373]

When an operator combines two expressions of different data types, the data type precedence rules specify which data type is converted to the other. The data type with the lower precedence is converted to the data type with the higher precedence. Here we list the precedence order for SQL Server 2005 data types (again shown from the highest level of precedence to the lowest level of precedence):

			SQL_VARIANT

			DATETIME

			SMALLDATETIME

			FLOAT

			REAL

			DECIMAL

			MONEY

			SMALLMONEY

			BIGINT

			INT

			SMALLINT

			TINYINT

			BIT

			NTEXT

			TEXT

			IMAGE

			UNIQUEIDENTIFIER

			NVARCHAR

			NCHAR

			VARCHAR

			CHAR

			BINARY

This order means that if a number of an INT data type is multiplied to a number that is of a FLOAT data type, the result would be a FLOAT data type. To illustrate something like this, we will use the Employee table that we created in the last chapter. The design of the Employee table is shown in Figure 6-2.

Note that the data type of the hours column is SMALLINT. If we multiply this column (hours) by 0.75 (a FLOAT), we get a FLOAT data type in the result set, as shown here:

 SELECT names, hours, 'Hours * .75' = hours * .75

 FROM Employee

[bookmark: learnsqlsvr05-CHP-6-FIG-2]

Figure 6-2. Table definition of the Employee table

[image:]

This query gives us:

 names hours Hours * .75

 -------------------- ------ --------------------------------------

 Sumon Bagui 40 30.00

 Sudip Bagui 30 22.50

 Priyashi Saha NULL NULL

 Ed Evans 10 7.50

 Genny George 40 30.00

 (5 row(s) affected)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-3]

6.3. Derived Structures

Derived structures may become necessary as the queries we build get larger and we have to use a more step-by-step approach to find a result. Derived structures help us to build queries on top of other queries. In this section, we discuss two of the most commonly used derived structuresviews[bookmark: IDX-CHP-6-0374]

[bookmark: IDX-CHP-6-0375]

 and temporary tables.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1]

6.3.1. Views

In SQL, a view (also called a virtual table) is a mechanism to procure a restricted subset of data that is accessible in ways akin to ordinary tables. We use the word "akin" because some operations on views (such as some updates and deletes) may be restricted which otherwise would be allowed if performed on the underlying structure itself.

A view serves several purposes:

			It helps to develop a query step by step.

			It can be used to restrict a set of users from seeing part of the database in a multiuser systemthis can be considered a security feature.

			Views provide a layer of abstraction to data, facilitating backward compatibility and horizontal and vertical partitioning of data.

			Views provide a seamless way to combine data from multiple sources.

			Views do not occupy much disk space, as they have no data of their own.

			When you use a view for queries, you use it just as you would use the underlying table(s).

			Views can be used to create other views or queries.

						[image:]			Views are typically a way of building queries on top of other queries.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.1]

6.3.1.1. Creating views

[bookmark: IDX-CHP-6-0376]

[bookmark: IDX-CHP-6-0377]

A view can be regarded as a named SELECT statement that produces a result set (a view) that you can further work on. The SELECT statement that is used to create a view can be from one or more underlying tables or from other views in the current or other databases.

The general SQL syntax used to create a view is:

 CREATE VIEW view_name AS

 SELECT ...

The following example creates a view called namemaj, which is a view of students' names and majors from the Student table. To create the view namemaj, type the following in the SQL query editor screen:

 CREATE VIEW namemaj AS

 SELECT sname, major

 FROM Student

And then execute this query in the regular way. A view will be created.

You will get the following message:

 Command(s) completed successfully.

To view namemaj, click on Views in the Object Explorer, and then click dbo.namemaj and then Columns, as shown in Figure 6-3.

[bookmark: learnsqlsvr05-CHP-6-FIG-3]

Figure 6-3. Viewing the view namemaj

[image:]

A view is a stored SELECT statement. Each time a view is accessed, the SELECT statement in the view is run.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.2]

6.3.1.2. Using views

The new view can be used just like a table in the FROM clause of any SELECT statement, as shown here:

 SELECT *

 FROM namemaj

This query will give 48 rows of output, of which we show the first 10 rows:

sname major

 -------------------- -----

 Lineas ENGL

 Mary COSC

 Zelda COSC

 Ken POLY

 Mario MATH

 Brenda COSC

 Romona ENGL

 Richard ENGL

 Kelly MATH

 Lujack COSC

 .

 .

 .

 (48 row(s) affected

Just like an ordinary table, a view can be filtered and used in a SELECT. For example, type the following query:

 SELECT n.major AS [Major], n.sname AS [Student Name]

 FROM namemaj AS n, Department_to_major AS d

 WHERE n.major = d.dcode

 AND d.dname LIKE 'COMP%'

which produces the following output:

 Major Student Name

 ----- --------------------

 COSC Mary

 COSC Zelda

 COSC Brenda

 COSC Lujack

 COSC Elainie

 COSC Jake

 COSC Hillary

 COSC Brad

 COSC Alan

 COSC Jerry

 (10 row(s) affected)

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.3]

6.3.1.3. ORDER BY in views

[bookmark: IDX-CHP-6-0378]

[bookmark: IDX-CHP-6-0379]

SQL Server 2005 does not allow you to use an ORDER BY when creating views[bookmark: IDX-CHP-6-0380]

. For example, if we try to create an ordered view called namemaj1, as follows:

 CREATE VIEW namemaj1 AS

 SELECT sname, major

 FROM Student

 ORDER BY sname

we will get the following error message:

 Msg 1033, Level 15, State 1, Procedure namemaj1, Line 4

 The ORDER BY clause[bookmark: IDX-CHP-6-0381]

 is invalid in views, inline functions, derived tables,

 subqueries, and common table expressions, unless TOP or FOR XML is also specified.

						[image:]			Some SQL languages, such as Oracle, allow the use of ORDER BY when creating views.

But an ORDER BY can be used in the FROM clause after the view has been created, as shown:

 SELECT *

 FROM namemaj

 ORDER BY major

This query produces 48 rows, of which we show the first 10 rows here:

 sname major

 -------------------- -----

 Smith NULL

 Thornton NULL

 Lionel NULL

 Sebastian ACCT

 Harrison ACCT

 Francis ACCT

 Donald ACCT

 Chris ACCT

 Gus ART

 Benny CHEM

 .

 .

 .

 (48 row(s) affected)

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.4]

6.3.1.4. SELECT INTO in views

[bookmark: IDX-CHP-6-0382]

[bookmark: IDX-CHP-6-0383]

[bookmark: IDX-CHP-6-0384]

[bookmark: IDX-CHP-6-0385]

You cannot use a SELECT INTO statement when creating a view, because it is a combined data definition language (DDL) and data manipulation language (DML) statement, as shown here:

 CREATE VIEW new_view AS

 SELECT * INTO new_view

 FROM Employee

You will get the following error message:

 Msg 156, Level 15, State 1, Procedure new_view, Line 2

 Incorrect syntax near the keyword 'INTO'.

You can, however, issue a SELECT INTO statement when the view is used in the FROM clause, as shown:

 CREATE VIEW new_view AS

 SELECT *

 FROM namemaj

 WHERE major = 'MATH'

You will get:

 Command(s) completed successfully.

And now if you type:

 SELECT * INTO copy_of_new_view

 FROM new_view

You will get:

 (7 row(s) affected)

Now if you type:

 SELECT *

 FROM copy_of_new_view

You will get the following 7 rows:

 sname major

 -------------------- -----

 Mario MATH

 Kelly MATH

 Reva MATH

 Monica MATH

 Sadie MATH

 Stephanie MATH

 Jake MATH

 (7 row(s) affected)

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.5]

6.3.1.5. Column aliases in views

[bookmark: IDX-CHP-6-0386]

[bookmark: IDX-CHP-6-0387]

[bookmark: IDX-CHP-6-0388]

[bookmark: IDX-CHP-6-0389]

Column aliases can be used instead of column names in views. For example, type the following to create a view called namemaj2 with column aliases[bookmark: IDX-CHP-6-0390]

:

 CREATE VIEW namemaj2 AS

 SELECT sname AS [name], major AS [maj]

 FROM Student

 WHERE major = 'COSC'

You will get:

 Command(s) completed successfully.

Then type:

 SELECT *

 FROM namemaj2

This query produces the following 10 rows of output, with the column aliases in the column headings:

 name maj

 -------------------- ----

 Mary COSC

 Zelda COSC

 Brenda COSC

 Lujack COSC

 Elainie COSC

 Jake COSC

 Hillary COSC

 Brad COSC

 Alan COSC

 Jerry COSC

 (10 row(s) affected)

To use the column aliases in a query, the name of the view or table alias (in this case, a view alias) has to precede the column alias, as shown in this query:

 SELECT namemaj2.[name], namemaj2.[maj]

 FROM namemaj2

 WHERE namemaj2.[name] LIKE 'J%'

This query produces the following output:

 name maj

 -------------------- ----

 Jake COSC

 Jerry COSC

 (2 row(s) affected)

The same query could also be written as follows, where n is the table (view) alias:

 SELECT n.[name], n.[maj]

 FROM namemaj2 AS n

 WHERE n.[name] LIKE 'J%'

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.6]

6.3.1.6. Data in views

[bookmark: IDX-CHP-6-0391]

[bookmark: IDX-CHP-6-0392]

[bookmark: IDX-CHP-6-0393]

A view consists of a set of named columns and rows of data, just like a real table; however, a view has no data of its own. Data is stored only in the underlying table used to create the view, and not in the view. The view stores only the SELECT statement (rather than the actual data), and data is dynamically produced from the underlying table when the view is used. Therefore, views depend on the underlying tables and act like a filter on the underlying tables.

When data in the original table is changed, the view is automatically updated. Therefore, the view is always up to date. And, when data is changed through a view, the original (underlying) table is also automatically updated.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.6.1]

6.3.1.6.1. Changing data in views

To demonstrate how changing data through a view automatically updates the original table, begin with the following Employee table, which we created and used in Chapter 5:

 names wage hours

 --------------- ------------ -----------

 Sumon Bagui 10.0000 40

 Sudip Bagui 15.0000 30

 Priyashi Saha 18.0000 NULL

 Ed Evans NULL 10

 Genny George 20.0000 40

 (5 row(s) affected)

			Create a view called Employee_view from the Employee table, as follows:

 CREATE VIEW Employee_view AS

 SELECT names

 FROM Employee

			To output the entire contents of the view, type the following query:

 SELECT *

 FROM Employee_view

which produces the following output:

 names

 Sumon Bagui

 Sudip Bagui

 Priyashi Saha

 Ed Evans

 Genny George

 (5 row(s) affected)

			To update the data in the view, Employee_view, type the following UPDATE query:

 UPDATE Employee_view

 SET names = 'Mala Saha'

 WHERE names LIKE 'Priya%'

You will get:

 (1 row(s) affected)

			Now, to view the contents of the view, Employee_view, type:

 SELECT *

 FROM Employee_view

This query now produces the following output (the third name has changed):

 names

 Sumon Bagui

 Sudip Bagui

 Mala Saha

 Ed Evans

 Genny George

 (5 row(s) affected)

			Then, view the contents of the underlying table by typing the following (and note that the third name of this table has changed too):

 SELECT *

 FROM Employee

This now gives:

 names wage hours

 --------------- ------------ -----------

 Sumon Bagui 10.0000 40

 Sudip Bagui 15.0000 30

 Mala Saha 18.0000 NULL

 Ed Evans NULL 10

 Genny George 20.0000 40

 (5 row(s) affected)

If a row were added or deleted from the view, Employee_view, the same change would also appear in the underlying table.

Therefore, when adding, changing, or deleting data in views, you should always be very careful, because you do not want to unintentionally change the original underlying table. Remember that a view may sometimes be only a partial section of a table.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.6.2]

6.3.1.6.2. Changing data in tables

If data is changed in the original table, such as our Employee table, the same data in all the views related to this underlying table also gets changed.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.1.7]

6.3.1.7. Deleting views

A view can be deleted with a DROP VIEW. For example, to delete the view called Employee_view, you would type:

 DROP VIEW Employee_view

You will get:

 Command(s) completed successfully.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.2]

6.3.2. Temporary Tables

In SQL Server 2005, temporary[bookmark: IDX-CHP-6-0394]

 tables reside in SQL Server 2005's default temporary database, tempdb. Every time that SQL Server 2005 is stopped and restarted, a brand new copy of tempdb is built. So temporary tables are automatically destroyed when the user who created them disconnects from SQL Server 2005.

Though temporary tables involve extra storage as well as extra programming effort, temporary tables are useful for doing work that requires multiple passes to avoid doing repetitive work. Temporary tables are useful for doing work on a "picture of the data" in the database. As the name implies, no permanent storage of the temporary structure is anticipated; when the use of the temporary data is over, the table is deleted. Data in temporary tables is static and not reflective of updates to the original table(s). As with views, temporary tables may also allow you to develop SQL queries in a step-by-step manner and may be used to simplify complex queries.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.2.1]

6.3.2.1. Creating temporary tables

[bookmark: IDX-CHP-6-0395]

In SQL Server 2005, temporary tables are created in the same way that permanent tables are created; that is, with a CREATE TABLE or a SELECT INTO statement; however, temporary table names must begin with either # or ##.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.2.1.1]

6.3.2.1.1. Creating local temporary tables

Local temporary tables are created with # in front of the table name and are visible only to the user who is currently connected to the database. They are deleted when the user disconnects from this instance of SQL Server. They are local to the session in which they are created. Thus they are not visible in any other session, not even to one from the same host or login.

You cannot have foreign key constraints on a temporary table.

						[image:]			We discuss foreign key constraints in Chapter 11.

The general SQL Server 2005 syntax for creating a local temporary table is:

 SELECT column_name, ..., column_name INTO #local_temporary_tablename

 FROM permanent_tablename

 WHERE...

As an example of how to create a local temporary table, #Temp1, type the following SELECT query:

 SELECT s.sname, s.stno, d.dname, s.class INTO #Temp1

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC';

You will get:

 (6 row(s) affected)

This query creates a local temporary table called #Temp1. You can use #Temp1 as a regular table for this session. To view the data in #Temp1, type the following:

 SELECT *

 FROM #Temp1

This query produces the following six rows of output:

 sname stno dname class

 -------------------- ----- ---------------- -----

 Brenda 8 Computer Science 2

 Lujack 14 Computer Science 1

 Elainie 17 Computer Science 1

 Hillary 121 Computer Science 1

 Brad 128 Computer Science 1

 Alan 130 Computer Science 2

 (6 row(s) affected)

You can view the local temporary table from the tempdb under Object Explorer. From the Object Explorer, click Databases, System Databases, tempdb, and then Temporary Tables. You will see the temporary table, #Temp1, as shown in Figure 6-4.

[bookmark: learnsqlsvr05-CHP-6-FIG-4]

Figure 6-4. Viewing the local temporary table from the Object Explorer

[image:]

As in Figure 6-4, in SQL Server 2005, the local temporary table that you create is appended by a system generated suffixa 12-digit number with leading zeros. The local temporary table name that you provide cannot be more than 116 characters, allowing 128 characters for the name of the local temporary table. This is done by SQL Server because SQL Server allows a number of sessions to create a local temporary table with the same name without the names colliding with each other.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.2.1.2]

6.3.2.1.2. Creating global temporary tables

Global temporary tables are created with a prefix of ##. Global temporary tables can be accessed by anyone who logs onto the database, as long as the creator of the global temporary table is still logged on. The global temporary table will be dropped automatically when the session that created it ends and when all other processes that reference it have stopped referencing it. Therefore, even though the process that created the table may have ended, if another process is still using it, then it will still be alive.

The general SQL Server syntax for creating a global temporary table is:

 SELECT column_name, ..., column_name INTO ##global_temporary_tablename

 FROM permanent_tablename

 WHERE...

As an example of how to create a global temporary table, type the following SELECT query:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp1

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC';

You will get:

 (6 row(s) affected)

This query creates a global temporary table called ##Temp1. You can use ##Temp1 as a regular table for this session. To view the data in ##Temp1, type the following:

 SELECT *

 FROM ##Temp1

You will get the same output given previously (for the local temporary table).

A global temporary table can also be viewed from the tempdb option of the Object Explorer. From the Object Explorer, click Databases, System Databases, tempdb, and then Temporary Tables, and you will see the global temporary table, ##Temp1, as shown in Figure 6-5.

[bookmark: learnsqlsvr05-CHP-6-FIG-5]

Figure 6-5. Viewing the global temporary table from the Object Explorer

[image:]

						[image:]			Unlike with views, updating data in local or global temporary tables does not change the data in the underlying original table.

You will note that, unlike the local temporary table, the global temporary table does not have a system generated suffix attached to the name of the global temporary table. In fact, when creating global temporary tables, you have to be careful that one with the same name does not already exist, so as to prevent collisions between tables in any one session. There can be only one instance of a global temporary table with any particular name.

For example, if you type the following query and try to create another global temporary called ##Temp1:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp1

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'MATH';

You will get the following error message:

 Msg 2714, Level 16, State 6, Line 1

 There is already an object named '##Temp1' in the database.

[bookmark: learnsqlsvr05-CHP-6-SECT-3.2.1.3]

6.3.2.1.3. Deleting temporary tables

If you want to delete a temporary table (local or global) before ending the session, you can use the DROP TABLE statement, just as you would to delete a permanent table.

For example, with the following query

 DROP TABLE ##Temp1

you will get this message:

 Command(s) completed successfully.

To view this change (drop), click on select Temporary Tables and then select Refresh, and you will see that the temporary table ##Temp1 no longer exists, as shown in Figure 6-6.

[bookmark: learnsqlsvr05-CHP-6-FIG-6]

Figure 6-6. Viewing the global temporary table from the Object Explorer

[image:]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-4]

6.4. Query Development with Derived Structures

In this section, we discuss how derived structures such as views and temporary tables can be used in query development.

To illustrate this process, we will list from our standard database, Student_course, the name, student number, and department name of students who are freshman or sophomores and computer science majors.

In Step 1, we will develop a query, and in Step 2, we will show how to use this query with derived structures. In Step 2, Option 1 shows how the query can be turned into a view, Option 2 shows how the query can be turned into an inline view, and Option 3 shows how the query can be used to create a temporary table.

[bookmark: learnsqlsvr05-CHP-6-SECT-4.1]

6.4.1. Step 1: Develop a Query Step by Step

[bookmark: IDX-CHP-6-0396]

[bookmark: IDX-CHP-6-0397]

			The first step is to see which columns we need and in which tables these columns are found. We need student names (sname) and numbers (stno), which are found in the Student table. Department names (dname) are found in the Department_to_major table. To find the department names that correspond to the student majors, we have to combine the Student and Department_to_major tables. To combine these two tables, we will join the tables where major from the Student table joins with the dcode from the Department_to_major table as follows (because the statements eventually will be filtered by class, we include class in the result set):

 SELECT s.sname, s.stno, d.dname, s.class

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

After you type the query and run it, you will get the following 45 rows of output:

 sname stno dname class

 -------------------- ------ -------------------- ------

 Lineas 2 English 1

 Mary 3 Computer Science 4

 Zelda 5 Computer Science NULL

 Ken 6 Political Science NULL

 Mario 7 Mathematics NULL

 Brenda 8 Computer Science 2

 Romona 9 English NULL

 Richard 10 English 1

 Kelly 13 Mathematics 4

 Lujack 14 Computer Science 1

 Reva 15 Mathematics 2

 Elainie 17 Computer Science 1

 Harley 19 Political Science 2

 Donald 20 Accounting 4

 Chris 24 Accounting 4

 Jake 31 Computer Science 4

 Lynette 34 Political Science 1

 Susan 49 English 3

 Monica 62 Mathematics 3

 Bill 70 Political Science NULL

 Hillary 121 Computer Science 1

 Phoebe 122 English 3

 Holly 123 Political Science 4

 Sadie 125 Mathematics 2

 Jessica 126 Political Science 2

 Steve 127 English 1

 Brad 128 Computer Science 1

 Cedric 129 English 2

 Alan 130 Computer Science 2

 Rachel 131 English 3

 George 132 Political Science 1

 Jerry 142 Computer Science 4

 Cramer 143 English 3

 Fraiser 144 Political Science 1

 Harrison 145 Accounting 4

 Francis 146 Accounting 4

 Smithly 147 English 2

 Sebastian 148 Accounting 2

 Losmith 151 Chemistry 3

 Genevieve 153 NULL NULL

 Lindsay 155 NULL 1

 Stephanie 157 Mathematics NULL

 Gus 160 Art 3

 Benny 161 Chemistry 4

 Jake 191 Mathematics 2

 (45 row(s) affected)

			To find all the freshmen and sophomores (class 1 and 2) from the Student table, add AND (s.class = 1 or s.class = 2) to the end of the previous query, as follows:

 SELECT s.sname, s.stno, d.dname, s.class

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

Running this query produces the following 21 rows of output:

 sname stno dname class

 -------------------- ------ -------------------- ------

 Lineas 2 English 1

 Brenda 8 Computer Science 2

 Richard 10 English 1

 Lujack 14 Computer Science 1

 Reva 15 Mathematics 2

 Elainie 17 Computer Science 1

 Harley 19 Political Science 2

 Lynette 34 Political Science 1

 Hillary 121 Computer Science 1

 Sadie 125 Mathematics 2

 Jessica 126 Political Science 2

 Steve 127 English 1

 Brad 128 Computer Science 1

 Cedric 129 English 2

 Alan 130 Computer Science 2

 George 132 Political Science 1

 Fraiser 144 Political Science 1

 Smithly 147 English 2

 Sebastian 148 Accounting 2

 Lindsay 155 NULL 1

 Jake 191 Mathematics 2

 (21 row(s) affected)

			Now that we have the department names of all the freshmen and sophomores, we need to find the computer science majors from this group, so we add AND s.major = 'COSC' to the previous query as follows:

 SELECT s.sname, s.stno, d.dname, s.class

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC'

This query produces the following output (six rows), which finally gives us the student name, student number, and department name of students who are freshman or sophomores and computer science majors:

 sname stno dname class

 -------------------- ------ -------------------- ------

 Brenda 8 Computer Science 2

 Lujack 14 Computer Science 1

 Elainie 17 Computer Science 1

 Hillary 121 Computer Science 1

 Brad 128 Computer Science 1

 Alan 130 Computer Science 2

 (6 row(s) affected)

Note that in each case where we add more filtering in the WHERE clause, the number of rows declines. If the number of rows does not decline, that could represent a problem.

[bookmark: learnsqlsvr05-CHP-6-SECT-4.2]

6.4.2. Step 2: Using a Derived Structure

This step shows how the previous query (developed in Step 1) can be turned into a view (Option 1), inline view (Option 2), or temporary table (Option 3). Each one of these derived structures will produce the same end results, so as you develop your own queries, you may use whichever derived structure you become most comfortable with and/or is most appropriate.

						[image:]			Derived structures are also very useful when you wish to use nested functions.

[bookmark: learnsqlsvr05-CHP-6-SECT-4.2.1]

6.4.2.1. Option 1: Turning your query into a view

To create a view (called stu_view) using the previous example query, type:

 CREATE VIEW stu_view AS

 SELECT s.sname, s.stno, d.dname, s.class

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC'

You can now SELECT from the view by typing:

 SELECT *

 FROM stu_view

 WHERE sname LIKE 'BR%'

This query produces the following output, which includes all the names in the view stu_view that start with "Br":

 sname stno dname class

 -------------------- ------ -------------------- ------

 Brenda 8 Computer Science 2

 Brad 128 Computer Science 1

 (2 row(s) affected)

Remember that the view always reflects the database as it is, and a view takes up no extra storage in the database, because no data is stored in a view.

[bookmark: learnsqlsvr05-CHP-6-SECT-4.2.2]

6.4.2.2. Option 2: Using an inline view

You can also place a query in the FROM clause of a SELECT statement and thereby create what is called an inline view. An inline view exists only during the execution of a query. The main purpose of an inline view is to simplify the development of a one-time query. In a typical development scenario, a person would probably devise a SELECT statement, test it, examine the result, wrap it in parentheses, and continue with the development by using the inline view.

Follow these general steps to develop an inline view:

			Develop a query:

 SELECT column1, column2, ...

 FROM TableName

 WHERE ...

			Wrap the results into parentheses and make it into an inline view:

 SELECT *

 FROM (SELECT column1, column2, ... FROM TableName WHERE ...)

			Display the columns in the inline view:

 SELECT v.column1, v.column2, ...

 FROM (SELECT column1, column2, ... FROM TableName WHERE ...) v

You could then proceed to make the previous query an inline view and add more complexity as needed. The beauty of creating a query in steps is that you can examine each step using counts and TOP qualifiers to see whether you're heading in the right direction.

Let's look at an example of an inline view for our sample problem. In this example, we create the same view as previously inline -- that is, we create the view on the fly, give it an alias of v, and use it just as we would use a stored table or view, as follows:

 SELECT v.sname, v.dname, v.class

 FROM (SELECT s.sname, s.stno, d.dname, s.class

 FROM Student AS s, Department_to_major AS d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC') AS v

This query produces the following six rows of output:

 sname dname class

 -------------------- -------------------- ------

 Brenda Computer Science 2

 Lujack Computer Science 1

 Elainie Computer Science 1

 Hillary Computer Science 1

 Brad Computer Science 1

 Alan Computer Science 2

 (6 row(s) affected)

In the final result set of the outer query, the column names reference the names used in the inline view result set.

[bookmark: learnsqlsvr05-CHP-6-SECT-4.2.3]

6.4.2.3. Option 3: Using a global temporary table

To create a global temporary table (called ##Temp2) using the query developed in Step 1, type:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp2

 FROM Student s, Department_to_major d

 WHERE s.major = d.dcode

 AND (s.class = 1 or s.class = 2)

 AND s.major = 'COSC'

Once you run or execute your query, you have created a temporary table called ##Temp2.

Now if you type:

 SELECT *

 FROM ##Temp2

You should get the following six rows of output, which should be exactly the same as you received in the other options:

 sname stno dname class

 -------------------- ------ -------------------- ------

 Brenda 8 Computer Science 2

 Lujack 14 Computer Science 1

 Elainie 17 Computer Science 1

 Hillary 121 Computer Science 1

 Brad 128 Computer Science 1

 Alan 130 Computer Science 2

 (6 row(s) affected)

In all the examples of views and temporary tables, the SQL programmer weighs programming effort (individual and team), storage costs, and query efficiency to choose which structure is appropriate.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-5]

6.5. Summary

In this chapter, we provided you with an overview of different derived structures available in SQL Server. Each of these derived structures has its own advantages and disadvantages, and once you have knowledge of the different derived structures, it is up to you to select the derived structure that you wish to use to make your work easier or more efficient. Oftentimes it is not easy to formulate a query all at once. The derived structures will help you formulate your queries in a more systematic step-by-step manner.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-6]

6.6. Review Questions

			Which has precedence, AND or OR?

			Why do we need derived structures?

			What is a view?

			List some advantages of using views.

			List some advantages of using temporary tables.

			Can temporary tables replace views in all cases?

			What is the difference between a view and temporary table?

			What is the difference between a local temporary table and global temporary table?

			If data is changed in a view, is it changed in the original table?

			If data is changed in a temporary table, does it automatically change data in the original table?

			What happens to local temporary tables after the session has been ended?

			What happens to global temporary table after the session has been ended?

			Which type of temporary table has a system-generated suffix attached to it? What does this suffix mean?

			Why are inline views helpful?

			In SQL Server, is the ORDER BY clause allowed during the creation of a view?

			Is SELECT INTO allowed in a view? Why or why not?

			Where is the data stored in a view?

			How do you delete views?

			How do you delete a temporary table?

			Do you need to delete a local temporary table? Why or why not?

			Which operators have the highest/lowest precedence?

			In SQL Server, if a column of FLOAT data type were divided by a column of REAL data type, what data type would the resulting column have? (Hint: refer to the section on Data Type Preference.)

			Is an ORDER BY clause necessary when you use a DISTINCT? Why or why not?

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6-SECT-7]

6.7. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			Develop and execute a query to find the names of students who had HERMANO as an instructor and earned a grade of B or better in the class. Develop the query by first finding sections where HERMANO was the instructor. Save this query. Edit the query and modify it to join the Section table with the Grade_report table. Add the grade constraint.

			Using the Student table, create a duplicate table called Stutab that contains all rows from the Student table. Hint: Look at the design of the Student table to see the columns and their definitions. Create the Stutab table with a CREATE TABLE command. Insert data into Stutab using the INSERT INTO .. SELECT option.

Using the newly created Stutab table:

			List student names and majors of the juniors and seniors.

			List student names of the COSC majors.

			Create a view (call it vstu) that contains student names and majors for the COSC majors.

			List the student names and majors from vstu in descending order by name.

			Modify a row in your view of your table so that a student changes his or her major.

			Display of the view. Did modifying the view, vstu, also change the parent table, Stutab?

			Try to modify the view again, but this time, change the major to COMPSC--an obviously invalid column in the Stutab table, because the column was defined as four characters. Can you do it? What happens?

			Using Stutab, create a local temporary table (call it #stutemp) that contains student names and majors for the COSC majors.

			List the student names and majors from #stutemp in ascending order by name.

			Modify a row in #stutemp so that a student changes his or her major.

			Display the local temporary table. Did modifying your temporary table, #stutemp, also change the parent table, Stutab.

			Try to modify the local temporary table again, but this time change the major to COMPSC--again, an obviously invalid field in Stutab, because the field was defined as four characters. Can you do it? What happens?

			Using Stutab, create a global temporary table (call it ##gstutemp) that contains student names and majors for the COSC majors.

			List the student names and majors from ##gstutemp in ascending order by name.

			Modify a row in ##gstutemp so that a student changes his or her major.

			Display the global temporary table. Did modifying your temporary table, ##gstutemp, also change the parent table, Stutab.

			Try to modify the global temporary table again, but this time change the major to COMPSC--again, an obviously invalid field in Stutab, because the field was defined as four characters. Can you do it? What happens?

			Create an inline view (call it invstu) that contains student names and majors for COSC majors.

			Perform an experiment to determine the precedence in a query with three conditions linked by AND and OR. Which precedence is followed: AND, OR, or left-to-right?

Run this query:

 SELECT *

 FROM Student

 WHERE stno < 100 AND major = 'COSC' OR major = 'ACCT'

Then run the following two queries and determine which one gives you the same output as the preceding non parenthesized statement:

 SELECT *

 FROM Student

 WHERE (stno < 100 AND major = 'COSC') OR major = 'ACCT'

or:

 SELECT *

 FROM Student

 WHERE stno < 100 AND (major = 'COSC' OR major = 'ACCT')

What happens if you put the OR first instead of the AND and run the query without parentheses?

			Develop a query to find the instructor name and course name for computer science courses (use the Section table).

			Convert your query into a view.

			Convert the query into an inline view with column aliases and test it.

			Include an ORDER BY clause outside of the inline view in the main query and run your query again.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-6]

Chapter 6. Query Development and Derived Structures

A problem in SQLand in all programming, for that matteris the development of long queries or statements. One way to create long queries is to begin modestly and to incrementally build or develop the query of interest. This is the approach described in this chapter, which we will illustrate by developing a few queries. And, as you'll find out, often the appropriate placement of parentheses within the query is required to get the right answer to a question.

Another way to develop queries is to use derived structuresa pseudo-table, of sorts. In Server SQL 2005, derived structures include such things as views (both real and inline views) and temporary tables (both temporary and global), both of which enable us to easily manipulate partial displays of tables. The partial displays can then be connected to answer a complicated database query. This chapter discusses derived structures, focusing specifically on views and temporary tables, and how query development[bookmark: IDX-CHP-6-0365]

 can be aided with the use of derived structures.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-1]

7.1. Introducing Set Operations

[bookmark: IDX-CHP-7-0399]

[bookmark: IDX-CHP-7-0400]

[bookmark: IDX-CHP-7-0401]

A set is a collection of objects. In relational databases, a table can be regarded as a set of rows. Elements in a set do not have to be ordered. In relational databases, rows do not have to be ordered as they are entered or stored. Set operations are used in SQL to retrieve data from multiple sets,[bookmark: IDX-CHP-7-0402]

 and include a binary union, binary intersection[bookmark: IDX-CHP-7-0403]

[bookmark: IDX-CHP-7-0404]

 and binary set difference[bookmark: IDX-CHP-7-0405]

. A result set is obtained in SQL from the result of a SELECT.

A binary union is a set operation on two sets, the result of which contains all the elements of both sets. A binary intersection generates values in common between two sets. And, a binary set difference generates values in one set less those contained in another set.

Three explicit set operations are used in SQL: UNION, INTERSECT, and MINUS (for set difference). SQL Server 2005 allows the explicit use of the UNION and INTERSECT operations. Because the MINUS set operation cannot be explicitly used in SQL Server 2005, we will illustrate the MINUS operation by using the very common IN predicate and its negation, NOT..IN, which enable us to accomplish the same result as using INTERSECT and MINUS.

The format of a set statement is as follows:

 set OPERATOR set

where OPERATOR is a UNION, INTERSECT or MINUS, and where "set" is defined by a SELECT.

First we will discuss the UNION operator; the INTERSECT operator will be discussed later in the chapter.

The following is the syntax for a general form of an UNION:

 SELECT *

 FROM TableA

 UNION

 SELECT *

 FROM TableB

Set statements allow us to combine two distinct sets of data (two result sets) only if we insure union compatibility,[bookmark: IDX-CHP-7-0406]

[bookmark: IDX-CHP-7-0407]

 as explained in the next section.

[bookmark: learnsqlsvr05-CHP-7-SECT-1.1]

7.1.1. Union Compatibility

Union compatibility, the commonly used SQL terminology for set compatibility, means that when using set operations, the two sets (in this case, the results of two SELECTs) being unioned have to have the same number of similar columns and the columns have to have compatible data types. Next we will explain what compatible data types means, and we will return to the issue of "similar" columns in a later section.

So what does "compatible" data types mean? The data types of the columns of the two sets being unioned do not necessarily have to be exactly the same, meaning that they may differ in length and even type, but they have to be "well-matched." For union compatibility, the three basic data types are numeric, string, and dates. All numeric columns are compatible with one another, all string columns are compatible with one another, and all date columns are compatible with one another. For numbers, SQL will convert integers, floating-point numbers, and decimals into a numeric data type, to make them compatible with one another. So any numeric column (for example, integers) can be unioned with any other numeric column (for example, decimals). Likewise, any fixed-length character column and any variable-length character column will be converted to a character data type, and take on the larger size of the character columns being unioned. Similarly, date columns will be combined to a date data type.

						[image:]			For union compatibility, the three basic data types are numeric, string, and dates.

Union compatibility can happen in several ways:

			By unioning two tables or views that have identical columns (which implies the same domains as well).

			By taking two subsets from a table and combining them.

			By using two views from two tables respectively with the columns chosen so that they are compatible.

						[image:]			For the data type precedence rules, refer to the "Data Type Precedence" section in Chapter 6.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-10]

7.10. Review Questions

			What are the major differences between the UNION operation and the JOIN operation?

			What is the major difference between the UNION and the UNION ALL?

			What major set operator does SQL Server 2005 not have? How can these problems be resolved?

			What does union compatibility mean?

			What data types are union-compatible?

			What is the maximum number of rows that can result from a UNION of two tablesone with 5 rows and the other with 6 rows?

			What is the maximum number of rows that can result from a JOIN of two tablesone with 5 rows and the other with 6 rows?

			How can a UNION be used to implement an outer join? Explain.

			Does SQL Server 2005 support the MINUS operation? How can this be resolved? Give examples.

			What is a full outer join? Does SQL Server 2005 directly support a full outer join?

			Do you need the same number of columns to perform a union?

			Do you need the same data types to perform a union?

			Do you need the same number of columns to perform a join?

			From the examples given in the chapter, what does the UNION JOIN appear to do?

			If a VARCHAR column were unioned with a CHAR column, what would the resulting column be? (Hint: refer to the "Data Type Precedence" section in Chapter 6.)

			What does set compatibility mean?

			What is the maximum number of rows that can result from a INTERSECT of two tablesone with 5 rows and the other with 6 rows?

			Do you need the same number of columns to perform an INTERSECT operation?

			Do you need the same data types to perform an INTERSECT operation?

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-11]

7.11. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			In this exercise, you'll test the UNION statement. Having seen how the UNION statement works, demonstrate some permutations to see what will work "legally" and what won't. First, create two tables as follows:

			Table 1

			

			A

			B

			x1

			y1

			r1

			s1

			Table 2

			A

			B

			C

			D

			x2

			y2

			z2

			w2

			r2

			s2

			t2

			u2

Make the type of As and Bs CHAR(2). Let the type of C in Table2 be VARCHAR(2) and D in Table2 be VARCHAR(3).

Try the following statements and note the results:

 SELECT * FROM Table1 UNION SELECT * FROM Table2

 SELECT * FROM Table1 UNION SELECT A,B FROM Table2

 SELECT * FROM Table1 UNION SELECT B,A FROM Table1

 SELECT * FROM Table1 UNION SELECT A,C FROM Table2

 SELECT * FROM Table1 UNION SELECT A,D FROM Table2

 CREATE VIEW viewx AS

 SELECT A,B

 FROM Table2

 SELECT *

 FROM Table1

 UNION

 SELECT *

 FROM viewx

Feel free to experiment with any other combinations that you deem appropriate or that you wonder about.

			Create and print the result of a query that generates the names, class, and course numbers of students who have earned Bs in computer science courses. Store this query as Q7_2. Then, revise Q7_2 to delete from the result set those students who are sophomores (class = 2). Use NOT..IN to select those students who are sophomores.

			Find the names, grades, and course numbers of students who have earned As in computer science or math courses. Join the Section and Grade_report tables (be careful to not create the Cartesian product). Then, UNION the set of "course numbers COSC% and A" with the set of "course number MATH% and A."

Hint: Start with the query to get names, grades, and course numbers for COSC% and A, and then turn this into a view. Do the same for MATH% and A, and then execute the UNION statement as follows (using your view names):

 SELECT *

 FROM view1a

 UNION

 SELECT *

 FROM view1b

			Find the names and majors of students who have made a C in any course. Make the "who have made a C in any course" a subquery for which you use IN.

			A less-obvious example of a difference query is to find a difference that is not based on simple, easy-to-get sets. Suppose that set A is the set of student names who have made As and Bs in computer science (COSC) courses. Suppose further that set B is the set of students who have taken math courses (regardless of what grade they earned).

Then, set A minus set B would contain names of students who have made As or Bs in computer science courses, less those who have taken math courses. Similarly, set B minus set A would be the set of students who took math courses, less those who took COSC courses and made an A or a B in some COSC course.

Build these queries into set difference queries as views based on student numbers and execute them, as follows:

			Write a query that gives the student number, name, course, and grade for each set. Save each query as Q7_5a and Q7_5b.

			Reconstruct each query into a view of just student numbers, verify that it works, and then create views to create set A and set B. Verify that you have the same number of tuples in set A as you have in Q7_5a, and the same number of tuples in set B as you have in Q7_5b.

			Display the student numbers of students in each set differenceshow (set A minus set B) and (set B minus set A). Look at the original queries, Q7_5a and Q7_5b, to verify your result.

			Create two tables, T1 and T2, that contain a name and a salary column. In the first table, order the columns by name, and then by salary. In the second table, order the columns by salary, and then by name. Use the same data types for each - VARCHAR(20), NUMBER, for example. Populate the tables with two tuples each.

			Can you UNION the two tables in the preceding question with the following query?

 SELECT *

 FROM T1

 UNION

 SELECT *

 FROM T2

Why or why not? If not, can you force the union of the two tables? Illustrate how. Be sure to DROP the tables when you are finished.

			Using the Instructor table you created in this chapter (as well as the tables supplied in the Student_course database), find the following (use the UNION or INTERSECT operator if you feel it is appropriate):

			All departments that have instructors. First do this using an IN predicate, and then using a regular join.

			Find all students who are also instructors.

			Find all instructors who are not students.

			Find all students who are not instructors.

			Find all students as well as instructors.

			Using the Student table, find all the students who major in math and are seniors. Hint: Use the INTERSECT operator for this.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-12]

7.12. Optional Exercise

			De Morgan's Theorem.In the binary case, DeMorgan's Theorem tells us that [not(A and B)] = [not(A) or not(B)]. For example, suppose that A is the set of rows where students are juniors and B is the set of rows where students are females. And suppose that you were asked the question, "Find the students who are not (female and juniors)." Clearly this is the set [not(A and B)]. You can answer this question by finding the set of students who are not juniors [not(A)] and then or-ing this with the set of students who are not females [not(B)]. At times it is easier to find one or the other of the results via a query, and the point here is that the two methods of finding a result is equivalent.

Question: Find the result set for all sections that are offered in building 13 and call this set A. Find the result set for all sections that are offered in building 36 and call this set B. Construct the SQL to find the following result sets:

			The result of set A OR set B (use WHERE building = 13 or building = 36).

			The result of the complement of (a): NOT(set A OR set B).

			The result of NOT(set A) AND NOT(set B).

			The count of all rows in the Section table.

Is the count in d = a + b? Is the result of c the same as the result of b? Explain why or why not in each case (Hint: You may apply the De Morgan's Theorem which states that NOT(set A or set B) = NOT(set A) and NOT(set b).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-2]

7.2. The UNION Operation

[bookmark: IDX-CHP-7-0408]

[bookmark: IDX-CHP-7-0409]

In SQL Server 2005, a binary union is performed with the UNION set operation. A UNION takes the result sets from two (or more) queries and returns all rows from the results sets as a single result set (removing the duplicates). In this section, we illustrate how a UNION works; although there are other ways to retrieve this information, we are showing the UNION alternative.

Suppose that we want to find the names of all students who are computer science (COSC) majors, along with all students who are MATH majors from the Student table, we may write the following query that uses the UNION set operator:

 SELECT sname

 FROM Student

 WHERE major = 'COSC'

 UNION

 SELECT sname

 FROM Student

 WHERE major = 'MATH'

						[image:]			The two sets being unioned must have the same number of columns in the result sets of the SELECT clauses.

While executing the UNION, SQL first executes the first part of the query:

 SELECT sname

 FROM Student

 WHERE major = 'COSC'

This part virtually produces the following 10 rows of output:

 sname

 Mary

 Zelda

 Brenda

 Lujack

 Elainie

 Jake

 Hillary

 Brad

 Alan

 Jerry

 (10 row(s) affected)

Then SQL executes the second part of the query:

 SELECT sname

 FROM Student

 WHERE major = 'MATH'

This part virtually produces the following 7 rows of output:

 sname

 Mario

 Kelly

 Reva

 Monica

 Sadie

 Stephanie

 Jake

 (7 row(s) affected)

SQL then combines the two virtual sets of results (the UNION operation), which includes throwing out any duplicates (an extra "Jake," in this case), leaving us with the following 16 rows of output:

 sname

 Alan

 Brad

 Brenda

 Elainie

 Hillary

 Jake

 Jerry

 Kelly

 Lujack

 Mario

 Mary

 Monica

 Reva

 Sadie

 Stephanie

 Zelda

 (16 row(s) affected)

Prior to SQL Server 7, SQL Server always returned the result of a UNION in sorted order. This was so because the UNION eliminated duplicate rows using a sorting strategy. The ordering was simply a by-product of the sorting to eliminate duplicates. Newer versions of SQL Server, however, have several alternative strategies available for removing duplicates, so there is no guarantee of any particular order when you use UNION. If you would like to order the output, you should explicitly use ORDER BY at the end of your last SELECT statement.

						[image:]			The maximum number of rows possible when a UNION is used is the sum of the number of rows in the two result sets (or tables) in the two SELECT clauses.

[bookmark: learnsqlsvr05-CHP-7-SECT-2.1]

7.2.1. Similar Columns in Unions

[bookmark: IDX-CHP-7-0410]

Earlier, we mentioned that for a union to be successful, there has to be union compatibility, and the two sets being unioned have to have similar columns. So what does similar columns mean?

If we wrote the earlier UNION example like this:

 SELECT major

 FROM Student

 WHERE major = 'COSC'

 UNION

 SELECT sname

 FROM Student

 WHERE major = 'MATH'

We would get a result set, but would the result set (output) be valid? The answer is no. You are trying to union majors and student names. These are not similar columns (though the data types of the two columns are compatible), and it does not make sense to union two different types of columns. So, before performing a union operation, you have to be very careful that you union like columns, and not "apples and oranges."

[bookmark: learnsqlsvr05-CHP-7-SECT-2.2]

7.2.2. Unioning Constants or Variables

In SQL Server 2005, a group of SELECT statements can also be used to union constants or variables:

 SELECT col1=100, col2=200

 UNION

 SELECT col1=400, col2=500

 UNION

 SELECT col1=100*3, col2=200*3

 UNION

 SELECT 900, 400

This query will produce:

 col1 col2

 ----------- -----------

 100 200

 300 600

 400 500

 900 400

 (4 row(s) affected)

Note that the output here happens to be sorted by the first column.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-3]

7.3. The UNION ALL Operation

[bookmark: IDX-CHP-7-0411]

UNION ALL works exactly like UNION, but does not expunge duplicates or sort the results. UNION ALL is more efficient in execution (because UNION ALL does not have to expunge the duplicates), and occasionally you may need to keep duplicates (just to keep all occurrences or records), in which case you can use UNION ALL.

The following is the same query previously shown for UNION, but using UNION ALL instead of UNION:

 SELECT sname

 FROM Student

 WHERE major = 'COSC'

 UNION ALL

 SELECT sname

 FROM Student

 WHERE major = 'MATH'

This query results in 17 unsorted rows, including one duplicate, Jake; using UNION produced 16 rows with no duplicates:

 sname

 Mary

 Zelda

 Brenda

 Lujack

 Elainie

 Jake

 Hillary

 Brad

 Alan

 Jerry

 Mario

 Kelly

 Reva

 Monica

 Sadie

 Stephanie

 Jake

 (17 row(s) affected)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-4]

7.4. Handling UNION and UNION ALL Situations with an Unequal Number of Columns

[bookmark: IDX-CHP-7-0412]

[bookmark: IDX-CHP-7-0413]

[bookmark: IDX-CHP-7-0414]

[bookmark: IDX-CHP-7-0415]

[bookmark: IDX-CHP-7-0416]

[bookmark: IDX-CHP-7-0417]

[bookmark: IDX-CHP-7-0418]

As has been mentioned earlier, in order to successfully UNION or UNION ALL result sets, the result sets being unioned have to have the same number of columns. That is, all queries in a UNION or UNION ALL operation must return the same number of columns. But what if all the queries being used in the UNION or UNION ALL do not return the same number of columns?

If we want to union two result sets that do not have the same number of columns, we have to use NULL (or other) values in the column-places as place holders. For example, from our Student_course database, if we want to union the Course table and the Prereq table with all the columns, under normal circumstances, this would not be possible, because the Course table has four columns and the Prereq table has only two. Therefore, to perform a UNION ALL operation, we would have to place NULL values or some other values in the columns that will be empty, as follows (this example uses NULL as a place holder):

 SELECT c.*, NULL

 FROM Course c

 WHERE c.credit_hours = 4

 UNION ALL

 SELECT NULL, p.course_number, NULL, NULL, p.prereq

 FROM Prereq p

This query produces the following 18 rows of output:

 COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT

 -------------------- ------------- ------------ ------------- --------

 INTRO TO COMPUTER SC COSC1310 4 COSC NULL

 DATA STRUCTURES COSC3320 4 COSC NULL

 ADA - INTRODUCTION COSC5234 4 COSC NULL

 CALCULUS 1 MATH1501 4 MATH NULL

 SOCIALISM AND COMMUN POLY4103 4 POLY NULL

 POLITICS OF CUBA POLY5501 4 POLY NULL

 NULL ACCT3333 NULL NULL ACCT2220

 NULL CHEM3001 NULL NULL CHEM2001

 NULL COSC3320 NULL NULL COSC1310

 NULL COSC3380 NULL NULL COSC3320

 NULL COSC3380 NULL NULL MATH2410

 NULL COSC5234 NULL NULL COSC3320

 NULL ENGL1011 NULL NULL ENGL1010

 NULL ENGL3401 NULL NULL ENGL1011

 NULL ENGL3520 NULL NULL ENGL1011

 NULL MATH5501 NULL NULL MATH2333

 NULL POLY2103 NULL NULL POLY1201

 NULL POLY5501 NULL NULL POLY4103

 (18 row(s) affected)

We can also use other values (other than NULL) as placeholders, as shown here:

 SELECT c.*, COU_NUM = 'XXXXXXXXXXXX'

 FROM Course c

 WHERE c.credit_hours = 4

 UNION ALL

 SELECT 'XXXXXXXXXXXXX', p.course_number, 00000000000, 'XXXXXXXXXXXXX', p.prereq

 FROM Prereq p

This query gives the same output as the previous query, but this time we have used a series of Xs and 0s as placeholders instead of NULL (we have 18 rows of output):

 COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COU_NUM

 -------------------- ------------- ------------ ------------- ------------

 INTRO TO COMPUTER SC COSC1310 4 COSC XXXXXXXXXXXX

 DATA STRUCTURES COSC3320 4 COSC XXXXXXXXXXXX

 ADA - INTRODUCTION COSC5234 4 COSC XXXXXXXXXXXX

 CALCULUS 1 MATH1501 4 MATH XXXXXXXXXXXX

 SOCIALISM AND COMMUN POLY4103 4 POLY XXXXXXXXXXXX

 POLITICS OF CUBA POLY5501 4 POLY XXXXXXXXXXXX

 XXXXXXXXXXXXX ACCT3333 0 XXXXXXXXXXXXX ACCT2220

 XXXXXXXXXXXXX CHEM3001 0 XXXXXXXXXXXXX CHEM2001

 XXXXXXXXXXXXX COSC3320 0 XXXXXXXXXXXXX COSC1310

 XXXXXXXXXXXXX COSC3380 0 XXXXXXXXXXXXX COSC3320

 XXXXXXXXXXXXX COSC3380 0 XXXXXXXXXXXXX MATH2410

 XXXXXXXXXXXXX COSC5234 0 XXXXXXXXXXXXX COSC3320

 XXXXXXXXXXXXX ENGL1011 0 XXXXXXXXXXXXX ENGL1010

 XXXXXXXXXXXXX ENGL3401 0 XXXXXXXXXXXXX ENGL1011

 XXXXXXXXXXXXX ENGL3520 0 XXXXXXXXXXXXX ENGL1011

 XXXXXXXXXXXXX MATH5501 0 XXXXXXXXXXXXX MATH2333

 XXXXXXXXXXXXX POLY2103 0 XXXXXXXXXXXXX POLY1201

 XXXXXXXXXXXXX POLY5501 0 XXXXXXXXXXXXX POLY4103

 (18 row(s) affected)

NULL does not have a data type, so it can be used as a placeholder for both numeric and character columns. But when using other values as placeholders, the data types have to match. Hence we used 'XX...' (in the query with the single quotes) for the character columns, and 000s (in the query without quotes) for the numeric columns.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-5]

7.5. The IN and NOT..IN Predicates

[bookmark: IDX-CHP-7-0419]

[bookmark: IDX-CHP-7-0420]

Although SQL Server 2005 does not have the MINUS (difference) operator, it does have an IN predicate and its negation, the NOT..IN, which enables us to create differences. Let us look at this predicate from a set point of view. If we find the objects from set A that are not in set B, we have found the difference of set A and B (A - B).

[bookmark: learnsqlsvr05-CHP-7-SECT-5.1]

7.5.1. Using IN

The following is a simple example of an IN predicate with constants in a SELECT statement:

 SELECT sname, class

 FROM Student

 WHERE class IN (3,4)

In this example, IN (3,4) is called a subquery-set, where (3, 4) is the set in which we are testing membership. This query says: "Find all student names from the Student table where the class is in the set (3, 4)." It produces the following 17 rows of output:

 sname class

 -------------------- ------

 Mary 4

 Kelly 4

 Donald 4

 Chris 4

 Jake 4

 Susan 3

 Monica 3

 Phoebe 3

 Holly 4

 Rachel 3

 Jerry 4

 Cramer 3

 Harrison 4

 Francis 4

 Losmith 3

 Gus 3

 Benny 4

 (17 row(s) affected)

The preceding query produces the same output as the following query:

 SELECT sname, class

 FROM Student

 WHERE class = 3 OR class = 4

In other words, the IN(3,4) means belonging to either set (3) OR set (4), as shown by the WHERE class = 3 OR class = 4.

[bookmark: learnsqlsvr05-CHP-7-SECT-5.1.1]

7.5.1.1. Using IN as a subquery

We can expand the IN predicate's subquery-set part to be an actual query. For example, consider the following query:

 SELECT Student.sname

 FROM Student

 WHERE Student.stno IN

 (SELECT g.student_number

 FROM Grade_report g

 WHERE g.grade = 'A')

						[image:]			Subqueries will be discussed at length in the next chapter.

Note the following about this query:

			WHERE Student.stno references the name of the column in the Student table.

			g.student_number is the column name in the Grade_report table.

			stno in the Student table and student_number in the Grade_report table have the same domain.

Note also that you must retrieve the information from the same domains for purposes of union compatibility.

The preceding query produces the following 14 rows of output:

 sname

 Lineas

 Mary

 Brenda

 Richard

 Lujack

 Donald

 Lynette

 Susan

 Holly

 Sadie

 Jessica

 Steve

 Cedric

 Jerry

 (14 row(s) affected)

You could view the preceding query as a result derived from the intersection of the sets A and B, where set A is the set of student numbers in the student set (from the Student table) and set B is the set of student numbers in the grade set (from the Grade_report table) that have As.

To make this command behave like a set operator (as if it were an INTERSECT operator), you can add the qualifier DISTINCT to the result set as follows:

 SELECT DISTINCT (Student.sname)

 FROM Student

 WHERE Student.stno IN

 (SELECT DISTINCT (g.student_number)

 FROM Grade_report g

 WHERE g.grade = 'A')

This query produces the following 14 rows of output:

 sname

 Brenda

 Cedric

 Donald

 Holly

 Jerry

 Jessica

 Lineas

 Lujack

 Lynette

 Mary

 Richard

 Sadie

 Steve

 Susan

 (14 row(s) affected)

Here, SQL Server 2005 sorts the results for you and does not return duplicates.

[bookmark: learnsqlsvr05-CHP-7-SECT-5.2]

7.5.2. The INTERSECT Operator

[bookmark: IDX-CHP-7-0421]

[bookmark: IDX-CHP-7-0422]

From a set point of view, an INTERSECT means if we find objects from set A that are also in set B (and vice versa), we have found the intersection of sets A and B. SQL Server 2005 has an INTERSECT operator.

The following query is the previous query written using an INTERSECT (but we displayed student numbers instead of student names):

 SELECT s.stno

 FROM Student s

 INTERSECT

 SELECT g.student_number

 FROM Grade_report g

 WHERE g.grade = 'A'

This query gives the following 14 rows of output:

 stno

 2

 3

 8

 10

 14

 20

 34

 49

 123

 125

 126

 127

 129

 142

 (14 row(s) affected)

In this query, we had to display student numbers (stno) instead of the student names (sname) because of the set compatibility issue discussed earlier. INTERSECT is a set operator, so the two sets being intersected have to have the same number of columns and the columns have to have compatible data types.

Another example of the use of the INTERSECT operator would be, for example, if we wanted to find all the students who had dependents, in which case we could type:

 SELECT s.stno

 FROM Student s

 INTERSECT

 SELECT d.pno

 FROM Dependent d

This query would give the following 19 rows of output:

 stno

 2

 10

 14

 17

 20

 34

 62

 123

 126

 128

 132

 142

 143

 144

 145

 146

 147

 153

 158

 (19 row(s) affected)

Though the INTERSECT operator gives us the right answer, in some ways the IN as a subquery (discussed earlier) is better to use, because when SQL Server 2005 performs the INTERSECT, it selects sets based on what is mentioned in the SELECT statements. So, for example, if we wanted the student names in addition to the student numbers, and we typed:

 SELECT s.stno, s.sname

 FROM Student s

 INTERSECT

 SELECT d.pno, relationship

 FROM Dependent d

The query would not work.

Here we would have to use an IN with a subquery as discussed earlier:

 SELECT s.stno, s.sname

 FROM Student AS s

 WHERE (s.stno IN

 (SELECT pno

 FROM Dependent AS d))

giving us the following 19 rows of output:

 stno sname

 ---- ------------------

 2 Lineas

 10 Richard

 14 Lujack

 17 Elainie

 20 Donald

 34 Lynette

 62 Monica

 123 Holly

 126 Jessica

 128 Brad

 132 George

 142 Jerry

 143 Cramer

 144 Fraiser

 145 Harrison

 146 Francis

 147 Smithly

 153 Genevieve

 158 Thornton

 (19 row(s) affected)

[bookmark: learnsqlsvr05-CHP-7-SECT-5.3]

7.5.3. Using NOT..IN

[bookmark: IDX-CHP-7-0423]

[bookmark: IDX-CHP-7-0424]

The NOT..IN is really a negated IN predicate. If you use the NOT..IN in your query, your query may perform poorly. The reason is that when NOT..IN is used, no indexing can be used, because the NOT..IN part of the query has to test the set with all values to find out what is not in the set. For smaller tables, no difference in performance will likely be detected. Nonetheless, we discuss how to use NOT..IN in this section, to demonstrate the logical negative of the IN predicate, which will help to complete your overall understanding of the SQL language. Instead of using NOT..IN, it is often preferable to use NOT EXISTS or outer join techniques, both of which are discussed later on.

						[image:]			Indexing is discussed in detail in Chapter 11.

Sometimes the NOT..IN may seem to more easily describe the desired outcome or may be used for a set difference. For a simple example, consider the following query:

 SELECT sname, class

 FROM Student

 WHERE class IN (1,3,4)

This query produces the following 28 rows of output:

 sname class

 -------------------- ------

 Lineas 1

 Mary 4

 Richard 1

 Kelly 4

 Lujack 1

 Elainie 1

 Donald 4

 Chris 4

 Jake 4

 Lynette 1

 Susan 3

 Monica 3

 Hillary 1

 Phoebe 3

 Holly 4

 Steve 1

 Brad 1

 Rachel 3

 George 1

 Jerry 4

 Cramer 3

 Fraiser 1

 Harrison 4

 Francis 4

 Losmith 3

 Lindsay 1

 Gus 3

 Benny 4

 (28 row(s) affected)

Contrast the preceding query to the following query:

 SELECT sname, class

 FROM Student

 WHERE class NOT IN (2)

The output in this case is the same as the preceding output because the Student table only has classes 1, 2, 3, and 4. If counts (results) did not "add up," this would show that some value of class was not 1, 2, 3, or 4.

As another example, suppose that you want the names of students who are not computer science (COSC) or math (MATH) majors. The query would be:

 SELECT sname, major

 FROM Student

 WHERE major NOT IN ('COSC','MATH')

which produces the following output (28 rows):

 sname major

 -------------------- -----

 Lineas ENGL

 Ken POLY

 Romona ENGL

 Richard ENGL

 Harley POLY

 Donald ACCT

 Chris ACCT

 Lynette POLY

 Susan ENGL

 Bill POLY

 Phoebe ENGL

 Holly POLY

 Jessica POLY

 Steve ENGL

 Cedric ENGL

 Rachel ENGL

 George POLY

 Cramer ENGL

 Fraiser POLY

 Harrison ACCT

 Francis ACCT

 Smithly ENGL

 Sebastian ACCT

 Losmith CHEM

 Genevieve UNKN

 Lindsay UNKN

 Gus ART

 Benny CHEM

 (28 row(s) affected)

The example output gave all majors other than COSC and MATH. But you must be very careful with the NOT..IN predicate, because if nulls are present in the data, you may get odd answers with NOT..IN.

As an example, consider the following table called Stumajor:

 name major

 -------------------- --------------------

 Mary Biology

 Sam Chemistry

 Alice Art

 Tom NULL

 (4 row(s) affected)

						[image:]			The table Stumajor has not been created for you in the Student_course database. You have to create it, insert the records shown, and then run the queries that follow.

If you perform the following query:

 SELECT *

 FROM Stumajor

 WHERE major IN ('Chemistry','Biology')

It produces the following output:

 name major

 -------------------- --------------------

 Mary Biology

 Sam Chemistry

 (2 row(s) affected)

If you perform the following query:

 SELECT *

 FROM Stumajor

 WHERE major NOT IN ('Chemistry','Biology')

It produces the following output:

 name major

 -------------------- --------------------

 Alice Art

 (1 row(s) affected)

The value, null, is not equal to anything. You might expect that NOT..IN would give you <Tom,null>, but it does not. Why? Because nulls in the selection column (here, major) are not matched with a NOT..IN.

[bookmark: learnsqlsvr05-CHP-7-SECT-5.3.1]

7.5.3.1. Using NOT..IN in a subquery

A NOT..IN can also be used in a subquery. For example, assume that we have another table called Instructor, as shown here:

 iname teaches

 -------------------- --------------------

 Richard COSC

 Subhash MATH

 Tapan BIOCHEM

 (3 row(s) affected)

						[image:]			The Instructor table has not been created for you in the Student_course database. You have to create it, insert the records shown, and then run the queries that follow.

Now, if we want to find all the departments that do not have instructors, we could type the following query:

 SELECT *

 FROM department_to_major d

 WHERE d.dcode NOT IN

 (SELECT dcode

 FROM department_to_major d, instructor i

 WHERE d.dcode=i.teaches)

This query produces the following output (6 rows):

 Dcode DNAME

 ----- --------------------

 ACCT Accounting

 ART Art

 CHEM Chemistry

 ENGL English

 POLY Political Science

 UNKN NULL

 (6 row(s) affected)

Note that in this case, the NOT..IN "behaved" correctly and reported the NULL value for DNAME!

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-6]

7.6. The Difference Operation

[bookmark: IDX-CHP-7-0425]

[bookmark: IDX-CHP-7-0426]

[bookmark: IDX-CHP-7-0427]

Because SQL Server 2005 does not support the MINUS predicate, we will show the set difference operation using a NOT..IN with two examples.

[bookmark: learnsqlsvr05-CHP-7-SECT-6.1]

7.6.1. Example 1

Suppose that set A is the set of students in classes 2, 3, or 4 and set B is the set of students in class 2. We could use the NOT..IN predicate to remove the students in set B from set A (a difference operation) by typing the following query:

 SELECT sname, class

 FROM Student

 WHERE class IN (2,3,4)

 AND NOT class IN (2)

which produces the following output (17 rows):

 sname class

 -------------------- ------

 Mary 4

 Kelly 4

 Donald 4

 Chris 4

 Jake 4

 Susan 3

 Monica 3

 Phoebe 3

 Holly 4

 Rachel 3

 Jerry 4

 Cramer 3

 Harrison 4

 Francis 4

 Losmith 3

 Gus 3

 Benny 4

 (17 row(s) affected)

[bookmark: learnsqlsvr05-CHP-7-SECT-6.2]

7.6.2. Example 2

To illustrate another difference operation, we will use views with the NOT..IN to give the effect of a difference operation. Suppose for example, you wanted to find the names of those students who do not major in COSC or MATH but delete from that set those students who have made an A in some course.

First, using the NOT..IN, we will create a view (view1) of the names and majors of the students who are not COSC or MATH majors using the following query:

 CREATE VIEW view1 AS

 SELECT sname, major

 FROM Student

 WHERE major NOT IN ('COSC', 'MATH')

View1 will have the same 28 rows of output as shown earlier in this chapter.

Then, using the IN predicate, we will create another view (view2) of names and majors of students who have received As using the following query:

 CREATE VIEW view2 AS

 SELECT Student.sname, Student.major

 FROM Student

 WHERE Student.stno IN

 (SELECT g.student_number

 FROM Grade_report g

 WHERE g.grade = 'A')

If we type:

 SELECT *

 FROM view2;

We get the following 14 rows of output:

 sname major

 -------------------- -----

 Lineas ENGL

 Mary COSC

 Brenda COSC

 Richard ENGL

 Lujack COSC

 Donald ACCT

 Lynette POLY

 Susan ENGL

 Holly POLY

 Sadie MATH

 Jessica POLY

 Steve ENGL

 Cedric ENGL

 Jerry COSC

 (14 row(s) affected)

Then, to find those students who are not majoring in COSC or MATH, and remove from that set those who made an A in some course, the difference operation could be approached using the NOT..IN as follows, using the views created earlier:

 SELECT sname

 FROM view1

 WHERE sname NOT IN

 (SELECT sname

 FROM view2)

This query produces the following output (19 rows):

 sname

 Ken

 Romona

 Harley

 Chris

 Bill

 Phoebe

 Rachel

 George

 Cramer

 Fraiser

 Harrison

 Francis

 Smithly

 Sebastian

 Losmith

 Genevieve

 Lindsay

 Gus

 Benny

 (19 row(s) affected)

This query has the same effect as view1--view2 (all students who are not majoring in COSC or MATH, MINUS students who made an A in some course).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-7]

7.7. The Union and the Join

In Chapter 4, we discussed joins. In this section, we discuss some differences between the two operations, the UNION and the JOIN. Although the UNION operation and the JOIN operation are similar in that they both combine two tables or sets of data, the approaches used by the two operations are different. We will first present an example of when a JOIN may be used versus when a UNION may be used, and then we will present some other differences between the UNION and the JOIN.

[bookmark: learnsqlsvr05-CHP-7-SECT-7.1]

7.7.1. When a JOIN May Be Used Versus When a UNION May Be Used

[bookmark: IDX-CHP-7-0428]

[bookmark: IDX-CHP-7-0429]

[bookmark: IDX-CHP-7-0430]

A JOIN is very commonly used in queries. As we discussed previously (in Chapter 4), JOINs (specifically, equi-joins) involve a result set created based on tables where the tables are linked via some common column. The UNION operator is mostly used to combine two sets of information where the genesis of the information is not as straightforward as in a join. Consider the following two examples.

[bookmark: learnsqlsvr05-CHP-7-SECT-7.1.1]

7.7.1.1. Example 1: A straightforward join operation

Suppose that we wanted to find the names of students who took accounting courses. This is a straightforward join example. This type of query would involve joining the Student, Section, and Course tables and selecting the student names from the result set. In this case though, we actually have to join the Student table to the Grade_report table first, and then join that result to the Section table, because we cannot directly join the Student table to the Section table. Then, we join that combined result to the Course tableso this ends up becoming a four-table join, with the Grade_report table acting like a bridge between Student and Section. The JOIN query would be:

 SELECT DISTINCT(sname)

 FROM Course c JOIN (Section se JOIN

 (Student s JOIN Grade_report g

 ON s.stno = g.student_number)

 ON se.section_id = g.section_id)

 ON c.course_number = se.course_num

 AND c.course_name LIKE 'ACC%'

This query would give the following 20 rows of output:

 sname

 Alan

 Bill

 Brad

 Brenda

 Cedric

 Chris

 Donald

 Hillary

 Holly

 Jessica

 Kelly

 Ken

 Mario

 Monica

 Phoebe

 Romona

 Sadie

 Steve

 Susan

 Zelda

 (20 row(s) affected)

Note that we had to use a DISTINCT in the previous query, as the result of a JOIN gives duplicates.

This example query could also be answered using subqueries, which are discussed later, but the point is that it is easy to see the relationship between the three (actually four) tables.

[bookmark: learnsqlsvr05-CHP-7-SECT-7.1.2]

7.7.1.2. Example 2: A not-so-straightforward query

Suppose that we wanted to find something like the names of the students who take accounting courses and combine them with the names of students who also major in subjects that use overhead projectors in the courses they take. This could be done using a join with this database, but it would involve finding a join-path through most of the database. For a much larger database, it might be very impractical to consider such a large join. It would be easier to first find the set of names of students who take accounting courses (call this set A) and then find students who major in subjects that use projectors (set B), then union sets A and B. The UNION approach allows us to simplify the problem and check intermediate results, so we will present this problem using a UNION. Further, each part of the problem can be done with joins or subqueries as needed for efficiency and then the results finally unioned. Set operations allow us to create sets of results any way we can and then combine the result sets using set operations; UNION is a set operation.

Following, we present the UNION approach to doing this query. The first step is to do the parts individually. That is, first find the set of names of students who take accounting courses (this is the first half of the query before the UNION). Once this is done, then do the second part individually; that is, find the students who major in subjects that use projectors. Once you have the result for both parts, UNION the two results. We will not need the DISTINCT here, as UNION does not keep the duplicates. Here is a query that shows this approach:

 SELECT sname

 FROM Course c JOIN (Section se JOIN

 (Student s JOIN Grade_report g

 ON s.stno = g.student_number)

 ON se.section_id = g.section_id)

 ON c.course_number = se.course_num

 AND c.course_name LIKE 'ACC%'

 UNION

 SELECT sname

 FROM Student s JOIN

 (Department_to_major d

 JOIN (Course c JOIN

 (Room r JOIN Section se

 ON r.room = se.room)

 ON se.course_num = c.course_number)

 ON c.offering_dept = d.dcode)

 ON s.major = d.dcode

 AND r.ohead = 'Y'

This query produces 30 rows:

 sname

 Alan

 Bill

 Brad

 Brenda

 Cedric

 Chris

 Cramer

 Donald

 Elainie

 Hillary

 Holly

 Jake

 Jerry

 Jessica

 Kelly

 Ken

 Lineas

 Lujack

 Mario

 Mary

 Monica

 Phoebe

 Rachel

 Richard

 Romona

 Sadie

 Smithly

 Steve

 Susan

 Zelda

 (30 row(s) affected)

[bookmark: learnsqlsvr05-CHP-7-SECT-7.2]

7.7.2. A Summary of the Other Differences Between the UNION and the JOIN

In this section, we summarize our JOIN/UNION discussion with three abstract tables containing three rows each of symbolic data. Relations or tables are sets of rows.

We will first show the union. Assume that we have the following two tables.

Table A

			ColumnA

			ColumnB

			ColumnC

			X1

			Y1

			Z1

			X2

			Y2

			Z2

			X3

			Y3

			Z3

Table B

			ColumnA

			ColumnB

			ColumnC

			X4

			Y4

			Z4

			X5

			Y5

			Z5

			X6

			Y6

			Z6

A SQL UNION can be shown would be:

 SELECT * FROM TableA

 UNION

 SELECT * FROM TableB

which produces the following table as a result:

Table C

			ColumnA

			ColumnB

			ColumnC

			X1

			Y1

			Z1

			X2

			Y2

			Z2

			X3

			Y3

			Z3

			X4

			Y4

			Z4

			X5

			Y5

			Z5

			X6

			Y6

			Z6

Using a similar set of diagrams, the join operation could be shown as follows with the following two tables (joining TableA and TableD into TableE):

Table A

			ColumnA

			ColumnB

			ColumnC

			X1

			Y1

			Z1

			X2

			Y2

			Z2

			X3

			Y3

			Z3

Table D

			ColumnA

			ColumnD

			ColumnE

			X1

			D1

			E1

			X2

			D2

			E2

			X3

			D3

			E3

Now, a SQL JOIN would be:

 SELECT *

 FROM TableA a JOIN TableD d

 ON a.ColumnA = d.ColumnA

Giving the following table:

Table E

			TableA.ColumnA

			TableA.ColumnB

			TableA.ColumnC

			TableB.ColumnA

			TableB.ColumnD

			TableB.ColumnE

			X1

			Y1

			Z1

			X1

			D1

			E1

			X2

			Y2

			Z2

			X2

			D2

			E2

			X3

			Y3

			Z3

			X3

			D3

			E3

Following are the major differences between UNIONs and JOINs:

			In a UNION, all the rows in the resulting tables (sets) being unioned have to be compatible; in a JOIN, only the joining columns of the tables being joined have to be compatiblethe other columns may be different.

			In a UNION, no "new" columns can be added to the final result of the UNION; in a JOIN, new columns can be added to the result of the JOIN.

			In a UNION, the number of columns in the result set has to be the same as the number of columns in the sets being unioned; in a JOIN, the number of columns in the result set may vary.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-8]

7.8. A UNION Used to Implement a Full Outer Join

In Chapter 4, you read that the outer join adds rows to the result set that would otherwise be dropped from an inner join of both tables due to the join condition. Remember that an inner join (also known as an equi-join, ordinary join or regular join) combines two tables by finding common values on some column(s) common to the two tables. In an outer join, we are saying, "we want all the rows from one table and only the joined rows from the other." In SQL Server 2005, the outer joins are in two classesleft and right, depending on how the query is written. A full outer join means that we want all rows from both tables being joined, and "fill in those rows where a join does not produce a result with nulls." In SQL Server 2005, a UNION can also be used to achieve this full outer join.

						[image:]			Some SQL languages do not directly support the full outer join, but SQL Server 2005 directly supports it.

In SQL Server 2005, you can create a full outer join by writing a union of the left outer join and the right outer join, like this:

 SELECT with right outer join

 UNION

 SELECT with left outer join

The order of the left outer join and the right outer join does not matter and can be reversed. To illustrate the workings of the UNION version of the full outer join, let us again use the table called Instructor, created earlier in this chapter:

 iname teaches

 -------------------- --------------------

 Richard COSC

 Subhash MATH

 Tapan BIOCHEM

If we want to get a listing of all instructors and the names of the departments for which they teach (which will be done by a regular equi-join) plus a listing of the rest of the instructors, regardless of whether they belong to a department, plus a listing of the rest of the departments, regardless of whether they have instructors, we would write the following query to achieve the full outer join effect with a UNION:

 SELECT *

 FROM Department_to_major AS d LEFT JOIN Instructor AS I

 ON d.dcode=i.teaches

 UNION

 SELECT *

 FROM Department_to_major AS d RIGHT JOIN Instructor AS I

 ON d.dcode=i.teaches

This query produces the following output (9 rows):

 Dcode DNAME iname teaches

 ----- -------------------- -------------------- --------------------

 NULL NULL Tapan BIOCHEM

 ACCT Accounting NULL NULL

 ART Art NULL NULL

 CHEM Chemistry NULL NULL

 COSC Computer Science Richard COSC

 ENGL English NULL NULL

 MATH Mathematics Subhash MATH

 POLY Political Science NULL NULL

 UNKN NULL NULL

 (9 row(s) affected)

First, the LEFT JOIN was done, outer joining the department_to_major table and the Instructor table (so that all the rows of the department_to_major table were added to the result set). Then, a RIGHT JOIN was done, again joining the department_to_major table to the Instructor table (but this time all the rows of the Instructor table were added to the result set). Finally, a UNION of the two results sets was performed, creating the effect of a full outer join (where the rows from both the tables were added back after the join).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7-SECT-9]

7.9. Summary

In this chapter, we discussed the set operators available in SQL Server 2005. After reading this chapter, you should have an appreciation of how and when to use UNIONs and INTERSECTs, and how to handle the difference problem, although SQL Server 2005 does not have an explicit MINUS operator. Oftentimes queries can be approached in more than one way. In several places, we also showed how the same queries could also be approached without the use of set operators.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-7]

Chapter 7. Set Operations

In Chapter 4, we looked at how data can be retrieved from multiple tables using joins. In this chapter, we discuss how data can also be retrieved from multiple tables by using set operations[bookmark: IDX-CHP-7-0398]

. We look at the set operations available in SQL Server 2005. Because not all the SQL set operations are explicitly available in SQL Server 2005, we will also look at the IN predicate and its negation, NOT..IN, which are ways around the explicit set operations. In the final section of this chapter, we look at the UNION operation in relation to the join operation, and how the UNION operation can be used to get the results of some joins.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-1]

8.1. Subquery with an IN Predicate

[bookmark: IDX-CHP-8-0432]

[bookmark: IDX-CHP-8-0433]

Suppose that a query requests a list of names and numbers of students (which are in the Student table in our Student_course database) who have made As or Bs in any course (grades are in the Grade_report table in our Student_course database). You can complete this query as either a subquery or a join. As a subquery with an IN predicate, it will take the following form:

 SELECT Student.sname, Student.stno

 FROM Student

 WHERE "link to Grade_report"

 IN ("link to Student" - subquery involving Grade_report)

In this format, the part of the query that contains:

 SELECT Student.sname, Student.stno

 FROM Student

 WHERE "link to Grade_report"

is said to be the outer query. The part of the query that contains:

 ("link to Student" - subquery involving Grade_report)

is the inner query.

The link between the Student table and the Grade_report table is the student number. In the Student table, the appropriate column is stno, and in the Grade_report table, it is student_number. When linking the tables in the subquery with an IN predicate, the linking columns are all that can be mentioned in the WHERE..IN and in the result set of the subquery. Thus, the statement with a subquery is as follows:

 SELECT Student.sname, Student.stno

 FROM Student

 WHERE Student.stno

 IN (SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.grade = 'B' OR gr.grade = 'A')

 ORDER BY Student.stno

						[image:]			The part of the query before the IN is often called the outer query. The part of the query after the IN is called the inner query.

This query produces the following output (31 rows):

 sname stno

 -------------------- -----

 Lineas 2

 Mary 3

 Zelda 5

 Ken 6

 Mario 7

 Brenda 8

 Richard 10

 Kelly 13

 Lujack 14

 Reva 15

 Harley 19

 Donald 20

 Chris 24

 Lynette 34

 Susan 49

 Hillary 121

 Phoebe 122

 Holly 123

 Sadie 125

 Jessica 126

 Steve 127

 Cedric 129

 George 132

 Jerry 142

 Cramer 143

 Fraiser 144

 Francis 146

 Smithly 147

 Sebastian 148

 Lindsay 155

 Stephanie 157

 (31 row(s) affected)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-2]

8.2. The Subquery as a Join

[bookmark: IDX-CHP-8-0434]

[bookmark: IDX-CHP-8-0435]

An alternative way to perform the preceding query would be to use a join instead of a subquery, as follows:

 SELECT Student.sname, Student.stno

 FROM Student, Grade_report gr

 WHERE Student.stno = gr.student_number

 AND (gr.grade = 'B' OR gr.grade = 'A')

This query produces 67 rows of output (of which we show the first 15 rows here):

 sname stno

 --------- ------

 Lineas 2

 Lineas 2

 Lineas 2

 Lineas 2

 Mary 3

 Mary 3

 Mary 3

 Mary 3

 Mary 3

 Mary 3

 Brenda 8

 Brenda 8

 Brenda 8

 Richard 10

 Kelly 13

 .

 .

 .

 (67 row(s) affected)

Now, the question is why the join has 67 rows of output instead of 31 rows of output (produced by the subquery).

When the join version is used to combine tables, any Student-Grade_report row (tuple) that has equal student numbers and a grade of A or B is selected. Thus, you should expect many duplicate names in the output. To get the result without duplicates, add the qualifier DISTINCT to the join query as follows:

 SELECT DISTINCT Student.sname, Student.stno

 FROM Student, Grade_report AS gr

 WHERE Student.stno = gr.student_number

 AND (gr.grade = 'B' OR gr.grade = 'A')

This query produces the following output (31 rows):

 sname stno

 -------------------- ------

 Lineas 2

 Mary 3

 Zelda 5

 Ken 6

 Mario 7

 Brenda 8

 Richard 10

 Kelly 13

 Lujack 14

 Reva 15

 Harley 19

 Donald 20

 Chris 24

 Lynette 34

 Susan 49

 Hillary 121

 Phoebe 122

 Holly 123

 Sadie 125

 Jessica 126

 Steve 127

 Cedric 129

 George 132

 Jerry 142

 Cramer 143

 Fraiser 144

 Francis 146

 Smithly 147

 Sebastian 148

 Lindsay 155

 Stephanie 157

 (31 row(s) affected)

When DISTINCT is used, internal sorting is performed before the result set is displayed. Such internal sorting may decrease response time for a query.

In the subquery version of the query, duplication of names does not occur in the output. This is so because you are setting up a set (the subquery) from which you will choose namesa given name is either in the subquery set or it is not. Remember that the student number (stno) is unique in the Student table.

Also, the question of which is more efficient, the join or the subquery, depends on which SQL language and database you are using. Without using extra tools, one way to test alternatives is to try the queries on the data or a subset of the data. Database systems such as SQL Server 2005 provide ways (tools) to find out how queries are executed.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-3]

8.3. When the Join Cannot Be Turned into a Subquery

When a column from a table needs to be in the result set, that table has to be in the outer query. If two tables are being used, and if columns from both tables have to be in the result set, a join is necessary. This type of join cannot be turned into a subquery, because information from both tables has to be in the result set. But if the result set does not need the columns from more than one table, then the join can be turned into a subquery. The other tables can be included such that the filtering conditions can be in the subquery (or inner query), and the table that has the needed result set columns is in the outer query.

Consider this example. Our original query (the first query discussed in this chapter), requested the list of names and student numbers of students who made As or Bs in any course. Student names and numbers are both in the Student table; the Grade_report table is needed only as a filter, so we could write this as a subquery, and also turn it into a join.

Now, if this original query had asked for output from the Grade_report table also, such as, "list the names, numbers, and grades of all students who have made As or Bs," the query would be asking for information from both the Student and Grade_report tables. In this case, you would have to join the two tables to get the information; you could not just query the Grade_report table, because that table has no names in it. Similarly, the Student table contains no grades. So you would not be able to write this as a subquery. Refer again to the original query example:

 SELECT Student.sname, Student.stno

 FROM Student

 WHERE Student.stno

 IN (SELECT gr.student_number

 FROM Grade_report gr

 WHERE gr.grade = 'B' OR gr.grade = 'A')

 ORDER BY Student.stno

This query asks for information only from the Student table (student names and numbers). Although the query used the Grade_report table, nothing from the Grade_report table was in the outer result set. Again, the Grade_report table is needed only as a filter (to get the student numbers of those who have As and Bs); hence we were able to write this as a subquery.

The following join query asks for information from both the Student and Grade_report tables (a result set that lists both names and grades of all students who have made As or Bs in any course):

 SELECT DISTINCT Student.sname, gr.grade

 FROM Student, Grade_report gr

 WHERE Student.stno = gr.student_number

 AND (gr.grade = 'B' OR gr.grade = 'A')

This query produces 41 rows of output (of which we show the first 25 rows here):

 sname grade

 -------------------- -----

 Brenda A

 Brenda B

 Cedric A

 Cedric B

 Chris B

 Cramer B

 Donald A

 Fraiser B

 Francis B

 George B

 Harley B

 Hillary B

 Holly A

 Holly B

 Jerry A

 Jessica A

 Jessica B

 Kelly B

 Ken B

 Lindsay B

 Lineas A

 Lineas B

 Lujack A

 Lujack B

 Lynette A

 .

 .

 .

 (41 row(s) affected)

As this example demonstrates, if information from a table is needed in a result set, then that table cannot be buried in a subqueryit must be in the outer query.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-4]

8.4. More Examples Involving Joins and IN

[bookmark: IDX-CHP-8-0436]

[bookmark: IDX-CHP-8-0437]

The purpose of this section is to further demonstrate several queries that will and will not allow the use of the subquery. As we have discussed, some joins can be expressed as subqueries whereas others cannot. Further, all subqueries with the IN predicate can be re-formed as a join. Whether you can use a subquery depends on the final, outer result set. Some more examples will help clarify this point.

[bookmark: learnsqlsvr05-CHP-8-SECT-4.1]

8.4.1. Example 1

Find the names of all the departments that offer a course with INTRO in the title. To formulate our query, we need to use the Course table (to find the course names) and the Department_to_major table (to find the names of the departments).

Begin by viewing the column names in the tables.

						[image:]			If you have forgotten how to view the column names of a table, refer to Figure 1-21.

Figure 8-1 gives the column names in the Course table:

[bookmark: learnsqlsvr05-CHP-8-FIG-1]

Figure 8-1. Column names of the Course table

[image:]

Figure 8-2 gives the column names of the Department_to_major table:

[bookmark: learnsqlsvr05-CHP-8-FIG-2]

Figure 8-2. Column names of the Department_to_major table

[image:]

Our query needs a department name (dname) from the Department_to_major table. We also need course information from the Course table, because our query depends on a course name; however, no course information appears in the result set. We did not ask for the names of the courses, just that they have INTRO in the title. The result set asks only for department names. We can find this result by using a subquery, with the Department_to_major table as the outer query, because all the information in the result set is contained in the outer query. The query would be as follows:

 SELECT d2m.dname

 FROM Department_to_major d2m

 WHERE d2m.dcode

 IN (SELECT Course.offering_dept

 FROM Course

 WHERE Course.course_name LIKE '%INTRO%')

which produces the following output:

 dname

 Computer Science

 Political Science

 Chemistry

 (3 row(s) affected)

[bookmark: learnsqlsvr05-CHP-8-SECT-4.2]

8.4.2. Example 2

List the student name, student major code, and section identifier of students who earned Cs in courses taught by Professor Hermano (HERMANO).

First, we determine which tables are needed. We want to find the student name and major code, and a section identifier for courses taken, so we need the Student and Grade_report tables for the result set. We will need to use the Section table for a filter. The instructor does not appear in the result set. Again, it is a good idea to look at the column names in each of the tables first.

Figure 8-3 gives the column names of the Student table.

[bookmark: learnsqlsvr05-CHP-8-FIG-3]

Figure 8-3. Columns names of the Student table

[image:]

Figure 8-4 gives the column names of the Grade_report table.

[bookmark: learnsqlsvr05-CHP-8-FIG-4]

Figure 8-4. Column names of the Grade_report table

[image:]

Figure 8-5 gives the column names of the Section table.

After we have determined which tables we need, we have to determine where the columns that are needed in the result set are located. We need to get the names and major codes from the Student table, and the section identifiers from the Grade_report table. So the result set part of the query (the outer query) must contain the Student and Grade_report tables. The rest of the query can contain any other tables that we need to locate the columns. The resulting query may look like this (a combination of a join and a subquery):

[bookmark: learnsqlsvr05-CHP-8-FIG-5]

Figure 8-5. Column names of the Section table

[image:]

 SELECT s.sname, s.major, g.section_id

 FROM Student s, Grade_report g

 WHERE g.student_number = s.stno

 AND g.grade = 'C'

 AND g.section_id IN

 (SELECT t.section_id

 FROM Section t

 WHERE t.instructor LIKE 'HERMANO')

which produces the following output:

 sname major section_id

 -------------------- ----- ----------

 Richard ENGL 126

 (1 row(s) affected)

The previous query could also have been done as a three-table join, as follows:

 SELECT s.sname, s.major, t.section_id

 FROM Student s, Grade_report g, Section t

 WHERE s.stno = g.student_number

 AND g.section_id =t.section_id

 AND g.grade='C'

 AND t.instructor LIKE 'HERMANO'

[bookmark: learnsqlsvr05-CHP-8-SECT-4.3]

8.4.3. Example 3

List the name and major code of students who earned Cs in courses taught by Professor King (KING).

Again, we first need to determine which tables are needed. We need to collect student names and major codes in the result set and we need the Grade_report and Section tables for filtering conditions. (You viewed the columns available in each of these tables in the preceding example.) Next, we need to determine where the columns that are needed in the result set are located. In this example, they are all in the Student table.

Because the only table needed in the outer query is the Student table, we can structure the query in any of the following ways:

			Student join Grade_report join Section [three-table join]

			Student subquery (Grade_report join Section) [Student outer, join in subquery]

			Student join Grade_report subquery (Section) [similar to Example 2 but with a different result set]

			Student (subquery Grade_report (subquery Section)) [a three-level subquery]

Each of these queries produces the same result set with different efficiencies. We'll study them further in the exercises at the end of the chapter.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-5]

8.5. Using Subqueries with Operators

[bookmark: IDX-CHP-8-0438]

[bookmark: IDX-CHP-8-0439]

In this section, we look at examples that demonstrate the use of subqueries with comparison operators. These examples are based on the Room table, which has the following data:

 BLDG ROOM CAPACITY OHEAD

 ----- ----- -------- -----

 13 101 85 Y

 36 123 35 N

 58 114 60 NULL

 79 179 35 Y

 79 174 22 Y

 58 112 40 NULL

 36 122 25 N

 36 121 25 N

 36 120 25 N

 58 110 NULL Y

 (10 row(s) affected)

In previous chapters, you have seen SELECTs with conditions like the following:

 SELECT *

 FROM Room

 WHERE capacity = 25

In this example, 25 is a constant and = is a comparison operator. The constant can be replaced by a subquery, and the operator can be any of the comparison operators (=, <>, <, >, <=, or >=). For example, we could devise a query to tell us which classrooms have a below-average capacity by computing the average in a subquery and using a comparison operator, like this:

 SELECT *

 FROM Room

 WHERE capacity <

 (SELECT AVG(capacity)

 FROM Room)

This query produces the following six rows of output, showing six rooms with below-average capacity:

 BLDG ROOM CAPACITY OHEAD

 ------ ------ -------- -----

 36 120 25 N

 36 121 25 N

 36 122 25 N

 36 123 35 N

 79 174 22 Y

 79 179 35 Y

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (6 row(s) affected)

The only problem with using subqueries in this fashion is that the subquery must return only one row. If an aggregate function is applied to a table in the subquery in this fashion, you will always get only one roweven if there is a WHERE clause that excludes all rows, the subquery returns one row with a null value. For example, if we were to change the preceding query to the following and force multiple rows in the subquery,

 SELECT *

 FROM Room

 WHERE capacity <

 (SELECT AVG(capacity)

 FROM Room

 WHERE bldg = 99)

we would get:

 BLDG ROOM CAPACITY OHEAD

 ------ ------ -------- -----

 (0 row(s) affected)

We get no rows selected because there is no bldg = 99. If we were to change the query to the following:

 SELECT *

 FROM Room

 WHERE bldg =

 (SELECT bldg

 FROM Room

 WHERE capacity > 10)

we would get the following error message:

 BLDG ROOM CAPACITY OHEAD

 ------ ------ -------- -----

 Msg 512, Level 16, State 1, Line 1

 Subquery returned more than 1 value. This is not permitted when the subquery follows

 =, !=, <, <=, >, >= or when the subquery is used as an expression.

When using comparison operators, only single values are acceptable from the subquery. Again, to ensure that we get only one row in the subquery and hence a workable query, we can use an aggregate with no GROUP BY or HAVING (to be discussed in Chapter 9).

						[image:]			As with all queries, the caveat to audit the result is always applicable.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-6]

8.6. Summary

In this chapter, we have introduced the subquery. We have given examples of situations in which it would be good to use subqueries, cases where subqueries could be turned into joins, and cases where they cannot be turned into joins. After reading this chapter, you should have a better appreciation for subqueries and joins.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-7]

8.7. Review Questions

			What is a subquery?

			Which part of the query/subquery is considered the inner query, and which part is considered the outer query?

			Can a subquery always be done as a join? Why or why not?

			When writing a query that will have a subquery, how do you determine which table/tables will go in the outer query?

			Which predicate can usually be reformulated into a join?

			When using operators, are many values acceptable from a result of a subquery?

			What can you do to insure a working subquery?

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8-SECT-8]

8.8. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

Use the techniques from this chapter to construct and execute the following queries:

			Find the student numbers of students who have earned As or Bs in courses taught in the fall semester. Do this in two ways: first using a subquery, and then using a join.

			Find all students who took a course offered by the Accounting department. List the student name and student number, the course name, and the grade in that course. (Hint: Begin with Department_to_major and use an appropriate WHERE.) Note that this task cannot be done with a multilevel subquery. Why?

			For every students who is a sophomore (class = 2), find the name and the name of the department that includes the student's major.

			Find the names of the departments that offer courses at the junior or senior levels (either one) but not at the freshman level. The course level is the first digit after the prefix; for example, AAAA3yyy is a junior course, and so on.

Hint: Begin by creating the outer querythe names of departments that offer courses at the junior or senior levels. Save this query as q8_4. Then, construct the subquerya list of departments that offer courses at the freshman level. Save the subquery as a view. Examine both lists of departments. When you have the outer query and the subquery results, recall the original query that you saved (q8_4) and add the subquery. Check your result with the department lists you just generated. Redo the last part of the experiment with your view. You should get the same result.

			Find the names of courses that are prerequisites for other courses. List the course number and name, and the number and name of the prerequisite.

			List the names of instructors who teach courses that have other than three-hour credits. Do the problem in two ways: once with IN and once with NOT..IN.

			Create a table called Secretary with the columns dcode (of data type CHAR(4)) for department code and name (of data type VARCHAR(20)) for the secretary name. Populate the table as follows:

			Secretary

			dCode

			name

			ACCT

			Beryl

			COSC

			Kaitlyn

			ENGL

			David

			HIST

			Christina

			BENG

			Fred

			HINDI

			Chloe

			Create a query that lists the names of departments that have secretaries (use IN and the Secretary table in a subquery with the Department_to_major table in the outer query). Save this query as q8_7a.

			Create a query that lists the names of departments (using the Department_to_major table) that do not have secretaries (use NOT IN). Save this query as q8_7b.

			Add one more row to the Secretary table that contains <null,'Brenda'> (which you could see, for example, in a situation in which you have hired Brenda but have not yet assigned her to a department).

			Recall q8_7a and rerun it. Recall q87_b and rerun it.

The behavior of NOT..IN when nulls exist may surprise you. If nulls may exist in the subquery, then NOT..IN either should not be used (Chapter 10 shows how to use another predicate, NOT EXISTS, which is a workaround to this problem), or should include AND whatever IS NOT NULL. If you use NOT..IN in a subquery, you must either ensure that nulls will not occur in the subquery or use some other predicate (such as NOT EXISTS). Perhaps the best advice is to avoid NOT..IN unless you cannot figure out another way to solve a problem.

			To see a correct answer, add the phrase WHERE dcode IS NOT NULL to the subquery in the IN and NOT..IN cases and run them again.

Do not delete the Secretary table, because we will revisit this problem in Chapter 10.

			Devise a list of course names that are offered in the fall semester in rooms where the capacity is equal to or above the average room size.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-8]

Chapter 8. Joins Versus Subqueries

The purpose of this chapter is to demonstrate the use of subqueries. Subqueries may often be used as alternatives to joins. There are two main issues to consider when choosing between subqueries and[bookmark: IDX-CHP-8-0431]

 joins (and other techniques for combining tables). First, you must consider how to get the information. By understanding the limitations of joins and subqueries (as well as sets and other table-combining techniques), you will increase your choices as to how to get information from the database. Second, you must also consider performance. You usually a have choice of how to get multi-table informationjoins, sets, subqueries, views, and so forth. In larger databases, you need to be flexible and consider other choices if a query performs poorly and/or if the query is done often.

						[image:]			Although set operations logically are also viable choices for retrieving data from multiple tables, set operations (discussed in Chapter 7) are less common and usually less efficient than joins and subqueries.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-1]

9.1. A SELECT in Modified BNF

[bookmark: IDX-CHP-9-0441]

[bookmark: IDX-CHP-9-0442]

BNF, short for Backus Naur Form, is used to describe syntax rules. A general form (in modified BNF) of the SELECT statement for SQL Server, with the FROM, WHERE, GROUP BY, HAVING and ORDER BY would be:

SELECT result-set

[FROM Tables]

[WHERE row-filter]

[GROUP BY column names]

[HAVING after-filter on groups]

[ORDER BY column names]

The [..] notation means that the contained code is optional.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-2]

9.2. The GROUP BY Clause

GROUP BY is used in conjunction with aggregate functions to group data on the basis of the same values in a column. GROUP BY returns one row for each value of the column(s) that is grouped. You can use GROUP BY to group by one column or multiple columns.

As an example of how to group by one column, the following statement shows how you can use the aggregate COUNT to extract the number of class groups (number of students in each class) from the Student table:

SELECT class, COUNT(*) AS [count]

FROM Student

GROUP BY class

This query produces the following five rows of output, which is grouped by one column, class:

class count

----- -----------

NULL 10

1 11

2 10

3 7

4 10

(5 row(s) affected)

This type of statement gives you a new way to retrieve and organize aggregate data. Other aggregate functions would have a similar syntax.

						[image:]			You have to group by at least the attributes/expressions you are aggregating.

If a GROUP BY clause contains a two-column specification, the result is aggregated and grouped by two columns. For example, the following is COUNT of class and major from the Student table:

SELECT class, major, COUNT(*) AS [count]

FROM Student

GROUP BY class, major

This query produces the following output (24 rows), which is grouped by class within major:

class major count

----- ----- -----------

NULL NULL 3

2 ACCT 1

4 ACCT 4

3 ART 1

3 CHEM 1

4 CHEM 1

NULL COSC 1

1 COSC 4

2 COSC 2

4 COSC 3

NULL ENGL 1

1 ENGL 3

2 ENGL 2

3 ENGL 4

NULL MATH 2

2 MATH 3

3 MATH 1

4 MATH 1

NULL POLY 2

1 POLY 3

2 POLY 2

4 POLY 1

NULL UNKN 1

1 UNKN 1

(24 row(s) affected)

The sequence of the columns in a GROUP BY clause has the effect of ordering the output. If we change the order of the GROUP BY like this:

SELECT class, major, COUNT(*) AS [count]

FROM Student

GROUP BY major, class

our result will look like this:

class major count

----- ----- -----------

NULL NULL 3

NULL COSC 1

NULL ENGL 1

NULL MATH 2

NULL POLY 2

NULL UNKN 1

1 COSC 4

1 ENGL 3

1 POLY 3

1 UNKN 1

2 ACCT 1

2 COSC 2

2 ENGL 2

2 MATH 3

2 POLY 2

3 ART 1

3 CHEM 1

3 ENGL 4

3 MATH 1

4 ACCT 4

4 CHEM 1

4 COSC 3

4 MATH 1

4 POLY 1

(24 row(s) affected)

Here the output is grouped by major within class.

A statement like the following will cause a syntax error, because it says that you are to count both class and major, but GROUP BY class only:

SELECT class, major, COUNT(*)

FROM Student

GROUP BY class

This query results in the following error message:

Msg 8120, Level 16, State 1, Line 1

Column 'Student.MAJOR' is invalid in the select list because it is not contained in either

 an aggregate function or the GROUP BY clause.

To be syntactically and logically correct, you must have all the non aggregate columns of the result set in the GROUP BY clause. For example, let's take a look at the data of Table 9-1.

[bookmark: learnsqlsvr05-CHP-9-TABLE-1]

Table 9-1. Room table

			

BLDG ROOM CAPACITY OHEAD

----- ----- -------- -----

13 101 85 Y

36 123 35 N

58 114 60 NULL

79 179 35 Y

79 174 22 Y

58 112 40 NULL

36 122 25 N

36 121 25 N

36 120 25 N

58 110 NULL Y

(10 row(s) affected)

The following query would be improper, because you must GROUP BY "ohead" to SUM capacities for each ohead value:

SELECT ohead, SUM(capacity)

FROM Room

						[image:]			ohead, an attribute in the Room table (in our Student_Course database), is short for rooms with overhead projectors.

This query would produce an error message similar to what we saw previously:

Msg 8120, Level 16, State 1, Line 1

Column 'Room.OHEAD' is invalid in the select list because it is not contained in either an

 aggregate function or the GROUP BY clause.

If you SELECT columns and use an aggregate function, you must GROUP BY the non aggregate attributes. The correct version of the last statement is as follows:

SELECT ohead, SUM(capacity) AS [sum]

FROM Room

GROUP BY ohead

which produces the following three rows of output:

ohead sum

----- -----------

NULL 100

N 110

Y 142

Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

This is the sum of room capacities for rooms that have no overhead projectors (N), rooms that have overhead projectors (Y), and rooms in which the overhead projector capacity is unknown (null).

Observe that in the Room table, some rooms have null values for ohead, and the null rows are summed and grouped along with the non-null rows.

[bookmark: learnsqlsvr05-CHP-9-SECT-2.1]

9.2.1. GROUP BY and ORDER BY

[bookmark: IDX-CHP-9-0443]

[bookmark: IDX-CHP-9-0444]

[bookmark: IDX-CHP-9-0445]

To enhance the display of a GROUP BY clause, you can combine it with an ORDER BY clause. Consider the following example:

SELECT class, major, COUNT(*) AS [count]

FROM Student

GROUP BY class, major

The output for this query was presented earlier in the chapter.

This result set can also be ordered by any other column from the result set using the ORDER BY. For instance, the following example orders the output in descending order by COUNT(*):

SELECT class, major, COUNT(*) AS [count]

FROM Student

GROUP BY class, major

ORDER BY COUNT(*) DESC

This query produces the following output (24 rows):

class major count

------ ----- -----------

4 ACCT 4

1 COSC 4

3 ENGL 4

2 MATH 3

4 COSC 3

1 ENGL 3

NULL NULL 3

1 POLY 3

2 POLY 2

NULL POLY 2

2 COSC 2

2 ENGL 2

NULL MATH 2

3 MATH 1

4 MATH 1

NULL ENGL 1

2 ACCT 1

3 ART 1

3 CHEM 1

4 CHEM 1

NULL COSC 1

4 POLY 1

NULL UNKN 1

1 UNKN 1

(24 row(s) affected)

[bookmark: learnsqlsvr05-CHP-9-SECT-2.2]

9.2.2. GROUP BY and DISTINCT

[bookmark: IDX-CHP-9-0446]

[bookmark: IDX-CHP-9-0447]

[bookmark: IDX-CHP-9-0448]

When a SELECT clause includes all the columns specified in a GROUP BY clause, the use of the DISTINCT function is unnecessary and inefficient, because the GROUP BY clause groups rows in such a way that the column(s) that are grouped will not have duplicate values.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-3]

9.3. The HAVING Clause

The GROUP BY and HAVING clauses are used together. The HAVING clause is used as a final filter (rather than as a conditional filter) on the aggregate column values in the result set of a SELECT statement. In other words, the query has to be grouped before the HAVING clause can be applied. For example, consider the following statement, which displays the count of students in various classes (classes of students = 1, 2, 3, 4, corresponding to freshman, sophomore, and so on):

SELECT class, COUNT(*) AS [count]

FROM Student

GROUP BY class

This query produces the following output:

class count

----- -----------

NULL 10

1 11

2 10

3 7

4 10

(5 row(s) affected)

If you are interested only in classes that have more than a certain number of students in them, you could use the following statement:

SELECT class, COUNT(*) AS [count]

FROM Student

GROUP BY class

HAVING COUNT(*) > 9

which produces the following four rows of output:

class count

----- -----------

NULL 10

1 11

2 10

4 10

(4 row(s) affected)

[bookmark: learnsqlsvr05-CHP-9-SECT-3.1]

9.3.1. HAVING and WHERE

[bookmark: IDX-CHP-9-0449]

Whereas HAVING is a final filter in a SELECT statement, the WHERE clause, which excludes rows from a result set, is a conditional filter. HAVING is used to filter based on aggregate values, WHERE cannot do that. Consider the following two queries:

SELECT class, COUNT(*) AS [count]

FROM Student

GROUP BY class

HAVING class = 3

SELECT class, COUNT(*) AS [count]

FROM Student

WHERE class = 3

GROUP BY class

Both queries produce the following output:

class count

----- -----------

3 7

(1 row(s) affected)

In a typical implementation, the first of these two queries is less efficient because the query engine has to complete the query before removing rows WHERE class = 3 from the result. In the second version, the rows WHERE class = 3 are removed before the grouping takes place. WHERE is not always a substitute for HAVING, but when it can be used instead of HAVING, it should be. Notice that in the example:

SELECT class, COUNT(*) AS [count]

FROM Student

GROUP BY class

HAVING COUNT(*) > 9

HAVING and WHERE are not interchangeable because the grouping has to take place before the HAVING could have an effect. You cannot know in advance what the counts for each class are until they are counted.

Consider the following query, its meaning, and the processing that is required to finalize the result set:

SELECT class, major, COUNT(*) AS [count]

FROM Student

WHERE major = 'COSC'

GROUP BY class, major

HAVING COUNT(*) > 2

This query produces the following output:

class major count

----- ----- -----------

1 COSC 4

4 COSC 3

(2 row(s) affected)

In this example, all computer science (COSC) majors (per the WHERE clause) will be grouped and COUNTed and then displayed only if COUNT(*) > 2. The query might erroneously be interpreted as "Group and count all COSC majors by class, but only if there are more than two in a class." This interpretation is wrong, because SQL applies the WHERE, then applies the GROUP BY, and, finally, filters with the HAVING criterion.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-4]

9.4. GROUP BY and HAVING: Aggregates of Aggregates

[bookmark: IDX-CHP-9-0450]

[bookmark: IDX-CHP-9-0451]

A "usual" GROUP BY has an aggregate and a column that are grouped like this:

SELECT COUNT(stno) AS [count of student no], class

FROM Student

GROUP BY class

This produces a result set of 5 rows of counts by class:

count of student no class

------------------- -----

10 NULL

11 1

10 2

7 3

10 4

(5 row(s) affected)

Although you must have class or some other attribute in the GROUP BY, you do not have to have the class in the result set. Consider the following query, which generates the same numeric information as the previous query, but does not report the class in the result:

SELECT COUNT(stno) AS [count of student no]

FROM Student

GROUP BY class

This query produces the following five rows of output:

count of student no

10

11

10

7

10

(5 row(s) affected)

This previous example may seem contradictory to the preceding discussion, but it is not. You must have all the non aggregate columns from the result set in the GROUP BY, but you do not have to have the columns in the result set that you are grouping. That example may prove useful when a grouped result is needed in a filter. For example, how would you find the class with the most students?

[bookmark: learnsqlsvr05-CHP-9-SECT-4.1]

9.4.1. Aggregation and Grouping in SQL Server 2005

[bookmark: IDX-CHP-9-0452]

SQL Server 2005 will not allow you to handle aggregation and grouping by nesting[bookmark: IDX-CHP-9-0453]

 aggregates. For example, suppose you want to find the class with the minimum number of students. You might try the following query:

SELECT MIN(COUNT(stno))

FROM Student

GROUP BY class

Though it may seem logical, this query will not work in SQL Server 2005. It will produce the following error message:

Msg 130, Level 15, State 1, Line 1

Cannot perform an aggregate function on an expression containing an aggregate or a

subquery.

The MIN function is an aggregate function, and aggregate functions operate on rows within tables. In this case, the query is asking MIN to operate on a table of counted classes that have not yet been calculated. The point is that SQL Server 2005 does not handle this mismatch of aggregation and grouping.

						[image:]			This mismatch of aggregation and grouping can be handled by other SQL languages, such as Oracle.

To handle this mismatch of aggregation and grouping in SQL Server 2005, you can use derived structures such as temporary tables, inline views, or regular views (derived structures are covered in Chapter 6). Using either a temporary table or an inline view is the most logical way to solve this problem, so only these two choices are described here.

[bookmark: learnsqlsvr05-CHP-9-SECT-4.1.1]

9.4.1.1. Aggregation and grouping handled with a global temporary table

This section shows how we can handle the mismatch of aggregation and grouping (described earlier) using a global temporary table.

The following steps describe how to use a global temporary table to find the class with the minimum number of students:

			Display the counts of classes, grouped by class:

SELECT COUNT(stno) AS [count of students]

FROM Student

GROUP BY class

This query produces the following five rows of output:

count class

----------- ------

10 NULL

11 1

10 2

7 3

10 4

(5 row(s) affected)

			To find the minimum number of students in a class, count the students (you could use stno for student number) grouped by class, and put this result in ##Temp1 (a global temporary table)--shown by the first query following, and then find the minimum number of students in a class from the global temporary table, ##Temp1, with SELECT MIN(count) AS [MINIMUM COUNT] FROM ##Temp1, and then use this information in a subquery with a HAVING clause as follows: First type the query:

SELECT (COUNT([stno])) AS [count], class INTO ##Temp1

FROM Student

GROUP BY [class]

After executing the previous query, type:

SELECT COUNT(stno) AS [count of stno], class

FROM Student

GROUP BY class

HAVING COUNT(stno) =

(SELECT MIN(count) AS [Minimum count]

FROM ##Temp1)

This query produces the desired output (the class with the minimum number of students):

count of stno class

------------- -----

7 3

(1 row(s) affected)

[bookmark: learnsqlsvr05-CHP-9-SECT-4.1.2]

9.4.1.2. Aggregation and grouping handled with an inline view

As described in Chapter 6, you can put a query in the FROM clause of a SELECT statement to create an inline view. An inline view exists only during the execution of a query.

The following steps describe how to use an inline view to find the class with the minimum number of students:

			Count the stno in the FROM clause of the SELECT statement as follows:

SELECT "Min of Count" = MIN(c)

FROM (SELECT c = COUNT(stno)

FROM Student

GROUP BY class) AS in_view

Because SQL Server 2005 cannot directly find aggregates of aggregates, in the previous query, we give a name to the COUNT in the inline view, c, to temporarily store the aggregate result in the inline view, in_view. We then operate on the inline view as though it were a table and find the minimum value for c.

The previous query produces the following output:

Min of Count

7

(1 row(s) affected)

			To find out which class has the minimum count, you can write the final query using the previous query as a subquery with a HAVING clause in the outer part of the final query, as follows:

SELECT class, "Count of Class" = COUNT(*)

FROM Student

GROUP BY class

HAVING COUNT(*) =

(SELECT MIN(c)

FROM (SELECT COUNT(stno) AS [c]

FROM Student

GROUP BY class) AS in_view)

This query produces the desired output:

class Count of Class

----- --------------

3 7

(1 row(s) affected)

So, although SQL Server 2005 does not handle a mismatch of aggregation and HAVING, you can use your knowledge of temporary tables and inline views to work around the problem. This problem may also be solved using regular views. It is also noteworthy to see the process of query development in that some problems require using small queries and building from them to a final result.

						[image:]			Once again, Chapter 6 covers the advantages and disadvantages of using each one of the derived structures.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-5]

9.5. Auditing in Subqueries

[bookmark: IDX-CHP-9-0454]

[bookmark: IDX-CHP-9-0455]

[bookmark: IDX-CHP-9-0456]

In this section, we consider a potential problem of using aggregation with subqueries. As with Cartesian products and joins, aggregation hides details and should always be audited. The two tables that follow will be used to illustrate this problem.

Table 9-2 is similar to the Grade_report table and contains a student section identifier (ssec), grades (gd), and student names (sname).

[bookmark: learnsqlsvr05-CHP-9-TABLE-2]

Table 9-2. GG table

			

ssec gd sname

----------- ---- ------------

100 A Brenda

110 B Brenda

120 A Brenda

200 A Brenda

210 A Brenda

220 B Brenda

100 A Richard

100 B Doug

200 A Richard

110 B Morris

(10 row(s) affected)

						[image:]			Tables 9-2 and 9-3 (GG and SS) have not been created for you. You have to create them (and insert the records shown) and then run the queries that follow.

Table 9-3 is similar to the Section table and contains a section identifier (sec) and an instructor name (iname).

[bookmark: learnsqlsvr05-CHP-9-TABLE-3]

Table 9-3. SS table

			

sec iname

----------- ------------

100 Jones

110 Smith

120 Jones

200 Adams

210 Jones

(5 row(s) affected)

Now suppose that you want to find out how many As each instructor awarded. You might start with a join of the GG and SS tables. A normal equi-join would be as follows:

SELECT *

FROM GG, SS

WHERE GG.ssec = SS.sec

This query would produce the following output (nine rows):

ssec gd sname sec iname

----------- ---- ------------ ----------- ------------

100 A Brenda 100 Jones

110 B Brenda 110 Smith

120 A Brenda 120 Jones

200 A Brenda 200 Adams

210 A Brenda 210 Jones

100 A Richard 100 Jones

100 B Doug 100 Jones

200 A Richard 200 Adams

110 B Morris 110 Smith

(9 row(s) affected)

In addition, the following query tells you that there are six As in the GG table:

SELECT COUNT(*) AS [Count of As]

FROM GG

WHERE gd = 'A'

giving:

Count of As

6

(1 row(s) affected)

Now, if you want to find out which instructor gave the As, you would type this query:

SELECT SS.iname

FROM SS, GG

WHERE SS.sec = GG.ssec

 AND GG.gd = 'A'

You get the following six rows of output:

iname

Jones

Jones

Adams

Jones

Jones

Adams

(6 row(s) affected)

Now, to find "how many" As each instructor gave, include a COUNT and GROUP BY as follows:

SELECT SS.iname AS [iname], COUNT(*) AS [count]

FROM SS, GG

WHERE SS.sec = GG.ssec

 AND GG.gd = 'A'

GROUP BY SS.iname

This query produces the following output:

iname count

------------ -----------

Adams 2

Jones 4

(2 row(s) affected)

This shows that instructor Adams gave two As and instructor Jones gave four As. So far, so good. You should note that the final count/grouping has the same number of As as the original tablesthe sum of the counts equals 6. Now, if you had devised a COUNT query with a sub-SELECT, you could get an answer that looked correct but in fact was not. For example, consider the following subquery version of the preceding join query:

SELECT SS.iname AS [iname], COUNT(*) AS [count]

FROM SS

WHERE SS.sec IN

 (SELECT GG.ssec

 FROM GG

 WHERE GG.gd = 'A')

GROUP BY SS.iname

This query produces the following output:

iname count

------------ -----------

Adams 1

Jones 3

(2 row(s) affected)

The reason that you get this output is that the second query is counting names of instructors and whether an A is present in the set of courses that this instructor teachesnot how many As are in the set, just whether any exist. The previous join query gives you all the As in the joined table and hence gives the correct answer to the question "How many As did each instructor award?" The sub-SELECTed query answers a different question: "In how many sections did the instructor award an A?"

The point in this example is that if you are SELECTing and COUNTing, it is a very good idea to audit your results often. If you want to COUNT the number of As by instructor, begin by first counting how many As there are. Then, you can construct a query to join and count. You should be able to total and reconcile the number of As to the number of As by instructor. The fact that the result makes sense is very useful in determining (albeit not proving) correctness.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-6]

9.6. Nulls Revisited

[bookmark: IDX-CHP-9-0457]

[bookmark: IDX-CHP-9-0458]

Nulls present a complication with regard to aggregate functions and other queries, because nulls are never equal to, less than, greater than, or not equal to any value. Using aggregates by themselves on columns that contain nulls will ignore the null values. For example, suppose you have the following Table 9-4 called Sal.

[bookmark: learnsqlsvr05-CHP-9-TABLE-4]

Table 9-4. Sal table

			

Name salary

------------ -----------

Joe 1000.00

Sam 2000.00

Bill 3000.00

Dave NULL

(4 row(s) affected)

						[image:]			Table 9-4 (Sal) has not been created for you. You have to create it to run the queries that follow.

Now consider the following query:

SELECT COUNT(*) AS [count], AVG(salary) AS [average], SUM(salary) AS [sum], MAX(salary)

AS [max], MIN(salary) AS [min]

FROM Sal

which produces the following output:

count average sum max min

----------- ----------- ----------- ----------- -----------

4 2000.00 6000.00 3000.00 1000.00

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

COUNT (*) counts all the rows. But, the AVERAGE, SUM, MAX, and MIN functions ignore the nulled salary row in computing the aggregates. Counting columns also indicates the presence of nulls. If you count by using the following query:

SELECT COUNT(name) AS [Count of Names]

FROM Sal

you get:

Count of Names

4

(1 row(s) affected)

If you use the "salary" column, you get:

SELECT COUNT(salary) AS [Count of salary]

FROM Sal

which produces:

Count of salary

3

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

This result indicates that you have a null salary. If you want to include nulls in the aggregate and have a rational value to substitute for a value that is not known (a big assumption), you can use the ISNULL function.

						[image:]			The ISNULL function was introduced and discussed in Chapter 5.

ISNULL returns a value if the value is null. ISNULL has the form ISNULL(column name, value if null), which is used in place of the column name. For example, if you type the following:

SELECT name, ISNULL(salary, 0) AS [salary]

FROM Sal

you get the following output:

name salary

------------ -----------

Joe 1000.00

Sam 2000.00

Bill 3000.00

Dave 0.00

(4 row(s) affected)

If you type the following:

SELECT COUNT(ISNULL(salary,0)) AS [Count of salary]

FROM Sal

you get:

Count of salary

4

(1 row(s) affected)

The "Count of salary" is now 4 instead of the 3 that you received earlier when the ISNULL function was not used.

If you type the following:

SELECT AVG(ISNULL(salary, 0)) AS [Average of salary]

FROM Sal

you get:

Average of salary

1500.00

(1 row(s) affected)

The "Average of salary" is now 1500.00, instead of the 2000.00 that you had received earlier because the zero value for the null was used in the calculation. What seems almost contradictory to these examples is that when grouping is added to the query, nulls in the grouped column are included in the result set. So, if the Sal table had another column like this:

Name salary job

------------ ----------- --------------------

Joe 1000.00 Programmer

Sam 2000.00 NULL

Bill 3000.00 Plumber

Dave NULL Programmer

And if you ran a query like this:

SELECT SUM(salary) AS [Sum of salary], job

FROM Sal

GROUP BY job

You would get the following output:

Sum of salary Job

------------- --------------------

2000.00 NULL

3000.00 Plumber

1000.00 Programmer

Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

The aggregate will ignore values that are null, but grouping will compute a value for the nulled column value.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-7]

9.7. Summary

In this chapter we not only introduced the GROUP BY and HAVING clauses, but we also discussed what would and would not work and some efficiency issues. We discussed how aggregates and grouping can be handled in SQL Server 2005 and how it is always important to audit your queries and the results for correctness.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-8]

9.8. Review Questions

			What do aggregate functions do?

			How does the GROUP BY clause work?

			What is the difference between a GROUP BY and ORDER BY?

			What is the HAVING clause used for?

			Can the WHERE clause always be considered a substitute for the HAVING clause? Why or why not?

			Do functions of functions have to be handled in a special way in Server SQL 2005?

			Will nulls in grouped columns be included in a result set?

			How do aggregate functions treat nulls?

			Does the sequence of the columns in a GROUP BY clause have an effect on the end result?

			When would it not make sense to use the GROUP BY and DISTINCT functions together?

			Is GROUP BY affected by nulls?

			Which comes first in a SELECT statement, an ORDER BY or GROUP BY? Why?

			The GROUP BY and ________________ clauses are used together.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9-SECT-9]

9.9. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also, use appropriate column headings when displaying your output.

			Display a list of courses (course names) that have prerequisites and the number of prerequisites for each course. Order the list by the number of prerequisites.

			How many juniors (class = 3) are there in the Student table?

			Group and count all MATH majors by class and display the count if there are two or more in a class. (Remember that class here refers to freshman, sophomore, and so on and is recorded as 1, 2, and so on.)

			Print the counts of As, Bs, and so on from the Grade_report table.

			Using temporary tables (local or global), print the minimum counts of the grades (that is, if there were 20 As, 25 Bs, and 18 Cs, you should print the minimum count of grades as C) from the Grade_report table.

			Using inline views, print the maximum counts of the grades (that is, if there were 20 As, 25 Bs, and 18 Cs, you should print the maximum count of grades as B) from the Grade_report table.

			Why would you not want to use views for this problem?

			Print the counts of course numbers offered in descending order by count. Use the Section table only.

			Create a table with names and number-of-children (NOC). Populate the table with five or six rows. Use COUNT, SUM, AVG, MIN, and MAX on the NOC attribute in one query and confirm that the numbers you get are what you expect.

			Create a table of names, salaries and job locations. Populate the table with at least 10 rows and no fewer than three job locations. (There will be several employees at each location.) Find the average salary for each job location with one SELECT.

			Print an ordered list of instructors and the number of As they assigned to students. Order the output by number of As (lowest to greatest). You can (and probably will) ignore instructors that assign no As.

			Create a table called Employees with a name, a salary and job title. Include exactly six rows. Make the salary null in one row, the job title null in another, and both the salary and the job title in another. Use this data:

			Name

			Salary

			Title

			Mary

			1000

			Programmer

			Brenda

			3000

			

			Stephanie

			

			Artist

			Alice

			

			

			Lindsay

			2000

			Artist

			Christina

			500

			Programmer

			Display the table.

			Display count, sum, maximum, minimum, and average salary.

			Display count, sum, maximum, minimum, and average salary, counting salary as 0 if no salary is listed.

			Display the average salary grouped by job title on the table as is.

			Display the average salary grouped by job title when null salary is counted as 0.

			Display the average salary grouped by job title when salary is counted as 0 if it is null and include a value for "no job title."

			Find the instructor and the section where the maximum number of As were awarded.

			Find the COUNT of the number of students by class who are taking classes offered by the computer science (COSC) department. Perform the query in two ways: once using a condition in the WHERE clause and once filtering with a HAVING clause. (Hint: These queries need a five-table join.)

Delete (DROP) all of your "scratch" tables (the ones you created just for this exercise: Employees, NOC, and any others you may have created).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-CHP-9]

Chapter 9. Aggregation and GROUP BY

The SQL construction GROUP BY is a SELECT statement clause that is designed to be used in conjunction with aggregation (discussed in Chapter 5) to group data of similar types. An aggregate function is one that extracts informationsuch as a COUNT of rows or an average, minimum, or maximumby operating on multiple rows. We first discuss using GROUP BY on one column, and then on two columns. Then, we look at how to use GROUP BY in conjunction with the ORDER BY, HAVING, and WHERE clauses. Finally, we discuss aggregation with subqueries and complexities that nulls present in aggregate functions and[bookmark: IDX-CHP-9-0440]

 other queries. As we introduce the GROUP BY and HAVING, and expand on the ORDER BY (which has been introduced earlier) in this chapter, we first present a SELECT in modified BNF showing the GROUP BY, HAVING and ORDER BY, before we start the rest of the discussion.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

Colophon

The animal on the cover of Learning SQL on SQL Server 2005 is a Spanish ribbed newt (Pleurodeles waltl). This salamander inhabits the ponds, lakes, and calm brooks of the Iberian Peninsula and Morocco. The ribbed newt is an amphibian, but is rarely found on land; if its watery habitat dries out, the newt burrows into mud and waits for rain.

The ribbed newt gets its name from the pointed ribs that can often be seen poking through its skin. This feature protects the newts from some enemiestheir obviously sharp bones discourage predators in search of tender prey. When attacked, the newt can force the ribs through its own skin, presenting a pointed defense. The ribs also resemble warts, common in more poisonous newt species. Although the ribbed newt is not as toxic as others, their similarities give predators pause.

The ribbed newt is an able swimmer and voracious predator. It consumes most attainable moving prey, including aquatic insects, other invertebrates or amphibians, and small fish.

The cover image is from the Dover Pictoral Archive. The cover font is Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

Dedication

Dedicated to my father, Santosh Saha, and mother, Ranu Saha

and

my husband, Subhash Bagui

and

my sons, Sumon and Sudip

and

Pradeep, Priyashi, and Piyali Saha

S.B.

To my wife, Brenda,

and

my children: Beryl, Rich, Gen, and Mary Jo

R.E.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-GLOSS]

Important Commands and Functions

			ABS

[bookmark: IDX-GLOSS-0625]

			Row-level function that returns an absolute value.

			ALTER COLUMN

[bookmark: IDX-GLOSS-0626]

			Command used to change a column's size or type in a table.

			ALTER TABLE

[bookmark: IDX-GLOSS-0627]

			Command used to modify a table's definition.

			AND

[bookmark: IDX-GLOSS-0628]

			Logical operator that, when used in a WHEREclause, means that both criteria have to be met for a row to be included in the result set.

			ASC

[bookmark: IDX-GLOSS-0629]

			Function used in ORDER BY to put a SQL result set in ascending order.

			AVG

[bookmark: IDX-GLOSS-0630]

			Aggregate function used to average a group of row values.

			BETWEEN

[bookmark: IDX-GLOSS-0631]

			An operator used to determine whether a value occurs within a given range of values (inclusive); used with a WHERE clause.

			BIGINT

[bookmark: IDX-GLOSS-0632]

			Integer data type that can store numbers from -263 to 263 - 1.

			BINARY

[bookmark: IDX-GLOSS-0633]

			Data type used to store strings of bits.

			BIT

[bookmark: IDX-GLOSS-0634]

			Data type that consumes only a single bit of storage.

			CAST

[bookmark: IDX-GLOSS-0635]

			Conversion function used to change a data type of a column within a query.

			CEILING

[bookmark: IDX-GLOSS-0636]

			Row-level function that returns the next larger integer.

			CHAR(size)

[bookmark: IDX-GLOSS-0637]

			Character data type used when the column length is known and unvarying.

			CHARACTER

[bookmark: IDX-GLOSS-0638]

			Data type used to store any combination of letters, numbers, and symbols.

			CHARINDEX

[bookmark: IDX-GLOSS-0639]

			String function that returns the starting position of a specified pattern.

			CHECK

[bookmark: IDX-GLOSS-0640]

			Integrity constraint used to create bounds for a column value.

			CONSTRAINTS

			Restrictions that can be placed on values when creating database objects such as tables and views.

			CONVERT

[bookmark: IDX-GLOSS-0641]

			Conversion function used to explicitly convert to a given data type within in a query.

			COUNT(*)

[bookmark: IDX-GLOSS-0642]

			Function used to count the total number of rows in a result set.

			COUNT(attribute)

			Group function that counts the number of rows where attribute is not NULL.

			CREATE INDEX

[bookmark: IDX-GLOSS-0643]

			Command used to create an index.

			CREATE DATABASE

[bookmark: IDX-GLOSS-0644]

			Command used to create a database.

			CREATE SYNONYM

[bookmark: IDX-GLOSS-0645]

			Command used to create a synonym.

			CREATE TABLE

[bookmark: IDX-GLOSS-0646]

			Command used to create a table.

			CREATE VIEW

[bookmark: IDX-GLOSS-0647]

			Command used to create a view.

			CROSS JOIN

[bookmark: IDX-GLOSS-0648]

			A query option used to generate a Cartesian product.

			DATE

			Oracle equivalent of DATETIME[bookmark: IDX-GLOSS-0649]

.

			DATEADD

[bookmark: IDX-GLOSS-0650]

			Date function that adds to a specified part of a date.

			DATEDIFF

[bookmark: IDX-GLOSS-0651]

			Date function that returns the difference between two dates.

			DATEFORMAT

[bookmark: IDX-GLOSS-0652]

			Date function that controls how SQL Server interprets date constants that are entered for dates.

			DATEPART

[bookmark: IDX-GLOSS-0653]

			Date function that returns the specified part of the date requested.

			DATETIME

			Data type that can be used for dates.

			DAY

[bookmark: IDX-GLOSS-0654]

			Date function that extracts a day from a date.

			DEC

[bookmark: IDX-GLOSS-0655]

			Data type; synonym for DECIMAL[bookmark: IDX-GLOSS-0656]

data type.

			DECIMAL

			Numeric data type whose storage type varies based on a specified precision.

			DECLARE

[bookmark: IDX-GLOSS-0657]

			Command used to create variables on the fly within a script.

			DELETE FROM

[bookmark: IDX-GLOSS-0658]

			Command that deletes rows in a table that may satisfy a given condition.

			DESC

[bookmark: IDX-GLOSS-0659]

			Function used in ORDER BY to put a SQL result set into descending order.

			DISTINCT

[bookmark: IDX-GLOSS-0660]

			Result set function that omits rows that contain duplicate data.

			DROP COLUMN

[bookmark: IDX-GLOSS-0661]

			Command used to delete a column in a table.

			DROP CONSTRAINT

[bookmark: IDX-GLOSS-0662]

			Command used to delete a named constraint.

			DROP INDEX

[bookmark: IDX-GLOSS-0663]

			Command used to delete an index.

			DROP SYNONYM

[bookmark: IDX-GLOSS-0664]

			Command used to delete a synonym.

			DROP TABLE

[bookmark: IDX-GLOSS-0665]

			Command used to delete a table.

			DROP VIEW

[bookmark: IDX-GLOSS-0666]

			Command used to delete a view.

			EXISTS

			A keyword in a SQL statement that returns true in a WHERE clause if the subquery following it returns at least one row.

			FLOAT

[bookmark: IDX-GLOSS-0667]

			Decimal data type that has a precision of 15 digits.

			FLOOR

[bookmark: IDX-GLOSS-0668]

			Row-level function which returns the next lower integer value when a number contains decimal places.

			GEtdATE

[bookmark: IDX-GLOSS-0669]

			Date function that returns the current system date and time.

			GROUP BY

			Produces one summary row for the aggregate value of all values for a given column.

			GUID

[bookmark: IDX-GLOSS-0670]

			Global unique identifier; UNIQUEIDENTIFIER data type guarantees worldwide uniqueness, even among unconnected computers.

			HAVING

			Part of a SQL statement that is used to determine which groups of a GROUP BY will be included in the result set.

			IMAGE

[bookmark: IDX-GLOSS-0671]

			Large object binary data type; used to store pictures.

			IN

[bookmark: IDX-GLOSS-0672]

			Logical operator for a WHERE clause that tests for inclusion in a named set.

			INT

[bookmark: IDX-GLOSS-0673]

			Integer data type that can store numbers from -231 to 231 - 1.

			INDEX BY

[bookmark: IDX-GLOSS-0674]

			Command used to create an index on a table by a certain column value.

			INNER JOIN

[bookmark: IDX-GLOSS-0675]

[bookmark: IDX-GLOSS-0676]

[bookmark: IDX-GLOSS-0677]

			Command used to combine two tables in an equi-join operation.

			INSERT INTO.. SELECT

[bookmark: IDX-GLOSS-0678]

			A way to insert many rows into a new table at one time.

			INSERT INTO..VALUES

			A way to insert values into a table one row at a time.

			INSERT

			Command that allows for the addition of new rows to a table.

			INTEGER

[bookmark: IDX-GLOSS-0679]

			Numeric data type that has no digits after the decimal point.

			INTERSECT

[bookmark: IDX-GLOSS-0680]

			Set operation that combines two queries such that it returns all rows that are the same in both result sets.

			IS NOT NULL

[bookmark: IDX-GLOSS-0681]

[bookmark: IDX-GLOSS-0682]

			Function that tests for the NOT NULL condition.

			ISNULL

			Function that returns a true value if a data item contains a null.

			JOIN

			Command used to join two tables; synonymous with INNER JOIN.

			LEFT

[bookmark: IDX-GLOSS-0683]

			String function that returns the left portion of a string up to a given number of characters.

			LEFT JOIN

[bookmark: IDX-GLOSS-0684]

			Same as LEFT OUTER JOIN[bookmark: IDX-GLOSS-0685]

.

			LEFT OUTER JOIN

			A join where all the rows from the first (left) table are kept in the result set, regardless of whether they have matching rows in the second (right) table.

			LEN

[bookmark: IDX-GLOSS-0686]

			String function that returns the length of a string.

			LIKE

			A WHERE clause option that matches a particular pattern.

			LONG

[bookmark: IDX-GLOSS-0687]

			Oracle equivalent of TEXT data type.

			LOWER

[bookmark: IDX-GLOSS-0688]

			String function used to convert a string to lowercase.

			LTRIM

[bookmark: IDX-GLOSS-0689]

			String function that removes blanks or other named character from the beginning of a string.

			MAX

[bookmark: IDX-GLOSS-0690]

			Aggregate function that returns the highest of all values from a column in a set of rows.

			MIN

[bookmark: IDX-GLOSS-0691]

			Aggregate function that returns the lowest of all values from a column in a set of rows.

			MINUS

			Set operation that returns only those rows from the result of the first query that are not in the result of the second query; not available in SQL Server.

			MONEY

[bookmark: IDX-GLOSS-0692]

			Data type used with currency data.

			MONTH

[bookmark: IDX-GLOSS-0693]

			Date function that extracts the month from a date.

			NATIONAL CHARACTER

[bookmark: IDX-GLOSS-0694]

			A data type; synonym for NCHAR[bookmark: IDX-GLOSS-0695]

 data type.

			NCHAR

			Fixed-length Unicode character data type.

			NOT

			Operator that reverses the effect of any logical operator such as IN, LIKE, and EXISTS.

			NOT BETWEEN

[bookmark: IDX-GLOSS-0696]

			Operator that allows you to determine whether a value does not occur within a given range of values.

			NOT EXISTS

[bookmark: IDX-GLOSS-0697]

			Operator that returns true in a WHERE clause if the subquery following it returns no rows.

			NOT NULL

[bookmark: IDX-GLOSS-0698]

			Operator that returns true if an attribute has a non-null value.

			NOT NULL Constraint

			Integrity constraint that denies the creation of a row when an attribute has a null value.

			NULL

			Value that is unknown.

			NULLIF

[bookmark: IDX-GLOSS-0699]

			Function that returns a NULL if a certain condition is met in an expression.

			NUMERIC

[bookmark: IDX-GLOSS-0700]

			Synonym for DECIMAL data type.

			NVARCHAR

[bookmark: IDX-GLOSS-0701]

			Variable-length Unicode character data type.

			OR

[bookmark: IDX-GLOSS-0702]

			Binary logical operator that returns a true value if either one of the expressions is true.

			ORDER BY

			Clause that sorts the results of a query before they are displayed.

			OUTER JOIN

[bookmark: IDX-GLOSS-0703]

			Join where rows from a table are kept in the result set although there is no matching row in the other table used in the join.

			PERCENT

			Function that is used to return a certain percentage of records that fall at the top of a range specified.

			PRIMARY KEY

			Constraint used to create a primary key in a table; used in CREATE TABLE and ALTER TABLE commands.

			REAL

			Decimal data type that has a precision of seven digits.

			REFERENCES

			Constraint part that defines the table name and key used to reference another table.

			RIGHT

[bookmark: IDX-GLOSS-0704]

			String function that returns the right portion of a string.

			RIGHT JOIN

			Same as RIGHT OUTER JOIN[bookmark: IDX-GLOSS-0705]

.

			RIGHT OUTER JOIN

			Join where all the rows from the second (right) relation are kept whether matched or not in a join operation.

			ROUND

[bookmark: IDX-GLOSS-0706]

			Function used to round numbers to a specified number of decimal places.

			ROWCOUNT(n)

[bookmark: IDX-GLOSS-0707]

			Function that returns the first n rows.

			RTRIM

[bookmark: IDX-GLOSS-0708]

			String function that removes blanks from the right end of a string.

			SELECT

[bookmark: IDX-GLOSS-0709]

			Command that allows you to retrieve rows from tables (or views) in a database.

			SET

[bookmark: IDX-GLOSS-0710]

			Command used to assign values to variables.

			SET DATEFORMAT

[bookmark: IDX-GLOSS-0711]

			Date function used to change the format in which SQL Server reads in dates.

			SMALLDATETIME

[bookmark: IDX-GLOSS-0712]

			Data type used to store dates.

			SMALLINT

[bookmark: IDX-GLOSS-0713]

			Integer data type that can store numbers between -215 to 215 - 1.

			SMALLMONEY

[bookmark: IDX-GLOSS-0714]

			Data type that can be used with currency data.

			SQUARE

[bookmark: IDX-GLOSS-0715]

			Row-level function that returns the square of a number.

			SQL_VARIANT

			Data type used to store values of any data type except TEXT[bookmark: IDX-GLOSS-0716]

 or IMAGE.

			SQRT

			Row-level function that returns the square root of positive numeric values.

			STR

[bookmark: IDX-GLOSS-0717]

			Conversion function that always converts from a number to a character data type.

			SUBSTRING

[bookmark: IDX-GLOSS-0718]

			String function that returns part of a string.

			SUM

[bookmark: IDX-GLOSS-0719]

			Group function that adds up all the values for a column value in a set of rows.

			TABLE

			A two-dimensional (row by column) arrangement of data.

			TEXT

			Character large object data type.

			TINYINT

[bookmark: IDX-GLOSS-0720]

			Integer data type that can store numbers between 0 and 255.

			TOP

[bookmark: IDX-GLOSS-0721]

			Function that returns a specified number of records from the top of a result set.

			UNION

[bookmark: IDX-GLOSS-0722]

			Set operation that combines two queries such that it returns all distinct rows for the result sets of both queries. The two queries must have union-compatible result sets.

			UNION ALL

[bookmark: IDX-GLOSS-0723]

			Set operation that combines two queries and returns all rows from both the SELECT statements (queries). A UNION ALL also includes duplicate rows. The two queries must have union-compatible result sets.

			UNIQUE

[bookmark: IDX-GLOSS-0724]

			Integrity constraint that disallows duplicate entries for an attribute even though the column is not a primary key.

			UNIQUEIDENTIFIER

			Data type that guarantees uniqueness of the identifier, even among unconnected computers.

			UPDATE

[bookmark: IDX-GLOSS-0725]

			Command that changes values in specified columns in specified tables[bookmark: IDX-GLOSS-0726]

.

			UPPER

[bookmark: IDX-GLOSS-0727]

			String function used to display all output in uppercase.

			USE

[bookmark: IDX-GLOSS-0728]

			Command used to open a database.

			UUID

			Universal unique identifier; the UNIQUEIDENTIFIER data type that guarantees uniqueness, even among unconnected computers.

			VARBINARY

[bookmark: IDX-GLOSS-0729]

			Data type used to store variable-length binary data.

			VARCHAR

[bookmark: IDX-GLOSS-0730]

			Character data type used when the field length is varying.

			VARCHAR2

[bookmark: IDX-GLOSS-0731]

			Oracle equivalent of VARCHAR.

			WHERE

			Row filter part of a SQL statement that allows you to specify criteria on column values for rows that are being selected from a table.

			WITH TIES

			Clause used with the TOP function to retrieve rows that are ties.

			XML

[bookmark: IDX-GLOSS-0732]

			A new SQL Server data type used to model complex data.

			YEAR

[bookmark: IDX-GLOSS-0733]

			Date function that extracts the year from a date.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-1]

Learning SQL on SQL Server 2005

Learning SQL on SQL Server 2005

by Sikha Saha Bagui and Richard Walsh Earp

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

			Editor:

			Jeff Pepper

			Production Editor:

			Philip Dangler

			Copyeditor:

			Nancy Wolfe Kotary

			Indexer:

			Johnna VanHoose Dinse

			Cover Designer:

			Karen Montgomery

			Interior Designer:

			David Futato

			Cover Illustration:

			Dover Pictoral Archive

			Illustrators:

			Robert Romano and Jessamyn Read

			Printing History:

			

			April 2006:

			First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. Learning SQL on SQL Server 2005, the image of a ribbed newt, and related trade dress are trademarks of O'Reilly Media, Inc.

Adapted with permission from Learning SQL: Step-by-Step GD Using Oracle by Bagui and Earp, pp. 48-61, 69-70, 85, 89-93, 105-108, 109-110, 114-120, 122-129, 131-133, 135-152,153-166, 167-183, 185-213, Appendix 3, and Glossary of Terms, © 2003 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc., Publishing as Pearson Addison-Wesley. All rights reserved.

Adaptated with permission from, Learning SQL: Step-by-Step GD Using Access by Bagui and Earp, pp. 64-77, © 2003 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc. Publishing as Pearson Addison Wesley. All rights reserved.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of Oracle Corporation, Inc. in the United States and other countries. O'Reilly Media, Inc. is independent of Oracle Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-10215-1

[M]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-1]

Why This Book?

This book is mainly intended to be a systematic guide to learning SQL using SQL Server 2005--a relational and multiuser database. The book is aimed at students who wish to learn SQL using Microsoft's SQL Server 2005. The book is expected to be used by schools and SQL training organizations as well as by database and IT professionals who are actively working with SQL Server 2005.

The book starts with very simple SQL concepts, and slowly builds into more complex query development. The purpose of this book is to present every topic, concept, and idea with examples of code and output. Exercises have also been included to gain SQL proficiency using SQL Server. The best approach to using this book efficiently is to read through the book with SQL Server open and active. As the book is read, it will be advantageous for you to work with and understand the examples.

If the book is used for a beginning database course, the exercises are presented to be done by the students over the course of one semester at a pace of one chapter per week. The exercises are found at the end of each chapter.

Due to the dramatic increase in the popularity of relational and multiuser databases, many schools and training organizations are using SQL Server in their database courses to teach database principles and concepts. This development has generated a need for a concise book on SQL Server programming, tied in with database principles and conceptshence this book.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-2]

SQL and SQL Server

SQL (Structured Query Language) is a standard language used for querying, updating, and managing relational databases, and lately SQL has become the de facto standard "language" for accessing relational databases. SQL is not really as much of a language as it is a database query tool. In this book, we concentrate on learning SQL using SQL Server 2005.

SQL allows us to define a relational databasecreate and modify tables (in this sense, SQL is a data definition language, or DDL). SQL also allows us to tell SQL Server which information we want to select (retrieve), insert, update, or delete. That is, SQL also allows us to query the relational database in a most flexible way, as well as to change the stored data (and in this sense, SQL is a data manipulation language, or DML).

The book is targeted at SQL Server users on the Windows operating system, but is easily adaptable to other platforms.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-3]

Audience and Coverage

A book like this can be used in an "Introduction to Databases" course or a second database course along with textbooks like Fundamentals of Database Systems, 4th Edition, Addison Wesley, 2003 (Elmasri and Navathe), and Database Processing, Fundamentals, Design & Implementation, 9th Edition, Prentice Hall, 2003 (David Kroenke). Students could learn the database theory from the texts, and apply the theory using this book (using SQL Server) as they learn SQL.

This book can also be used as a standalone text in a course on learning SQL using SQL Server 2005. This book does not assume any prior computer knowledge.

This book consists of 11 chapters. Chapter 1 introduces the user to SQL Server 2005. In Chapter 1, you will learn how to open SQL Server 2005 using SQL Server Management Studio, load the database, and view and perform simple table manipulations. Chapter 1 also introduces the user to the query editor; shows you how to view, save, and print queries and output; and how to customize SQL Server 2005's settings. Chapter 2 introduces the user/learner to some basic SQL commands in SQL Server. Chapter 3 discusses creating, populating, altering, and deleting tables; an example relational database is built on the idea of tabular data. Chapter 4 introduces and covers different types of joinsa common database mechanism for combining tables. Chapter 5 covers SQL Server 2005's functions. Chapter 6 discusses query development as well as the use of views and other derived structures. Chapter 7 covers simple set operations. Chapters 8, 9, and 10 cover subqueries, aggregate functions, and correlated subqueries; and Chapter 11 presents indexes and constraints that can be added to tables in SQL Server 2005.

Appendix A describes the Student_course database and other databases that have been used throughout the book. Appendix B provides the actual script used to create the Student_course database. Glossaries defining terms and important functions are provided, as well as indexes of terms and functions in the book.

The book is sufficient for beginning SQL users to get an overview of what SQL Server entails and how to use SQL. Many SQL programmers have based their employment on this material. The book gives a very good feel for what SQL is, and how SQL is used in SQL Server.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-4]

A Few Notes About SQL Server 2005 Installation

For best results, one should install SQL Server 2005 on a computer that does not have a prerelease version of SQL Server 2005, Visual Studio 2005, or the .NET Framework 2.0 installed on it. If your computer has any of the prerelease versions on it, they must be removed in the correct order before you can successfully manually install the actual version of SQL Server 2005 software. For the correct order of these required uninstallations before you can install SQL Server 2005, visit:

			http://msdn.microsoft.com/vstudio/express/support/uninstall/#Uninstall

We strongly recommend that you instead run the autoinstall tool (found at the same site), rather than attempting a manual install.

Once the uninstall has been correctly done, you may successfully load SQL Server 2005 and begin learning SQL.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-5]

Conventions Used in This Book

The following conventions are used in this book:

			
Italic

			Used for URLs and for emphasis when introducing a new term.

			
Constant width

			Used for MySQL and SQL keywords and for code examples.

			

Constant width bold

			In some code examples, highlights the statements being discussed.

			
Constant width italic

			In some code examples, indicates an element (e.g., a filename) that you supply.

			
UPPERCASE

			In code examples, generally indicates MySQL keywords.

			
lowercase

			In code examples, generally indicates user-defined items such as variables, parameters, etc.

			
punctuation

			In code examples, enter exactly as shown.

			
indentation

			In code examples, helps to show structure but is not required.

			
--

			In code examples, begins a single-line comment that extends to the end of a line.

			
/* and */

			In code examples, delimit a multiline comment that can extend from one line to another.

			
.

			In code examples and related discussions, qualifies a reference by separating an object name from a component name.

			
[]

			In syntax descriptions, enclose optional items.

			
{ }

			In syntax descriptions, enclose a set of items from which you must choose only one.

			
|

			In syntax descriptions, separates the items enclosed in curly brackets, as in {TRUE | FALSE}.

			
...

			In syntax descriptions, indicates repeating elements. An ellipsis also shows that statements or clauses irrelevant to the discussion were left out.

						[image:]			Indicates a tip, suggestion, or general note. For example, we'll tell you if a certain setting is version-specific.

						[image:]			Indicates a warning or caution. For example, we'll tell you if a certain setting has some kind of negative impact on the system.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-6]

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: "Learning SQL on SQL Server 2005 by Sikha Saha Bagui and Richard Walsh Earp. Copyright 2006 O'Reilly Media, Inc., 0-596-10215-1."

If you feel that your use of code examples falls outside fair use or the permission given here, feel free to contact us at permissions@oreilly.com.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-7]

How to Contact Us

We have tested and verified the information in this book and in the source code to the best of our ability, but given the amount of text and the rapid evolution of technology, you may find that features have changed or that we have made mistakes. If so, please notify us by writing to:

			O'Reilly Media, Inc.

			1005 Gravenstein Highway North

			Sebastopol, CA 95472

			800-998-9938 (in the United States or Canada)

			707-829-0515 (international or local)

			707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send email to:

			info@oreilly.com

To ask technical questions or comment on the book, send email to:

			bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this book where you can find code, errata (previously reported errors and corrections available for public view), and other book information. You can access this web site at:

			http://www.oreilly.com/catalog/learnsqlsvr05

For more information about this book and others, see the O'Reilly web site:

			http://www.oreilly.com

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2-SECT-8]

Acknowledgments

Our special thanks are due to our editor, Jeff Pepper, and the production crew at O'Reilly for putting up with all the changes.

We would also like to thank President John Cavanaugh, Dean Jane Halonen, and Provost Sandra Flake of the University of West Florida for their inspiration, encouragement, support, and true leadership quality. We would also like to express our gratitude to Dr. Wes Little on the same endeavor.

Our sincere thanks also go to Dr. Ed Rodgers for his continuing support and encouragement throughout past years. We also appreciate Dr. Leo Terhaar, chair, Computer Science Department, for his advice, guidance, and support, and encouraging us to complete this book. Last, but not least, we would like to thank our fellow faculty members, Dr. Jim Bezdek and Dr. Norman Wilde for their continuous support and encouragement.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-PREFACE-2]

Preface

SQL Server is one of the most powerful database engines used today. Microsoft's latest release of SQL Server, SQL Server 2005, is a comprehensive database platform that provides secure and reliable storage for both relational and structured data, enabling one to build and manage high-performance data applications. SQL Server 2005's close integration with Microsoft Visual Studio, the Microsoft Office System, and a suite of new development tools set SQL Server 2005 apart from previous versions and from other database engines. This system allows developers to build, debug, and operate applications faster then ever before.

SQL Server 2005 can be installed on small machines using Microsoft Windows as well as on large servers. In recent years, the computer industry has seen a dramatic increase in the popularity of relational databases and multiuser databases, and the computer industry needs application developers and people who can write SQL code efficiently and correctly for relational and multiuser databases.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: learnsqlsvr05-TERMS]

Glossary of Terms

			Aggregate Function

			A function that returns a result based on values of some attributes in multiple rows.

			Alias

			A temporary intra-query substitute for a table name or column name.

			Alphanumeric

			A data type that will accept a combination of characters as well as numbers.

			Anomaly

			An undesirable consequence of a data modification.

			Attribute

			Column in a table.

			Binary Intersection

			An operation on two sets that generates unique values in common between two sets.

			Binary Set Difference

			An operation on two sets that generates values in one set less those contained in another.

			Binary Union

			An operation on two sets that generates all unique elements of both sets.

			Byte

			A storage unit consisting of 8 bits.

			Candidate Key

			A column (attribute, or group of columns) that identifies a unique row in a table. One of the candidate keys is chosen to be the primary key.

			Cartesian Product

			A binary operation resulting in the combination of all rows of one table with all rows of another table.

			CHAR(size)

			Data type that stores fixed-length character data, size characters long.

			Columns

			Vertical slices of a table. Columns are defined to be one data type.

			Column Alias

			A temporary column name within a query.

			Comments

			Nonexecutable words included in SQL queries for documentation.

			Constant

			An unvarying value used in a query.

			Constraint

			A restriction placed on a value in a database used to increase data integrity.

			Correlated Subquery

			A subquery in which the information in the subquery is referenced by the outer, main query. A correlated subquery cannot stand alone; it depends on the outer query.

			Data

			Recorded facts pertaining to entities.

			Database

			A collection of logically associated or related data.

			Database Administrator (DBA)

			See DBA.

			DBA (Database Administrator)

			A person who has all system privileges and the ability to grant all privileges to other users. The DBA creates and drops users and space in a database.

			DDL (Data Definition Language)

			A language used to define the internal schema and conceptual schema in a database.

			DML (Data Manipulation Language)

			A language used to manipulate data (INSERT, UPDATE, and DELETE).

			Default

			A value assigned to data when no value is supplied.

			Domain

			The set of all possible values that a column value can have.

			Entity

			An object about which data is recorded

			Entity Relationship (ER) Diagram

			A visual tool to describe how data in a database is arranged.

			Equi-Join

			A join condition with equality comparisons only.

			Execute

			Run a query to get an output of the task requested.

			Field

			An attribute or column in a table. A field is defined to be of one data type.

			Float

			A data type that accepts numbers with decimals.

			Foreign Key

			An attribute that is a primary key of another table. Relationships are implemented with the use of foreign keys in relational databases.

			Full Outer Join

			Used to designate the union of the left and right outer joins.

			Functionally Dependent

			A relationship between two attributes in a relation. Attribute Y is functionally dependent on attribute X if attribute X identifies attribute Y.

			Global Temporary Table

			Temporary tables that can be accessed by anyone signed on while the table exists.

			Group Function

			A function that returns a result based on multiple rows. Also known as an aggregate function.

			Index

			An internal table created to speed up queries and searches in database.

			Inline View

			A view that exists only during the execution of a query.

			Inner Query

			A subquery.

			Integer

			A data type that accepts only whole numbers and no decimals.

			Join

			An operation used to combine related rows from two tables into one table based on a logical comparison of column values.

			Key

			A column value that uniquely identifies a row in a table.

			Large Object Data Type (LOB)

			LOBs are data types that can store large amounts (up to four gigabytes) of raw data, binary data (such as images) or character text data.

			Local Temporary Tables

			Temporary tables that are local to the session in which they are created.

			Noncorrelated Subquery

			A subquery that is independent of the outer query.

			Non-Equi Join

			Joins that do not test for equality.

			Null

			A value given to a data item when the result is unknown.

			Outer Join

			A join condition where all the rows from one table (for example, the left table) are kept in the result set even though those rows do not have matching rows in the other table (the right table).

			Outer Query

			The part of the query that will return the result set. Outer queries are usually designated when a query has one or more subqueries (inner queries).

			Primary Key

			A candidate key selected to be the key of a table. The primary key will uniquely identify a row in a table.

			Qualifier

			A prefix used to identify a column of a particular table. For example, in "Student.sname," Student is the table qualifier.

			Query

			A SQL instruction used to retrieve data from one or more tables or views. Queries begin with the SQL keyword SELECT.

			Record

			A named collection of data items. In a relational model, a record is a physical realization of a row.

			Referential Integrity

			The property that guarantees that values from one column that depend on values from another column are present in the "other column."

			Relation

			A two-dimensional table containing single-value entries and no duplicate rows. The data type of the columns is the same in every row. The order of the rows is immaterial as the table is considered a set of rows. Often a relation is defined as a populated table. See also Table.

			Relational Database

			A database consisting of relations (tables).

			Relationship

			An association between two tables.

			Result Set

			Output of a SQL statement.

			Row

			A horizontal slice of a table. A row is also known as a "tuple" and at times is called a "record"; however, a "record" usually refers to a physical representation of data and a row refers to a logical representation.

			Row Filter

			A criterion that is used to select rows based on certain criteria.

			Row Function

			A function that is performed on a single row of a table.

			Schema

			A design of the database typically using an entity relationship diagram.

			Script

			A sequence of SQL statements.

			Self Join

			A join condition where a table is joined with itself.

			Set

			A data structure that represents a collection of rows with no order and no duplicate rows.

			Set Compatibility

			For two sets (or tables) to be set compatible, both sets must match in number of items and must have compatible data types. Set compatibility is also referred to as union compatibility.

			SQL (Structured Query Language)

			A language for defining the structure and processing of a relational database.

			SQL Statements

			Used to issue commands to a database.

			String

			A mixture of letters, numbers, spaces, and other symbols where one byte is assigned to a symbol.

			String Function

			A row function used to manipulate string data.

			Subquery

			The inner query within the outer (main) query; usually one SELECT query within another SELECT query.

			Subset

			Some group of objects taken from a set.

			Synonym

			External names of objects in the data that are intended to allow the object to be addressed in more than one way.

			Table

			Consists of rows of information, each of which contains the same kind of values (columns). It is also referred to as a relation in the relational model.

			Table Alias

			A temporary name given to a table within a query.

			Table Qualifiers

			A query mechanism used to define where a column comes from. Qualifiers are often needed when more than one table is being used in a query.

			Temporary Table

			A table in which the result of a SELECT is temporarily saved and then used in other SELECT statements - see Global Temporary Tables and Local Temporary Tables.

			Tuple

			A row in a table.

			Union Compatibility

			When working with sets (tables), for two sets to have union compatibility, both sets must match in number of items and must have compatible data types.

			View

			A query that is stored in the data dictionary and is rerun when called for. A view appears to a user to be a table.

			XML

			A universal language used to generically identify data that will be shared.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 master database
 MAX aggregate function
 MAX function
 MIN aggregate function
 MIN aggregation function
 MINUS set operation
miscellaneous data types
 BINARY data type
 BIT data type
 IMAGE data type
 monetary data types
 SQL_VARIANT data type
 TABLE data type
 UNIQUEIDENTIFIER data type
 XML data type
 model database
 monetary data types
 MONEY data type
 MONTH date function
 MONTH function
 msdb database

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Next Page]

			[image: Book Cover]						Learning SQL on SQL Server 2005

			By

											Sikha Saha Bagui, Richard Walsh Earp

			...

			Publisher: O'Reilly

			Pub Date: April 2006

			Print ISBN-10: 0-596-10215-1

			Print ISBN-13: 978-0-59-610215-9

			

 Pages: 342

						

			

			Table of Contents

												 | Index						

			[image: Overview]

			Anyone who interacts with today's modern databases

needs to know SQL (Structured Query Language), the standard

language for generating, manipulating, and retrieving

database information. In recent years, the dramatic rise in

the popularity of relational databases and multi-user

databases has fueled a healthy demand for application

developers and others who can write SQL code efficiently and

correctly.

			

If you're new to databases, or need a SQL refresher,

Learning SQL on SQL Server 2005 is an

ideal step-by-step introduction to this database query tool,

with everything you need for programming SQL using

Microsoft's SQL Server 2005-one of the most powerful and

popular database engines used today. Plenty of books explain

database theory. This guide lets you apply the theory as you

learn SQL. You don't need prior database knowledge, or even

prior computer knowledge.

			

Based on a popular university-level course designed by

authors Sikha Saha Bagui and Richard Walsh Earp,

Learning SQL on SQL Server 2005 starts

with very simple SQL concepts, and slowly builds into more

complex query development. Every topic, concept, and idea

comes with examples of code and output, along with exercises

to help you gain proficiency in SQL and SQL Server 2005.

With this book, you'll learn:

		

			Beginning SQL commands, such

as how and where to type an SQL query, and how to create,

populate, alter and delete tables

				

			How to customize SQL

Server 2005's settings and about SQL Server 2005's

functions

				

			About joins, a common

database mechanism for combining tables

				

			Query development, the use

of views and other derived structures, and simple set

operations

				

			Subqueries, aggregate

functions and correlated subqueries, as well as indexes and

constraints that can be added to tables in SQL Server

2005

			

Whether you're an undergraduate computer science or MIS

student, a self-learner who has access to the new Microsoft

database, or work for your company's IT department,

Learning SQL on SQL Server 2005 will

get you up to speed on SQL in no time.

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 NATIONAL CHARACTER data type
 NCHAR data type 2nd
 nested joins
 New Database dialog box
 non-equi-joins
 noncorrelated subqueries
 NOT BETWEEN operator
 NOT EXISTS operator
 NOT EXISTS predicate, correlated subqueries
 NOT IN predicate, set operations 2nd
 NOT NULL constraint
 NOT NULL operator
 NOT operator
 NULLIF function 2nd
 NULLL value
 nulls, aggregates and
 number data types, decimal data types
 NUMERIC data type
 numeric data types, integers
 numeric functions
 NVARCHAR data type 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 ON DELETE CASCADE option, referential integrity constraint
 ON DELETE NO ACTION option, referential integrity constraint
 ON UPDATE NO ACTION option, referential integrity constraint
 ON UPDATE option, referential integrity constraint
operators
 AND
 BETWEEN
 IN
 NOT
 NOT BETWEEN
 NOT EXISTS
 NOT NULL
 OR
 precedence, parentheses and
 subqueries and
 OR operator
 WHERE clause, SELECT statement
 ORDER BY clause
 aggregate functions
 joins and
 views
 ORDER BY clause, SELECT statement
 ascending/descending order
 NULL value and
 order within order
 OUTER JOIN 2nd
 FULL OUTER JOIN
 LEFT OUTER JOIN
 RIGHT OUTER JOIN

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 parentheses, expressions
 data type precedence and
 operator predecence and
 parsing queries
 PERCENT function
 PRIMARY KEY constraint 2nd 3rd
 primary keys
 printing query results

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

qualifiers
 existential
 unversal
queries
 correlated queries
 CROSS JOIN
 entering
 error messages, viewing
 executing
 stopping execution
 parsing
 printing
 results
 displaying
 printing
 saving to file
 saving
 subqueries
 auditing in
 IN predicates
 query development
 derived structures and
Query Editor
 color coding
 opening
 New Query button
 right-clicking
 Query Execution tab
 Query Results tab

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 REAL data type
 referential integrity constraints
 REFRERENCES constraint
results of queries
 displaying
 grid form
 text form
 saving to file
 RIGHT function 2nd
 RIGHT OUTER JOIN 2nd
 ROUND function 2nd
 row-level functions
 arithmetic operations on columns
 DISTINCT
 ISNULL
 NULLIF
 ROUND
 TOP
 PERCENT and
 ROWCOUNT function 2nd
rows, tables
 displaying
 selecting
 RTRIM function 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

saving
 queries
 query results to file
 scripts, Student_course database
 SELECT command
 SELECT INTO statement, views
 SELECT statement
 FROM and
 ORDER BY clause
 ascending/descending order
 NULL value and
 order within order
 WHERE clause
 AND operator
 BETWEEN operator 2nd
 OR operator
 self-joins
 SET command
 SET DATEFORMAT function
 set operations
 binary intersection
 binary set differences
 binary unions
 difference, NOT IN predicate
 IN predicate
 INTERSECT
 INTERSECT operator
 NOT IN predicate
 UNION 2nd
 columns and
 JOIN and
 UNION ALL 2nd
 columns and
 union compatibility
 sets
 SMALLDATETIME data type
 SMALLINT data type
 SMALLMONEY data type
 SORT function
 Souce Control tab
 SQL Server Management Studio, starting
 SQL_VARIANT data type 2nd
 SQUARE function
statements
 comments
 entering
 writing
 STR function 2nd
string functions
 CHARINDEX
 concatenation
 extraction
 LEFT
 LEN 2nd
 LOWER 2nd
 LTRIM 2nd
 RIGHT
 RTRIM
 SUBSTRING
 UPPER
strings
 substrings, LIKE function
 Unicode character strings
Student_course database
 creating
 joins
 objects
 script
 tables
 default
subqueries
 as joins
 auditing in
 IN predicate and
 operators and
 SUBSTRING function 2nd
 substrings, LIKE function
 SUM function 2nd
 synonyms
 syntax
 system databases, default

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 T-SQL (Transact-SQL)
 table aliases
 as table qualifiers
 TABLE data type
table definitions
 columns
 modifying
 viewing
 tables
 columns
 adding
 aliases
 data types
 deleting
 creating
 Load script
 data, viewing
 deleting
 DELETE command
 joins, multiple
 rows
 displaying
 selecting
 Student_course database
 default
 temporary
 tuples
 tempdb database
 terms, glossary of
 TEXT data type 2nd
 Text Editor tab
 text form, query results
 TINYINT data type
 TOP function 2nd
 PERCENT and
 tuples

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[image: Book Cover]						Learning SQL on SQL Server 2005

			By

											Sikha Saha Bagui, Richard Walsh Earp

			...

			Publisher: O'Reilly

			Pub Date: April 2006

			Print ISBN-10: 0-596-10215-1

			Print ISBN-13: 978-0-59-610215-9

			

 Pages: 342

						

			

			Table of Contents

												 | Index						

			 			[image:]			Learning SQL on SQL Server 2005

			 			[image:]			Dedication

			 			[image:]			Preface

			 			

 			[image:]			Why This Book?

			 			

 			[image:]			SQL and SQL Server

			 			

 			[image:]			Audience and Coverage

			 			

 			[image:]			A Few Notes About SQL Server 2005 Installation

			 			

 			[image:]			Conventions Used in This Book

			 			

 			[image:]			Using Code Examples

			 			

 			[image:]			How to Contact Us

			 			

 			[image:]			Acknowledgments

			 			[image:]			

 Chapter 1.

 Starting Microsoft SQL Server 2005

			 			

 			[image:]			

 Section 1.1.

 Starting Microsoft SQL Server 2005 and SQL Server 2005's Management Studio

			 			

 			[image:]			

 Section 1.2.

 Creating a Database in Microsoft SQL Server 2005

			 			

 			[image:]			

 Section 1.3.

 The Query Editor

			 			

 			[image:]			

 Section 1.4.

 Creating Tables Using the Load Script

			 			

 			[image:]			

 Section 1.5.

 Viewing Table Definitions

			 			

 			[image:]			

 Section 1.6.

 Modifying Table Definitions

			 			

 			[image:]			

 Section 1.7.

 Viewing Table Data

			 			

 			[image:]			

 Section 1.8.

 Deleting a Table

			 			

 			[image:]			

 Section 1.9.

 Deleting a Database

			 			

 			[image:]			

 Section 1.10.

 Entering a SQL Query or Statement

			 			

 			[image:]			

 Section 1.11.

 Parsing a Query

			 			

 			[image:]			

 Section 1.12.

 Executing a Query

			 			

 			[image:]			

 Section 1.13.

 Saving a Query

			 			

 			[image:]			

 Section 1.14.

 Displaying the Results

			 			

 			[image:]			

 Section 1.15.

 Stopping Execution of a Long Query

			 			

 			[image:]			

 Section 1.16.

 Printing the Query and Results

			 			

 			[image:]			

 Section 1.17.

 Customizing SQL Server 2005

			 			

 			[image:]			

 Section 1.18.

 Summary

			 			

 			[image:]			

 Section 1.19.

 Review Questions

			 			

 			[image:]			

 Section 1.20.

 Exercises

			 			[image:]			

 Chapter 2.

 Beginning SQL Commands in SQL Server

			 			

 			[image:]			

 Section 2.1.

 Displaying Data with the SELECT Statement

			 			

 			[image:]			

 Section 2.2.

 Displaying or SELECTing Rows or Tuples from a Table

			 			

 			[image:]			

 Section 2.3.

 The COUNT Function

			 			

 			[image:]			

 Section 2.4.

 The ROWCOUNT Function

			 			

 			[image:]			

 Section 2.5.

 Using Aliases

			 			

 			[image:]			

 Section 2.6.

 Synonyms

			 			

 			[image:]			

 Section 2.7.

 Adding Comments to SQL Statements

			 			

 			[image:]			

 Section 2.8.

 Some Conventions for Writing SQL Statements

			 			

 			[image:]			

 Section 2.9.

 A Few Notes About SQL Server 2005 Syntax

			 			

 			[image:]			

 Section 2.10.

 Summary

			 			

 			[image:]			

 Section 2.11.

 Review Questions

			 			

 			[image:]			

 Section 2.12.

 Exercises

			 			[image:]			

 Chapter 3.

 Creating, Populating, Altering, and Deleting Tables

			 			

 			[image:]			

 Section 3.1.

 Data Types in SQL Server 2005

			 			

 			[image:]			

 Section 3.2.

 Creating a Table

			 			

 			[image:]			

 Section 3.3.

 Inserting Values into a Table

			 			

 			[image:]			

 Section 3.4.

 The UPDATE Command

			 			

 			[image:]			

 Section 3.5.

 The ALTER TABLE Command

			 			

 			[image:]			

 Section 3.6.

 The DELETE Command

			 			

 			[image:]			

 Section 3.7.

 Deleting a Table

			 			

 			[image:]			

 Section 3.8.

 Summary

			 			

 			[image:]			

 Section 3.9.

 Review Questions

			 			

 			[image:]			

 Section 3.10.

 Exercises

			 			

 			[image:]			

 Section 3.11.

 References

			 			[image:]			

 Chapter 4.

 Joins

			 			

 			[image:]			

 Section 4.1.

 The JOIN

			 			

 			[image:]			

 Section 4.2.

 The Cartesian Product

			 			

 			[image:]			

 Section 4.3.

 Equi-Joins and Non-Equi-Joins

			 			

 			[image:]			

 Section 4.4.

 Self Joins

			 			

 			[image:]			

 Section 4.5.

 Using ORDER BY with a Join

			 			

 			[image:]			

 Section 4.6.

 Joining More Than Two Tables

			 			

 			[image:]			

 Section 4.7.

 The OUTER JOIN

			 			

 			[image:]			

 Section 4.8.

 Summary

			 			

 			[image:]			

 Section 4.9.

 Review Questions

			 			

 			[image:]			

 Section 4.10.

 Exercises

			 			[image:]			

 Chapter 5.

 Functions

			 			

 			[image:]			

 Section 5.1.

 Aggregate Functions

			 			

 			[image:]			

 Section 5.2.

 Row-Level Functions

			 			

 			[image:]			

 Section 5.3.

 Other Functions

			 			

 			[image:]			

 Section 5.4.

 String Functions

			 			

 			[image:]			

 Section 5.5.

 CONVERSION Functions

			 			

 			[image:]			

 Section 5.6.

 DATE Functions

			 			

 			[image:]			

 Section 5.7.

 Summary

			 			

 			[image:]			

 Section 5.8.

 Review Questions

			 			

 			[image:]			

 Section 5.9.

 Exercises

			 			[image:]			

 Chapter 6.

 Query Development and Derived Structures

			 			

 			[image:]			

 Section 6.1.

 Query Development

			 			

 			[image:]			

 Section 6.2.

 Parentheses in SQL Expressions

			 			

 			[image:]			

 Section 6.3.

 Derived Structures

			 			

 			[image:]			

 Section 6.4.

 Query Development with Derived Structures

			 			

 			[image:]			

 Section 6.5.

 Summary

			 			

 			[image:]			

 Section 6.6.

 Review Questions

			 			

 			[image:]			

 Section 6.7.

 Exercises

			 			[image:]			

 Chapter 7.

 Set Operations

			 			

 			[image:]			

 Section 7.1.

 Introducing Set Operations

			 			

 			[image:]			

 Section 7.2.

 The UNION Operation

			 			

 			[image:]			

 Section 7.3.

 The UNION ALL Operation

			 			

 			[image:]			

 Section 7.4.

 Handling UNION and UNION ALL Situations with an Unequal Number of Columns

			 			

 			[image:]			

 Section 7.5.

 The IN and NOT..IN Predicates

			 			

 			[image:]			

 Section 7.6.

 The Difference Operation

			 			

 			[image:]			

 Section 7.7.

 The Union and the Join

			 			

 			[image:]			

 Section 7.8.

 A UNION Used to Implement a Full Outer Join

			 			

 			[image:]			

 Section 7.9.

 Summary

			 			

 			[image:]			

 Section 7.10.

 Review Questions

			 			

 			[image:]			

 Section 7.11.

 Exercises

			 			

 			[image:]			

 Section 7.12.

 Optional Exercise

			 			[image:]			

 Chapter 8.

 Joins Versus Subqueries

			 			

 			[image:]			

 Section 8.1.

 Subquery with an IN Predicate

			 			

 			[image:]			

 Section 8.2.

 The Subquery as a Join

			 			

 			[image:]			

 Section 8.3.

 When the Join Cannot Be Turned into a Subquery

			 			

 			[image:]			

 Section 8.4.

 More Examples Involving Joins and IN

			 			

 			[image:]			

 Section 8.5.

 Using Subqueries with Operators

			 			

 			[image:]			

 Section 8.6.

 Summary

			 			

 			[image:]			

 Section 8.7.

 Review Questions

			 			

 			[image:]			

 Section 8.8.

 Exercises

			 			[image:]			

 Chapter 9.

 Aggregation and GROUP BY

			 			

 			[image:]			

 Section 9.1.

 A SELECT in Modified BNF

			 			

 			[image:]			

 Section 9.2.

 The GROUP BY Clause

			 			

 			[image:]			

 Section 9.3.

 The HAVING Clause

			 			

 			[image:]			

 Section 9.4.

 GROUP BY and HAVING: Aggregates of Aggregates

			 			

 			[image:]			

 Section 9.5.

 Auditing in Subqueries

			 			

 			[image:]			

 Section 9.6.

 Nulls Revisited

			 			

 			[image:]			

 Section 9.7.

 Summary

			 			

 			[image:]			

 Section 9.8.

 Review Questions

			 			

 			[image:]			

 Section 9.9.

 Exercises

			 			[image:]			

 Chapter 10.

 Correlated Subqueries

			 			

 			[image:]			

 Section 10.1.

 Noncorrelated Subqueries

			 			

 			[image:]			

 Section 10.2.

 Correlated Subqueries

			 			

 			[image:]			

 Section 10.3.

 Existence Queries and Correlation

			 			

 			[image:]			

 Section 10.4.

 SQL Universal and Existential Qualifiers

			 			

 			[image:]			

 Section 10.5.

 Summary

			 			

 			[image:]			

 Section 10.6.

 Review Questions

			 			

 			[image:]			

 Section 10.7.

 Exercises

			 			[image:]			

 Chapter 11.

 Indexes and Constraints on Tables

			 			

 			[image:]			

 Section 11.1.

 The "Simple" CREATE TABLE

			 			

 			[image:]			

 Section 11.2.

 Indexes

			 			

 			[image:]			

 Section 11.3.

 Constraints

			 			

 			[image:]			

 Section 11.4.

 Summary

			 			

 			[image:]			

 Section 11.5.

 Review Questions

			 			

 			[image:]			

 Section 11.6.

 Exercises

			 			[image:]			

 Appendix A.

 The Student Database and Other Tables Used in This Book

			 			

 			[image:]			

 Section A.1.

			 			[image:]			

 Appendix B.

 Script Used to Create the Student_course Database

			 			[image:]			

 Glossary of Terms

			 			[image:]			

 Important Commands and Functions

			 			[image:]			About the Author

			 			[image:]			Colophon

			 			[image:]			Index

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 Unicode character strings
 UNION ALL set operation 2nd
 columns and
 union compatibility
 UNION set operation 2nd
 columns and
 JOIN and
 UNIQUE constraint
 UNIQUE IDENTIFIER data type
 UNIQUE integrity constraint
 UNIQUEIDENTIFIER data type
 universal qualifiers
 UPDATE command 2nd
 UPPER function 2nd
 USE command
 USE, opening databases
 UUID (Universal unique identifier)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 VARBINARY data type
 VARCHAR data type 2nd
 VARCHAR2 data type
 views
 column alises
 creating
 data in
 ORDER BY clause
 SELECT INTO statement
 using

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

WHERE clause
 JOIN and
 SELECT statement
 AND operator
 BETWEEN operator 2nd
 OR operator
 WHERE row filter
 WITH TIES clause
 writing statements

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 XM Ldata type
 XML data type

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			
Index

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[X]

									

										[Y]

									

 YEAR function 2nd

			

[image: Previous Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 abstraction
 ADD_MONTHS function (Oracle) 2nd 3rd 4th 5th
 ADDDATE function (MySQL) 2nd 3rd 4th
aggregate functions
 defining rows to perform operation on 2nd
 grouping and 2nd
 multiple tables and 2nd
 NULL values and 2nd 3rd
 WHERE clause
 window functions versus
aliases
 for CASE expression
 inline views
 referencing aliased columns
 timing of application
 any or "all" queries 2nd 3rd 4th 5th 6th 7th
arithmetic
 dates
 days in year
 difference between dates
 seconds/minutes/hours between dates
 AS keyword
 at least queries 2nd 3rd 4th 5th 6th 7th
 at most queries 2nd 3rd 4th 5th 6th
 AVG function
 axiom of abstraction 2nd
 axiom of specification
 axiom schema of separation
 axiom schema of subsets

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 bags
 Barber Puzzle
 business logic

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 calendars
 Cartesian products
 CAST function (SQL Server)
 CEIL function (DB2/MySQL/Oracle/PostgreSQL) 2nd
 CEILING function (SQL Server) 2nd
 COALESCE function 2nd 3rd 4th 5th
columns
 adding headers to double pivoted result sets
 concatenating
complex
 retrieving records
 non-subtotal rows
 rows
 composite subqueries
 CONCAT function (MySQL) 2nd 3rd
concatenation
 columns
 operator (+) (SQL Server) 2nd
 operator (||) (DB2/Oracle/PostgreSQL) 2nd
 conditional logic in SELECT statements
CONNECT BY clause (Oracle)
 alternatives to
 in hierarchical structures 2nd 3rd
 inline views and
 WITH clause and 2nd
 CONNECT_BY_ISLEAF function (Oracle) 2nd
 CONNECT_BY_ROOT function (Oracle) 2nd
constraints
 listing
 correlated subqueries
 COUNT function 2nd 3rd 4th
 COUNT OVER window function 2nd
 CREATE TABLE … LIKE command (DB2)
 CREATE TABLE command
cross-tab reports
 creating (SQL Server)
 CSV output 2nd 3rd
 CUBE extension 2nd 3rd
 CURRENT_DATE function (DB2/MySQL/PostgreSQL) 2nd 3rd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of SQL Cookbook is an Agamid lizard. These lizards belong to the Agamidae family and have more than 300 species among them. Agamids can be found in Africa, Asia, Australia, and Southern Europe, and are characterized by strong legs andin some varietiesthe ability to change color. Unlike other species of lizards, agamids cannot regenerate their tails if they lose them. They can be found in varied environments from hot deserts to warm, wet tropical rainforests.

Several species of agamids are popular as pets. Among these are the Bearded Dragon (genus Pogona). Calm, yet curious, these creatures grow to be only about 20 inches. Even with their small stature, they are still considered "giant" lizards, and therefore require ample space. Males are generally territorial and, although they are social animals, overcrowding can lead to stress, especially when the animals have no place to hide. Overcrowding can lead to injuries from fighting such as lost toes and tails, as well as a loss of appetite.

The head of the bearded lizard is triangular in shape and features many spikes protruding from its chin. These spikes resemble whiskers (thus the name). The spikes are also found along its side. Bearded dragons open their mouths and display their spiky beards to scare predators and other beardeds. They also can flatten their bodies to appear larger. As pets, they may stop displaying their beards once they become comfortable with their owners and habitats.

Although they originated in Australia, the bearded dragons sold by U.S. dealers are descendants of animals that were imported from Europe. This is due to Australia's strict export laws regarding wildlife.

The Flying Lizard (draco volans) is another varied example of an agamid lizard. Measuring slightly less than 12 inches, this animal has a long, thin body with flaps of skin along its ribs. The male flying lizard will claim two to three trees for its territory with one to three females living in each tree. In order to transport itself from one place to another, it glides from trees or other high places by extending its skin flaps like wings. However, it usually does not fly in rain or wind. When threatened, the flying lizard may also extend its skin flaps to appear larger.

Another interesting variety of the agamidae family is the Red Headed Rock Agama (Agama agama) found in sub-Saharan Africa. These creatures often live in groups of 10 to 20 with an older male acting as the group's "leader." At night, their coloring is dark brown, but at dawn, their bodies change to light blue with a bright orange head and tail. Their skin coloring changes with their mood, acting like a virtual mood ring. For example, when males fight, their heads will become brown, while white spots appear along the body.

Darren Kelly was the production editor for SQL Cookbook. Kenneth Kimball was the copyeditor and Karmyn Guthrie was the proofreader. nSight, Inc. provided production services. Jamie Peppard and Genevieve d'Entremont provided quality control. Jansen Fernald provided production support Beth Palmer wrote the index.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-century engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This colophon was written by Jansen Fernald.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 data dependent keys
 data dictionary views (Oracle)
 DATE function (DB2)
 DATE_ADD function (MySQL) 2nd 3rd 4th 5th
 DATE_FORMAT function (MySQL) 2nd 3rd 4th 5th
 DATE_TRUNC function (PostgreSQL) 2nd 3rd 4th 5th
 DATEADD function (MySQL)
 DATEADD function (SQL Server) 2nd 3rd
 DATEDIFF function (MySQL/SQL Server) 2nd 3rd 4th 5th
 DATENAME function (SQL Server) 2nd 3rd 4th 5th
 DATEPART function (SQL Server) 2nd 3rd 4th 5th
dates
 arithmetic 2nd
 business days between dates 2nd 3rd 4th 5th 6th
 difference between record and next record 2nd 3rd 4th
 weekdays in year, counting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 format
 manipulation
 calendar 2nd 3rd 4th 5th 6th 7th
 comparing records
 date ranges, identifying overlapping 2nd 3rd 4th 5th
 leap year 2nd 3rd 4th 5th 6th 7th 8th
 missing dates 2nd 3rd 4th 5th 6th 7th 8th 9th
 quarter start/end dates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
 weekdays, first/last in month 2nd
 year 2nd 3rd 4th
 ORDER BY clause and (DB2)
 DAY function (DB2) 2nd 3rd
 DAY function (MySQL) 2nd 3rd 4th
 DAY function (SQL Server) 2nd 3rd
 DAYNAME function (DB2/MySQL/SQL Server) 2nd
 DAYOFWEEK function (DB2/MYSQL) 2nd 3rd
 DAYOFYEAR function (DB2/MySQL/SQL Server) 2nd 3rd 4th 5th
 DAYS function (DB2) 2nd 3rd
DB2
 DATE values in ORDER BY clause
 DECODE function (Oracle) 2nd
 DEFAULT keyword
 DEFAULT VALUES clause (PostgreSQL/SQL Server)
 DELETE command 2nd
deleting records
 all
 duplicate
 referenced from another table
 single
 specific
 that violate integrity
 with NULLs (DB2/Oracle/SQL Server)
 with NULLs (PostgreSQL/MySQL) 2nd
 delimited data 2nd
 delimited lists 2nd 3rd 4th 5th 6th
 DENSE_RANK function (DB2/Oracle/SQL Server) 2nd 3rd
 DENSE_RANK OVER window function (DB2/Oracle/SQL Server) 2nd 3rd 4th
DISTINCT keyword
 alternatives to 2nd
 SELECT list and 2nd 3rd
 uses for 2nd 3rd
duplicates
 deleting
 suppressing 2nd
 dynamic SQL

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

Dedication

To my mom:

You're the best! Thank you for everything.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 equi-join operations 2nd
 exactly queries 2nd 3rd 4th 5th 6th
 EXCEPT function 2nd 3rd 4th
 EXTRACT function (PostgreSQL/MySQL) 2nd
 extreme values

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 forecasts
 foreign keys 2nd 3rd 4th
 framing clause 2nd 3rd 4th 5th 6th
 Frege
 Frege's axiom 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

GENERATE_SERIES function (PostgreSQL)
 alternatives to 2nd 3rd 4th
 GETDATE function (SQL Server) 2nd
 GROUP BY clause 2nd 3rd 4th 5th
 GROUP BY queries 2nd 3rd 4th 5th 6th
grouping
 aggregate functions and 2nd
 by time units 2nd 3rd 4th 5th
 characteristics of 2nd 3rd 4th
 COUNT function and
 defined
 examples
 NULLs and
 reasons for
 SELECT clause and 2nd 3rd 4th
 SUM function and
 GROUPING function (DB2/Oracle/SQL Server) 2nd 3rd 4th
 GROUPING function (MySQL/PostgreSQL)
 GROUPING SETS extension (DB2/Oracle) 2nd 3rd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

hierarchies
 node type 2nd 3rd 4th 5th 6th 7th
 parent-child relationships
 problematic nature of
 tree versus recursive structure
histograms
 horizontal
 vertical
 HOUR function (DB2)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 IF-ELSE operations
indexes
 listing
 information schema (MySQL/PostgreSQL/SQL Server)
inline views
 transforming data with
 inner joins 2nd
 INSERT ALL statement (Oracle)
 INSERT FIRST statement (Oracle)
 INSERT statement 2nd
inserting records
 blocking
 copying from another table
 into multiple tables 2nd 3rd
 new
 with default values
 with NULL values
 INSTR function (Oracle) 2nd 3rd
 integrity
 INTERSECT operation 2nd
 INTERVAL keyword 2nd
 IS NULL
 ITERATE command (Oracle)
 ITERATION_NUMBER function (Oracle)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

JOIN clause
 in FROM clause
 Oracle support for
joins
 anti-
 equi- 2nd
 inner
 scalar subqueries and
 selecting columns

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 KEEP extension (Oracle) 2nd 3rd
keys
 foreign 2nd 3rd
 Knight values 2nd 3rd
 Kyte

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 LAG function (Oracle)
 LAG OVER window function (Oracle) 2nd 3rd 4th 5th 6th 7th 8th
 LAST function (Oracle) 2nd
 LAST_DAY function (MySQL/Oracle) 2nd 3rd 4th 5th
 LEAD function (Oracle) 2nd
LEAD OVER window function (Oracle)
 duplicates and
 self joins and 2nd 3rd 4th
 uses
 LIKE operator
 LIMIT clause (MySQL/PostgreSQL) 2nd 3rd
 logarithms
 loop functionality
 LPAD function (Oracle/PostgreSQL/MySQL) 2nd
 LTRIM function (Oracle)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

manipulation
 dates
 month
 time units 2nd
 MAX function 2nd
 MAX OVER window function 2nd 3rd
 MEASURES subclause of MODEL clause (Oracle)
 MEDIAN function (Oracle)
 MERGE statement 2nd
 merging records 2nd
 metadata
 columns in table
 constraints on table
 data dictionary
 foreign keys without indexes
 generating SQL
 indexed columns in table
 tables in schema
 MIN function
 MIN OVER window function (DB2/Oracle/SQL Server) 2nd 3rd
 minimum values 2nd 3rd 4th
 MINUS operation 2nd 3rd
 MINUTE function (DB2)
 MOD function (DB2)
MODEL clause (Oracle)
 uses
 modes
modifying records
 changing row data
 using queries for new values
 when corresponding rows exist
 with values from another table 2nd 3rd 4th
 modulus (%) function (SQL Server) 2nd
 MONTH function (DB2/MySQL) 2nd 3rd 4th
 MONTHNAME function (DB2/MySQL) 2nd
 MONTHS_BETWEEN function (Oracle) 2nd
multiple tables
 inserting data into 2nd
 retrieving data from 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 comparing 2nd 3rd 4th
 joins when aggregates are used 2nd 3rd 4th 5th
 missing data from multiple tables 2nd
 outer joins when using aggregates 2nd 3rd
 values nonexistant in all tables 2nd 3rd 4th
 multisets

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Next Page]

			[image: Book Cover]						SQL Cookbook

			By

											Anthony Molinaro

			...

			Publisher: O'Reilly

			Pub Date: December 2005

			Print ISBN-10: 0-596-00976-3

			Print ISBN-13: 978-0-59-600976-2

			

 Pages: 628

						

			

			Table of Contents

												 | Index						

			[image: Overview]

			You know the rudiments of the SQL query language, yet you

feel you aren't taking full advantage of SQL's expressive

power. You'd like to learn how to do more work with SQL

inside the database before pushing data across the network

to your applications. You'd like to take your SQL skills to

the next level.

		

Let's face it, SQL is a deceptively simple language to

learn, and many database developers never go far beyond the

simple statement: SELECT FROM WHERE . But there is

so much more you can do with the

language. In the SQL Cookbook,

experienced SQL developer Anthony Molinaro shares his

favorite SQL techniques and features. You'll learn

about:

			

		

			Window functions, arguably the

most significant enhancement to SQL in the past decade. If

you're not using these, you're missing

out

			Powerful, database-specific features such as

SQL Server's PIVOT and UNPIVOT operators, Oracle's MODEL

clause, and PostgreSQL's very useful GENERATE_SERIES

function

			Pivoting rows into columns, reverse-pivoting

columns into rows, using pivoting to facilitate inter-row

calculations, and double-pivoting a result

set

			Bucketization, and why

you should never use that term in

Brooklyn.

			How to create histograms, summarize data

into buckets, perform aggregations over a moving range of

values, generate running-totals and subtotals, and other

advanced, data warehousing

techniques

			The technique of walking a

string, which allows you to use SQL to parse

through the characters, words, or delimited elements of a

string

		

Written in O'Reilly's popular Problem/Solution/Discussion

style, the SQL Cookbook is sure to

please. Anthony's credo is: "When it comes down to it, we

all go to work, we all have bills to pay, and we all want to

go home at a reasonable time and enjoy what's still

available of our days." The SQL

Cookbook moves quickly from problem to solution,

saving you time each step of the way.

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 names 2nd
 negation queries 2nd 3rd
 A only 2nd 3rd 4th
 A or B but not both 2nd 3rd
 not A 2nd 3rd 4th
 NEXT_DAY function (Oracle) 2nd 3rd
 NOT EXISTS
 NOT IN operator
 NROWS function (DB2/SQL Server)
 NTILE window function (Oracle/SQL Server) 2nd 3rd
 NULL paradox 2nd 3rd 4th
NULLs
 aggregate functions and 2nd 3rd
 AVG function and
 comparisons to 2nd
 groups and
 MIN/MAX functions and
 OR operations and
 sorting and 2nd 3rd 4th
 window functions and 2nd
numbers queries
 averages without high/low values
 converting alphanumeric strings to
 converting whole to binary (Oracle)
 counting column values
 counting rows
 nullable columns
 percentage of total 2nd
 percentage relative to total
 subtotals 2nd 3rd 4th
 subtotals for all combinations 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 NVL function (Oracle)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 OFFSET clause (MySQL/PostgreSQL) 2nd
 Optimizing Transact-SQL: Advanced Programming Techniques (Rozenshtein et al.)
Oracle
 object types
 ORDER BY clause 2nd 3rd 4th 5th
outer joins
 OR logic in 2nd 3rd
 Oracle syntax 2nd 3rd 4th 5th 6th
 OVER keyword 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 PARTITION BY clause 2nd 3rd 4th
partitions
 ORDER BY clause and
patterns
 finding non-matching text (Oracle)
 percentage calculations 2nd 3rd 4th
 PERCENTILE_CONT function (Oracle) 2nd
 PIVOT operator (SQL Server) 2nd 3rd
pivoting
 inter-row calculations
 MODEL clause (Oracle)
 multiple rows 2nd 3rd 4th 5th 6th
 one row
 ranked result sets 2nd 3rd 4th 5th
 subtotals 2nd 3rd
PostgreSQL
 PRIOR keyword (Oracle)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 QUARTER function (DB2/MySQL) 2nd 3rd
queries
 strings
 alphanumeric
 characters
 occurrences
 ordering by part
 quotes

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 RAND function
 RANDOM function
 random records 2nd
 RANGE BETWEEN clause 2nd 3rd 4th
ranges
 consecutive 2nd
 consecutive numeric values
 differences between rows in group 2nd 3rd 4th 5th
 missing values 2nd
 RATIO_TO_REPORT function (Oracle)
 reciprocal rows 2nd
 referential integrity
 REGEXP_REPLACE function (Oracle)
 Regular Expression Anti-Patterns(Gennick)
 regular expressions (Oracle) 2nd
 relational division
 REPEAT function (DB2)
 REPLACE function 2nd 3rd 4th 5th
 REPLICATE function (SQL Server)
 result set 2nd 3rd 4th 5th
retrieving data from
 multiple tables
 adding joins to existing joins
 columns with same data type
 finding common rows
 nonmatching rows
 NULLs in operations/comparisons
 related rows
retrieving records
 complex
 aggregating groups/partitions simultaneously
 aggregating over moving value range 2nd 3rd 4th
 fixed size groups
 histograms, horizontal 2nd
 non-GROUP BY columns, returning 2nd 3rd 4th 5th 6th
 repeating values, suppressing 2nd
 sparse matrices
 subtotals 2nd
 simple
 random 2nd
 reverse pivoting result sets 2nd 3rd
 ROLLUP extension of GROUP BY(DB2/Oracle) 2nd 3rd
 row generation 2nd 3rd 4th
 ROW_NUMBER function (DB2/SQL Server)
ROW_NUMBER OVER window function (DB2/Oracle/SQL Server)
 ORDER BY clause and
 uniqueness of result
 uses 2nd
 ROWNUM function (Oracle) 2nd 3rd
 RPAD function (Oracle)
 RTRIM function (Oracle/PostgreSQL)
 RULES subclause (Oracle)
 running differences
 running products 2nd 3rd 4th
 running totals 2nd 3rd 4th 5th 6th
 Russell
 Russell's Paradox

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

scalar subqueries
 converting to composite (Oracle) 2nd 3rd
 joins and 2nd
 referencing in WHERE clause
 scripts
 searching
 duplicates 2nd 3rd
 for text not matching pattern (Oracle) 2nd 3rd 4th
 highest/lowest values
 Knight values
 outer joins
 results 2nd 3rd
 row values 2nd 3rd 4th
 rows 2nd 3rd
 rows from table 2nd 3rd 4th
 top n records 2nd 3rd
 SECOND function (DB2)
SELECT statements
 DISTINCT keyword and
 GROUP BY and 2nd 3rd 4th
self joins
 alternatives to 2nd 3rd 4th
 serialized data 2nd 3rd
 set differences
 set operations generally 2nd 3rd
 SIGN function (MySQL/PostgreSQL)
simple
 retrieving records
 all rows/columns
 columns 2nd 3rd 4th
 null values
 pattern matching
 rows 2nd
 sorting records 2nd 3rd 4th 5th 6th 7th
 by substrings
 mixed alphanumeric data
 nulls and 2nd 3rd 4th 5th 6th 7th
 on data dependent key
 on multiple fields
 on single field
 strings 2nd 3rd
 specification
 START WITH clause (Oracle) 2nd
 Stoll
 STR_TO_DATE function (MySQL)
strings
 queries 2nd
 alphabetizing
 alphanumeric status 2nd 3rd 4th 5th 6th
 extracting elements
 initials, extracting from name 2nd 3rd 4th 5th
 IP Address parsing 2nd 3rd
 numeric content 2nd 3rd 4th 5th 6th
 ordering by number 2nd 3rd 4th 5th
 parsing into rows 2nd
 searching for mixed alphanumeric 2nd
 separating numeric and character data 2nd 3rd 4th 5th
subqueries
 correlated
 SUBSTR function (DB2/MySQL/Oracle/PostgreSQL) 2nd 3rd
 SUBSTRING function (SQL Server) 2nd 3rd
subtotals
 calculating for all combinations
 calculating simple
 pivoting result set with 2nd
 SUM function 2nd
 SUM OVER window function (DB2/Oracle/SQL Server) 2nd 3rd 4th 5th
 summing column values
 SYS_CONNECT_BY_PATH function (Oracle) 2nd 3rd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-A-SECT-1]

Recipe A.1. Grouping

Before moving on to window functions, it is crucial that you understand how grouping works in SQL. In my experience, the concept of grouping results in SQL has been a stumbling block for many. The problems stem from not fully understanding how the GROUP BY clause works and why certain queries return certain results when using GROUP BY.

Simply stated, grouping is a way to organize like rows together. When you use GROUP BY in a query, each row in the result set is a group and represents one or more rows with the same values in one or more columns that you specify. That's the gist of it.

If a group is simply a unique instance of a row that represents one or more rows with the same value for a particular column (or columns), then practical [bookmark: idx-APP-A-0907]examples of groups from table EMP include all employees in department 10 (the common value for these employees that enable them to be in the same group is DEPTNO=10) or all clerks (the common value for these employees that enable them to be in the same group is JOB='CLERK'). Consider the following queries. The first shows all employees in department 10; the second query groups the employees in department 10 and returns the following information about the group: the number of rows (members) in the group, the highest salary, and the lowest salary:

	select deptno,ename

		from emp

		where deptno=10

	 DEPTNO ENAME

	 ------ ----------

		 10 CLARK

		 10 KING

		 10 MILLER

	 select deptno,

				 count(*) as cnt,

				 max(sal) as hi_sal,

				 min(sal) as lo_sal

			 from emp

		 where deptno=10

		 group by deptno

		DEPTNO		 CNT	 HI_SAL	 LO_SAL

		------ ---------- ---------- ----------

			10			3		5000		1300

If you were not able to group the employees in department 10 together, to get the information in the second query above you would have to manually inspect the rows for that department (trivial if there are only three rows, but what if there were three million rows?). So, why would anyone want to group? [bookmark: idx-APP-A-0908]Reasons for doing so vary; perhaps you want to see how many different groups exist or how many members (rows) are in each group. As you can see from the simple example above, grouping allows you to get information about many rows in a table without having to inspect them one by one.

[bookmark: sqlckbk-APP-A-SECT-1.1]

Definition of an SQL Group

In mathematics, a group is [bookmark: idx-APP-A-0909]defined, for the most part, as (G, •, e), where G is a set, • is a binary operation in G, and e is a member of G. We will use this definition as the foundation for what a SQL group is. A SQL group will be defined as (G, e), where G is a result set of a single or self-contained query that uses GROUP BY, e is a member of G, and the following axioms are satisfied:

			For each e in G, e is distinct and represents one or more instances of e.

			For each e in G, the aggregate function COUNT returns a value > 0.

						[image:]			

The result set is included in the definition of a SQL group to reinforce the fact that we are defining what groups are when working with queries only. Thus, it would be accurate to replace "e" in each axiom with the word "row" because the rows in the result set are technically the groups.

Because these properties are fundamental to what we consider a group, it is important that we prove they are true (and we will proceed to do so through the use [bookmark: idx-APP-A-0910]of some example SQL queries).

[bookmark: sqlckbk-APP-A-SECT-1.1.1]

Groups are non-empty

By its very definition, a group must have at least one member (or row). If we accept this as a truth, then it can be said that a group cannot be created from an empty table. To prove that proposition true, simply try to prove it is false. The following example creates an empty table, and then attempts to create groups via three different queries against that empty table:

	create table fruits (name varchar(10))

	select name

		from fruits

	 group by name

	 (no rows selected)

	 select count(*) as cnt

		 from fruits

		group by name

		(no rows selected)

	select name, count(*) as cnt

		from fruits

	 group by name

	 (no rows selected)

As you can see from these queries, it is impossible to create what SQL considers a group from an empty table.

[bookmark: sqlckbk-APP-A-SECT-1.1.2]

Groups are distinct

Now let's prove that the groups created via queries with a GROUP BY clause are distinct. The following example inserts five rows into table FRUITS, and then creates groups from those rows:

	insert into fruits values ('Oranges')

	insert into fruits values ('Oranges')

	insert into fruits values ('Oranges')

	insert into fruits values ('Apple')

	insert into fruits values ('Peach')

	select *

		from fruits

	NAME

	Oranges

	Oranges

	Oranges

	Apple

	Peach

	select name

		from fruits

	 group by name

	 NAME

	 Apple

	 Oranges

	 Peach

	 select name, count(*) as cnt

		from fruits

	 group by name

	 NAME			CNT

	 ------- --------

	 Apple		1

	 Oranges		3

	 Peach		1

The first query shows that "Oranges" occurs three times in table FRUITS. However, the second and third queries (using GROUP BY) return only one instance [bookmark: idx-APP-A-0911]of "Oranges." Taken together, these queries prove that the rows in the result set (e in G, from our definition) are distinct, and each value of NAME represents one or more instances of itself in table FRUITS.

Knowing that groups are distinct is important because it means, typically, you would not use the [bookmark: idx-APP-A-0912]DISTINCT keyword in your [bookmark: idx-APP-A-0913]SELECT list when using a GROUP BY in your queries.

						[image:]			

I am in no way suggesting GROUP BY and DISTINCT are the same. They represent two completely different concepts. I am merely stating that the items listed in the GROUP BY clause will be distinct in the result set and that using DISTINCT as well as GROUP BY is redundant.

[bookmark: sqlckbk-APP-A-SIDEBAR-1]

			

Frege's Axiom and Russell's Paradox

[bookmark: idx-APP-A-0914]

[bookmark: idx-APP-A-0915]

For those [bookmark: idx-APP-A-0916]of you who are interested, Frege's [bookmark: idx-APP-A-0917]axiom of abstraction, based on Cantor's solution for defining set membership for infinite or uncountable sets, states that, given a specific identifying property, there exists a set whose members are only those items having that property. The source of trouble, as put by Robert [bookmark: idx-APP-A-0918]Stoll, "is the unrestrictd use of the principal of abstraction." Bertrand Russell asked Gottlob Frege to consider a set whose members are sets and have the defining property of not being members of themselves.

As Russell pointed out, the axiom of abstraction gives too much freedom because you are simply specifiying a condition or property to define set membership, thus a contradiction can be found. To better explain how a contradiction can be found, he devised the "[bookmark: idx-APP-A-0919]Barber Puzzle." The Barber Puzzle states:

In a certain town there is a male barber who shaves all those men, and only those men, who do not shave themselves. If this is true, who, then, shaves the barber?

For a more concrete example, consider the set that can be described as:

For all members x in y that satisfy a specific condition (P)

The mathematical notation for this description is:

	{x e y | P(x)}

Because the above set considers only those x in y that satisfy a condition (P) you may find it more intuitive to describe the set as x is a member of y if and only if x satisfies a condition (P).

At this point let us define this condition P(x) as x is not a member of x:

	(x e x)

The set is now defined as x is a member of y if and only if x is not a member of x:

	{x e y | (x e x)}

[bookmark: idx-APP-A-0920]Russell's paradox may not be clear to you yet, but ask yourself this: can the set above be a member of itself? Let's assume that x = y and look at the above set again. The following set can be defined as y is a member of y if and only if y is not a member of y:

	{y e y | (y e y)}

Simply put, Russell's [bookmark: idx-APP-A-0921]paradox leaves us in a position to have a set that is concurrently a member [bookmark: idx-APP-A-0922]of itself and not a member of itself, which is a contradiction. Intuitive thinking would lead one to believe this isn't a problem at all; indeed, how can a set be a member of itself? The set of all books, after all, is not a book. So why does this paradox exist and how can it be an issue? It becomes an issue when you consider more abstract applications of set theory. For example, a "practical" application of Russell's paradox can be demonstrated by considering the set of all sets. If we allow such a concept to exist, then by its very definition, it must be a member of itself (it is, after all, the set of all sets). What then happens when you apply P(x) above to the set of all sets? Simply stated, Russell's paradox would state that the set of all sets is a member of itself if and only if it is not a member of itselfclearly a contradiction.

For those of you who are interested, Ernst [bookmark: idx-APP-A-0923]Zermelo developed the [bookmark: idx-APP-A-0924]axiom schema of separation (also referred to as the [bookmark: idx-APP-A-0925]axiom schema of subsets or the [bookmark: idx-APP-A-0926]axiom of [bookmark: idx-APP-A-0927]specification) to elegantly sidestep Russell's paradox in axiomatic set theory.

[bookmark: sqlckbk-APP-A-SECT-1.1.3]

COUNT is never zero

The queries and results in the preceding section also prove the final axiom that the aggregate function COUNT will never return zero when used in a query with GROUP BY on a nonempty table. It should not be surprising that you cannot return a count of zero for a group. We have already proved that a group cannot be created from an empty table, thus a group must have at least one row. If at least one row exists, then the count will always be at least 1.

						[image:]			

Remember, we are talking about using COUNT with GROUP BY, not COUNT by itself. A query using COUNT without a GROUP BY on an empty table will of course return zero.

[bookmark: sqlckbk-APP-A-SECT-1.2]

Paradoxes

"Hardly anything more unfortunate can befall a scientific writer than to have one of the foundations of his edifice shaken after the work is finished…. This was the position I was placed in by a letter of Mr. Bertrand Russell, just when the printing of this volume was nearing its completion."

The preceding quote is from Gottlob [bookmark: idx-APP-A-0928]Frege in response to Bertrand Russell's discovery of a contradiction to [bookmark: idx-APP-A-0929]Frege's [bookmark: idx-APP-A-0930]axiom of [bookmark: idx-APP-A-0931]abstraction in set theory.

Paradoxes many times provide scenarios that would seem to contradict established theories or ideas. In many cases these contradictions are localized and can be "worked around," or they are applicable to such small test cases that they can be safely ignored.

You may have guessed by now that the point to all this discussion of paradoxes is that there exists a paradox concerning our definition of an SQL group, and that paradox must be addressed. Although our focus right now is on groups, ultimately we are discussing SQL queries. In its GROUP BY clause, a query may have a wide range of values such as constants, expressions, or, most commonly, columns from a table. We pay a price for this flexibility, because [bookmark: idx-APP-A-0932]NULL is a valid "value" in SQL. NULLs present problems because they are effectively ignored by aggregate functions. With that said, if a table consists of a single row and its value is NULL, what would the aggregate function COUNT return when used in a GROUP BY query? By our very definition, when using GROUP BY and the aggregate function COUNT, a value >= 1 must be returned. What happens, then, in the case of values ignored by functions such as COUNT, and what does this mean to our definition of a GROUP? Consider the following example, which reveals the NULL group paradox (using the function COALESCE when necessary for readability):

	select *

		from fruits

	 NAME

	 Oranges

	 Oranges

	 Oranges

	 Apple

	 Peach

	 insert into fruits values (null)

	 insert into fruits values (null)

	 insert into fruits values (null)

	 insert into fruits values (null)

	 insert into fruits values (null)

	 select coalesce(name,'NULL') as name

		from fruits

	 NAME

	 Oranges

	 Oranges

	 Oranges

	 Apple

	 Peach

	 NULL

	 NULL

	 NULL

	 NULL

	 NULL

	 select coalesce(name,'NULL') as name,

			count(name) as cnt

		from fruits

	 group by name

	 NAME			 CNT

	 -------- ----------

	 Apple				1

	 [bookmark: idx-APP-A-0933]NULL				0

	 Oranges			3

	 Peach				1

It would seem that the presence of [bookmark: idx-APP-A-0934]NULL values in our table introduces a contradiction, or paradox, to our definition of a SQL group. Fortunately, this contradiction is not a real cause for concern, because the paradox has more to do with the implementation of [bookmark: idx-APP-A-0935]aggregate functions than our definition. Consider the final query in the preceding set; a general problem statement for that query would be:

Count the number of times each name occurs in table FRUITS or count the number of members in each group.

Examining the INSERT statements above, it's clear that there are five rows with NULL values, which means there exists a NULL group with five members.

						[image:]			

While NULL certainly has properties that differentiate it from other values, it is nevertheless a value, [bookmark: idx-APP-A-0936]and can in fact be a group.

How, then, can we write the query to return a count of 5 instead of 0, thus returning the information we are looking for while conforming to our definition of a group? The example below shows a workaround to deal with the NULL group paradox:

	select coalesce(name,'NULL') as name,

		 count(*) as cnt

	 from fruits

	 group by name

	 NAME			CNT

	 --------- --------

	 Apple			 1

	 Oranges		 3

	 Peach			 1

	 NULL			 5

The workaround is to use COUNT(*) rather than COUNT(NAME) to avoid the NULL group paradox. Aggregate functions will ignore NULL values if any exist in the column passed to them. Thus, to avoid a zero when using COUNT do not pass the column name; instead, pass in an asterisk (*). The * causes the [bookmark: idx-APP-A-0937]COUNT function to count rows rather than the actual column values, so whether or not the actual values are NULL or not NULL is irrelevant.

One more paradox has to do with the axiom that each group in a result set (for each e in G) is distinct. Because of the nature of SQL result sets and tables, which are more accurately defined as [bookmark: idx-APP-A-0938]multisets or "[bookmark: idx-APP-A-0939]bags," not sets (because duplicate rows are allowed), it is possible to return a result set with duplicate [bookmark: idx-APP-A-0940]groups. Consider the following queries:

	select coalesce(name,'[bookmark: idx-APP-A-0941]NULL') as name,

		 count(*) as cnt

	 from fruits

	 group by name

	 [bookmark: idx-APP-A-0942]union all

	select coalesce(name,'NULL') as name,

			count(*) as cnt

	 from fruits

	 group by name

	 NAME			 CNT

	 ---------- ---------

	 Apple				1

	 Oranges			3

	 Peach				1

	 NULL				5

	 Apple				1	

	 Oranges			3

	 Peach				1

	 NULL				5

	 select x.*

		from (

	 select coalesce(name,'NULL') as name,

			count(*) as cnt

		from fruits

	 group by name

) x,

			(select deptno from dept) y

	 NAME			 CNT

	 ---------- ----------

	 Apple				 1

	 Apple				 1

	 Apple				 1

	 Apple				 1

	 Oranges			 3

	 Oranges			 3

	 Oranges			 3

	 Oranges			 3

	 Peach				 1

	 Peach				 1

	 Peach				 1

	 Peach				 1

	 NULL				 5

	 NULL				 5

	 NULL				 5

	 NULL				 5

As you can see in these queries, the groups are in fact repeated in the final results. Fortunately, this is not much to worry about because it represents only a partial paradox. The first property of a group states that for (G, e), G is a result set from a single or self-contained query that uses GROUP BY. Simply put, the result set from any [bookmark: idx-APP-A-0943]GROUP BY query itself conforms to our definition of a group. It is only when you combine the result sets from two GROUP BY queries to create a multiset that groups may repeat. The first query in the preceding example uses [bookmark: idx-APP-A-0944]UNION ALL, which is not a set operation but a multiset operation, and invokes GROUP BY twice, effectively executing two queries.

						[image:]			

If you use UNION, which is a set operation, you will not see repeating groups.

The second query in the preceding set uses a Cartesian product, which only works if you materialize the group first and then perform the Cartesian. Thus the GROUP BY query when self-contained conforms to our definition. Neither of the two examples takes anything away from the definition of a SQL group. They are shown for completeness, and so that you can be aware that almost anything is possible in SQL.

[bookmark: sqlckbk-APP-A-SECT-1.3]

Relationship Between SELECT and GROUP BY

With the concept of a group defined and proved, it is now time to move on to more practical matters concerning queries using GROUP BY. It is important to understand the relationship between the [bookmark: idx-APP-A-0945]SELECT clause and the [bookmark: idx-APP-A-0946]GROUP BY clause when [bookmark: idx-APP-A-0947]grouping in SQL. It is important to keep in mind when using [bookmark: idx-APP-A-0948]aggregate functions such as COUNT that any item in your SELECT list that is not used as an argument to an aggregate function must be part of your group. For example, if you write a SELECT clause such as:

	select deptno, count(*) as cnt

		from emp

then you must list DEPTNO in your GROUP BY clause:

	select deptno, count(*) as cnt

		from emp

	 group by deptno

	 DEPTNO	CNT

	 ------- ----

			10	 3

			20	 5

			30 6

Constants, scalar values returned by user-defined functions, window functions, and non-correlated scalar subqueries are exceptions to this rule. Since the SELECT clause is evaluated after the GROUP BY clause, these constructs are allowed in the SELECT list and do not have to (and in some cases cannot) be specified in the GROUP BY clause. For example:

	select 'hello' as msg,

			1 as num,

			deptno,

			([bookmark: idx-APP-A-0949]select count(*) from emp) as total,

			count(*) as cnt

	 from emp

	 group by deptno

	 MSG	NUM DEPTNO TOTAL CNT

	 ----- --- ------ ----- ---

	 hello	1		10	14		3

	 hello	1		20	14		5

	 hello	1		30	14		6

Don't let this query confuse you. The items in the SELECT list not listed in the [bookmark: idx-APP-A-0950]GROUP BY clause do not change the value of CNT for each DEPTNO, nor do the values for DEPTNO change. Based on the results of the preceding query, we can define the rule about matching items in the SELECT list and the GROUP BY clause when using aggregates a bit more precisely:

Items in a SELECT list that can potentially change the group or change the value returned by an aggregate function must be included in the GROUP BY clause.

The additional items in the preceding SELECT list did not change the value of CNT for any group (each DEPTNO), nor did they change the groups themselves.

Now it's fair to ask: exactly what items in a SELECT list can change a grouping or the value returned by an aggregate function? The answer is simple: other columns from the table(s) you are selecting from. Consider the prospect of adding the JOB column to the query we've been looking at:

	select deptno, job, count(*) as cnt

		from emp

	 group by deptno, job

	 DEPTNO JOB		CNT

	 ------ ---------- ----

	 10	CLERK			1

	 10	MANAGER			1

	 10	PRESIDENT		1

	 20	CLERK			2

	 20	ANALYST			2

	 20	MANAGER			1

	 30	CLERK			1

	 30	MANAGER			1

	 30	SALESMAN		4

By listing another column, JOB, from table EMP, we are changing the group and changing the result set; thus we must now include JOB in the GROUP BY clause along with DEPTNO, otherwise the query will fail. The inclusion of JOB in the SELECT/GROUP BY clauses changes the query from "How many employees are in each department?" to "How many different types of employees are in each department?" Notice again that the groups are distinct; the values for DEPTNO and JOB individually are not distinct, but the combination of the two (which is what is in the [bookmark: idx-APP-A-0951]GROUP BY and SELECT list, and thus is the group) are distinct (e.g., 10 and CLERK appear only once).

If you choose not to put items other than [bookmark: idx-APP-A-0952]aggregate functions in the [bookmark: idx-APP-A-0953]SELECT list, then you may list any valid column you wish, in the [bookmark: idx-APP-A-0954]GROUP BY clause. Consider the following two queries, which highlight this fact:

	select count(*)

		from emp

	 group by deptno

		COUNT(*)

				3

				5

				6

	select count(*)

		from emp

	 group by deptno,job

	 COUNT(*)

			1

			1

			1

			2

			2

			1

			1

			1

			4

Including items other than aggregate functions in the SELECT list is not mandatory, but often improves readability and usability of the results.

						[image:]			

As a rule, when using [bookmark: idx-APP-A-0955]GROUP BY and aggregate functions, any items in the SELECT list [from the table(s) in the FROM clause] not used as an argument to an aggregate function must be included in the GROUP BY clause. However, MySQL has a "feature" that allows you to deviate from this rule, allowing you to place items in your SELECT list [that are columns in the table(s) you are selecting from] that are not used as arguments to an aggregate function and that are not present in your GROUP BY clause. I use the term "feature" very loosely here as its use is a bug waiting to happen and I urge you to avoid it. As a matter of fact, if you use MySQL and care at all about the accuracy of your queries I suggest you urge them to remove this, ahem, "feature."

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-A-SECT-2]

Recipe A.2. Windowing

Once you understand the concept of [bookmark: idx-APP-A-0956]grouping and using aggregates in SQL, understanding window functions is easy. Window functions, like aggregate functions, perform an aggregation on a defined set (a group) of rows, but rather than returning one value per group, window functions can return multiple values for each group. The group of rows to perform the aggregation on is the window (hence the name "[bookmark: idx-APP-A-0957]window functions"). DB2 actually calls such functions online analytic processing (OLAP) functions, and Oracle calls them analytic functions, but the ISO SQL standard calls them window functions, so that's the term I use in this book.

[bookmark: sqlckbk-APP-A-SECT-2.1]

A Simple Example

Let's say that you wish to count the total number of employees across all departments. The traditional method for doing that is to issue a COUNT(*) query against the entire EMP table:

	select count(*) as cnt

		from emp

		 CNT

		 14

This is easy enough, but often you will find yourself wanting to access such aggregate data from rows that do not represent an aggregation, or that represent a different aggregation. Window functions make light work of such problems. For example, the following query shows how you can use a window function to access aggregate data (the total count of employees) from detail rows (one per employee):

	select ename,

			 deptno,

			 count(*) over() as cnt

		 from emp

	 order by 2

	 ENAME	 DEPTNO	CNT

	 ---------- ------ ------

	 CLARK			10	 14

	 KING				10	 14

	 MILLER			10	 14

	 SMITH			20	 14	

	 ADAMS			20	 14

	 FORD				20	 14

	 SCOTT			20	 14

	 JONES			20	 14

	 ALLEN			30	 14

	 BLAKE			30	 14

	 MARTIN			30	 14

	 JAMES			30	 14

	 TURNER			30	 14

	 WARD				30	 14

The window function invocation in this example is COUNT(*) OVER(). The presence of the [bookmark: idx-APP-A-0958]OVER keyword indicates that the invocation of COUNT will be treated as a window function, not as an aggregate function. In general, the SQL standard allows for all [bookmark: idx-APP-A-0959]aggregate functions to also be window functions, and the keyword OVER is how the language distinguishes between the two uses.

So, what did the window function [bookmark: idx-APP-A-0960]COUNT(*) OVER () do exactly? For every row being returned in the query, it returned the count of all the rows in the table. As the empty parentheses suggest, the OVER keyword accepts additional clauses to affect the range of rows that a given window function considers. Absent any such clauses, the window function looks at all rows in the result set, which is why you see the value 14 repeated in each row of output.

Hopefully you begin to see the great utility of window functions, which is that they allow you to work with multiple levels of aggregation in one row. As you continue through this appendix, you'll begin to see even more just how incredibly useful that ability can be.

[bookmark: sqlckbk-APP-A-SECT-2.2]

Order of Evaluation

[bookmark: idx-APP-A-0961]

Before digging deeper into the OVER clause, it is important to note that window functions are performed as the last step in SQL processing prior to the ORDER BY clause. As an example of how window functions are processed last, let's take the query from the preceding section and use a WHERE clause to filter out employees from DEPTNO 20 and 30:

	select ename,

		 deptno,

		 count(*) over() as cnt

	 from emp

	 where deptno = 10

	 order by 2

	 ENAME		DEPTNO	 CNT

	 ---------- ------ ------

	 CLARK			10		3

	 KING			10		3

	 MILLER			10		3

The value for CNT for each row is no longer 14, it is now 3. In this example, it is the WHERE clause that restricts the result set to three rows, hence the window function will count only three rows (there are only three rows available to the window function by the time processing reaches the SELECT portion of the query). From this example you can see that window functions perform their computations after clauses such as WHERE and GROUP BY are evaluated.

[bookmark: sqlckbk-APP-A-SECT-2.3]

Partitions

[bookmark: idx-APP-A-0962]

Use the [bookmark: idx-APP-A-0963]PARTITION BY clause to define a partition or group of [bookmark: idx-APP-A-0964]rows to perform an aggregation over. As we've seen already, if you use empty parentheses then the entire result set is the partition that a window function aggregation will be computed over. You can think of the PARTITION BY clause as a "moving GROUP BY" because unlike a traditional GROUP BY, a group created by PARTITION BY is not distinct in a result set. You can use PARTITION BY to compute an aggregation over a defined group of [bookmark: idx-APP-A-0965]rows (resetting when a new group is encountered) and rather than having one group represent all instances of that value in the table, each value (each member in each group) is returned. Consider the following query:

	select ename,

				 deptno,

				 count(*) over([bookmark: idx-APP-A-0966]partition by deptno) as cnt

				from emp

			order by 2

			ENAME		DEPTNO		CNT

			----------	------ ------

			CLARK			10		3

			KING			10		3

			MILLER			10		3

			SMITH			20		5

			ADAMS			20		5

			FORD			20		5

			SCOTT			20		5

			JONES			20		5

			ALLEN			30		6

			BLAKE			30		6

			MARTIN			30		6

			JAMES			30		6

			TURNER			30		6

			WARD			30 6

This query still returns 14 rows, but now the COUNT is performed for each department as a result of the PARTITION BY DEPTNO clause. Each employee in the same department (in the same partition) will have the same value for CNT, because the aggregation will not reset (recompute) until a new department is encountered. Also note that you are returning information about each group, along with the members of each group. You can think of the preceding query as a more efficient version of the following:

	select e.ename,

		 e.deptno,

		 (select count(*) from emp d

			 where e.deptno=d.deptno) as cnt

		from emp e

	 order by 2

	 ENAME		 DEPTNO	 CNT

	 ---------- ------ ------

	 CLARK			10		3

	 KING			10		3

	 MILLER		10		3

	 SMITH			20		5

	 ADAMS			20		5

	 FORD			20		5

	 SCOTT			20		5

	 JONES			20		5

	 ALLEN			30		6

	 BLAKE			30		6

	 MARTIN		30		6

	 JAMES			30		6

	 TURNER		30		6

	 WARD			30		6

Additionally, what's nice about the [bookmark: idx-APP-A-0967]PARTITION BY clause is that it performs its computations independently of other [bookmark: idx-APP-A-0968]window functions, partitioning by different columns in the same SELECT statement. Consider the following query, which returns each employee, her department, the number of employees in her respective department, her job, and the number of employees with the same job:

	select ename,

			deptno,

			count(*) over(partition by deptno) as dept_cnt,

			job,

			count(*) over(partition by job) as job_cnt

		from emp

	 order by 2

	 ENAME	 DEPTNO DEPT_CNT JOB		JOB_CNT	

	 ---------- ------ -------- --------- -------

	 MILLER			10			3 CLERK			4

	 CLARK			10			3 MANAGER		3

	 KING				10			3 PRESIDENT		1

	 SCOTT			20			5 ANALYST		2

	 FORD				20			5 ANALYST		2

	 SMITH			20			5 CLERK			4

	 JONES			20			5 MANAGER		3

	 ADAMS			20			5 CLERK			4

	 JAMES			30			6 CLERK			4

	 MARTIN			30			6 SALESMAN		4

	 TURNER			30			6 SALESMAN		4

	 WARD				30			6 SALESMAN		4

	 ALLEN			30			6 SALESMAN		4

	 BLAKE			30			6 MANAGER		3

In this result set, you can see that employees in the same department have the same value for DEPT_CNT, and that employees who have the same job position have the same value for JOB_CNT.

By now it should be clear that the PARTITION BY clause works like a GROUP BY clause, but it does so without being affected by the other items in the SELECT clause and without requiring you to write a GROUP BY clause.

[bookmark: sqlckbk-APP-A-SECT-2.4]

Effect of NULLs

[bookmark: idx-APP-A-0969]

Like the GROUP BY clause, the PARTITION BY clause lumps all the NULLs into one group or partition. Thus, the effect from NULLs when using PARTITION BY is similar to that from using GROUP BY. The following query uses a window function to count the number of employees with each distinct commission (returning1 in place of NULL for readability):

	select coalesce(comm,-1) as comm,

		[bookmark: idx-APP-A-0970]count(*)over([bookmark: idx-APP-A-0971]partition by comm) as cnt

	 from emp

	 COMM		 CNT

	------ ----------

		0			1

	 300			1

	 500			1

	 1400			1

	 -1		 10

	 -1		 10

	 -1		 10

	 -1		 10

	 -1		 10

	 -1		 10

	 -1 10

	 -1 10

	 -1		 10

	 -1		 10

Because COUNT(*) is used, the function counts rows. You can see that there are 10 employees having NULL commissions. Use COMM instead of *, however, and you get quite different results:

	select coalesce(comm,-1) as comm,

 count(comm)over(partition by comm) as cnt

 from emp

 COMM		CNT

	---- ----------

	 0 1

	 300		 1

 500 1

 1400 1

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

 -1 0

This query uses COUNT(COMM), which means that only the non-[bookmark: idx-APP-A-0972]NULL values in the COMM column are counted. There is one employee with a commission of 0, one employee with a commission of 300, and so forth. But notice the counts for those with NULL commissions! Those counts are 0. Why? Because [bookmark: idx-APP-A-0973]aggregate functions ignore NULL values, or more accurately, aggregate functions count only non-NULL values.

						[image:]			

When using COUNT, consider whether you wish to include [bookmark: idx-APP-A-0974]NULLs. Use COUNT(column) to avoid counting NULLs. Use COUNT(*) if you do wish to include NULLs (since you are no longer counting actual column values, you are counting rows).

[bookmark: sqlckbk-APP-A-SECT-2.5]

When Order Matters

Sometimes the order in which rows are treated by a window function is material to the results that you wish to obtain from a query. For this reason, window function syntax includes an [bookmark: idx-APP-A-0975]ORDER BY subclause that you can place within an OVER clause. Use the [bookmark: idx-APP-A-0976]ORDER BY clause to specify how the rows are ordered with a partition (remember, "partition" in the absence of a PARTITION BY clause means the entire result set).

						[image:]			

Some [bookmark: idx-APP-A-0977]window functions require you to impose order on the partitions of rows being affected. Thus, for some window functions an [bookmark: idx-APP-A-0978]ORDER BY clause is mandatory.

When you use an ORDER BY clause in the OVER clause of a window function you are specifying two things:

			How the rows in the partition are ordered

			What rows are included in the computation

Consider the following query, which sums and computes a running total of salaries for employees in DEPTNO 10:

	select deptno,

			ename,

			hiredate,

			sal,

			sum(sal)over(partition by deptno) as total1,

			sum(sal)over() as total2,

			sum(sal)over(order by hiredate) as running_total

		from emp

	 where deptno=10

	 DEPTNO ENAME HIREDATE	 SAL TOTAL1 TOTAL2 RUNNING_TOTAL

	 ------ ------ ----------- ----- ------ ------ -------------

		 10 CLARK 09-JUN-1981 2450 8750	 8750		2450

		 10 KING	 17-NOV-1981 5000 8750	 8750		7450

		 10 MILLER 23-JAN-1982 1300 8750	 8750		8750

						[image:]			

Just to keep you on your toes, I've included a sum with empty parentheses. Notice how TOTAL1 and TOTAL2 have the same values. Why? Once again, the order in which window functions are evaluated answers the question. The WHERE clause filters the result set such that only salaries from DEPTNO 10 are considered for summation. In this case there is only one partitionthe entire result set, which consists of only salaries from DEPTNO 10. Thus TOTAL1 and TOTAL2 are the same.

Looking at the values retuned by column SAL, you can easily see where the values for RUNNING_TOTAL come from. You can eyeball the values and add them yourself to compute the running total. But more importantly, why did including an ORDER BY in the OVER clause create a running total in the first place? The reason is, when you use ORDER BY in the OVER clause you are specify a default "moving" or "sliding" window within the partition even though you don't see it. The ORDER BY HIREDATE clause terminates summation at the HIREDATE in the current row.

The following query is the same as the previous one, but uses the [bookmark: idx-APP-A-0979]RANGE BETWEEN clause (which you'll learn more about later) to explicitly specify the default behavior that results from ORDER BY HIREDATE:

	select deptno,

		 ename,

		 hiredate,

		 sal,

		 sum(sal)over(partition by deptno) as total1,

		 sum(sal)over() as total2,

		 sum(sal)over(order by hiredate

						range between unbounded preceding

							and current row) as running_total

	 from emp

	 where deptno=10

	 DEPTNO ENAME HIREDATE		 SAL TOTAL1 TOTAL2 RUNNING_TOTAL

	 ------ ------ ----------- ----- ------ ------ -------------

		 10 CLARK 09-JUN-1981	2450 8750	 8750			2450

		 10 KING 17-NOV-1981	5000 8750	 8750			7450

		 10 MILLER 23-JAN-1982 1300 8750 8750 8750

The RANGE BETWEEN clause that you see in this query is termed the [bookmark: idx-APP-A-0980]framing clause by ANSI and I'll use that term here. Now, it should be easy to see why specifying an ORDER BY in the OVER clause created a running total; we've (by default) told the query to sum all rows starting from the current row and include all prior rows ("prior" as defined in the ORDER BY, in this case ordering the rows by HIREDATE).

[bookmark: sqlckbk-APP-A-SECT-2.6]

The Framing Clause

[bookmark: idx-APP-A-0981]

Let's apply the framing clause from the preceding query to the result set, starting with the first employee hired, who is named CLARK.

			Starting with CLARK's salary, 2450, and including all employees hired before CLARK, compute a sum. Since CLARK was the first employee hired in DEPTNO 10, the sum is simply CLARK's salary, 2450, which is the first value returned by RUNNING_TOTAL.

			Let's move to the next employee based on HIREDATE, named KING, and apply the framing clause once again. Compute a sum on SAL starting with the current row, 5000 (KING's salary), and include all prior rows (all employees hired before KING). CLARK is the only one hired before KING so the sum is 5000 + 2450, which is 7450, the second value returned by RUNNING_TOTAL.

			Moving on to MILLER, the last employee in the partition based on HIREDATE, let's one more time apply the framing clause. Compute a sum on SAL starting with the current row, 1300 (MILLER's salary), and include all prior rows (all employees hired before MILLER). CLARK and KING were both hired before MILLER, and thus their salaries are included in MILLER's RUNNING_TOTAL: 2450 + 5000 + 1300 is 8750, which is the value for RUNNING_TOTAL for MILLER.

As you can see, it is really the framing clause that produces the running total. The ORDER BY defines the order of evaluation and happens to also imply a default framing.

In general, the framing clause allows you to define different "sub-windows" of data to include in your computations. There are many ways to specify such sub-windows. Consider the following query:

	select deptno,

			ename,

			sal,

			sum(sal)over(order by hiredate

						 [bookmark: idx-APP-A-0982]range between unbounded preceding

						 and current row) as run_total1,

			sum(sal)over(order by hiredate

						 rows between 1 preceding

						 and current row) as run_total2,

			sum(sal)over(order by hiredate

						 range between current row

						 and unbounded following) as run_total3,

			sum(sal)over(order by hiredate

						 rows between current row

						 and 1 following) as run_total4

		from emp

	 where deptno=10

	DEPTNO ENAME	SAL RUN_TOTAL1 RUN_TOTAL2 RUN_TOTAL3 RUN_TOTAL4

	------ ------ ----- ---------- ---------- ---------- ----------

		10 CLARK	2450	 2450		 2450	 8750		7450

		10 KING		5000	 7450 7450 6300 6300

		10 MILLER 1300 8750 6300 1300 1300

Don't be intimidated here; this query is not as bad as it looks. You've already seen RUN_TOTAL1 and the effects of the [bookmark: idx-APP-A-0983]framing clause "UNBOUNDED PRECEDING AND CURRENT ROW". Here's a quick description of what's happening in the other examples:

[bookmark: idx-APP-A-0984]

			
RUN_TOTAL2

			

Rather than the keyword [bookmark: idx-APP-A-0984]RANGE, this framing clause specifies ROWS, which means the frame, or window, is going to be constructed by counting some number of rows. The 1 PRECEDING means that the frame will begin with the row immediately preceding the current row. The range continues through the CUR-RENT ROW. So what you get in RUN_TOTAL2 is the sum of the current employee's salary and that of the preceding employee, based on HIREDATE.

						[image:]			

It so happens that RUN_TOTAL1 and RUN_TOTAL2 are the same for both CLARK and KING. Why? Think about which values are being summed for each of those employees, for each of the two window functions. Think carefully, and you'll get the answer.

			
RUN_TOTAL3

			

The window function for RUN_TOTAL3 works just the opposite of that for RUN_TOTAL1; rather than starting with the current row and including all prior rows in the summation, summation begins with the current row and includes all subsequent rows in the summation.

			
RUN_TOTAL4

			

Is inverse of RUN_TOTAL2; rather than starting from the current row and including one prior row in the summation, start with the current row and include one subsequent row in the summation.

						[image:]			

If you can understand what's been explained thus far, you will have no problem with any of the recipes in this book. If you're not catching on, though, try practicing with your own examples and your own data. I personally find learning easier by actually coding new features rather than just reading about them.

[bookmark: sqlckbk-APP-A-SECT-2.7]

A Framing Finale

As a final example of the effect of the framing clause on query output, consider the following query:

	select ename,

			sal,

			min(sal)over(order by sal) min1,

			max(sal)over(order by sal) max1,

			min(sal)over(order by sal

						 [bookmark: idx-APP-A-0985]range between unbounded preceding

						 and unbounded following) min2,

			max(sal)over(order by sal

						 range between unbounded preceding

						 and unbounded following) max2,

			min(sal)over(order by sal

						 range between current row

						 and current row) min3,

			max(sal)over(order by sal

						 range between current row

						 and current row) max3,

			max(sal)over(order by sal

						 rows between 3 preceding

						 and 3 following) max4

	 from emp

	 ENAME		SAL		MIN1	MAX1	MIN2	MAX2	MIN3	MAX3	MAX4

	 ------ ----- ------ ------ ------ ------ ------ ------ ------

	 SMITH		800		800		800		800		5000	800		800		1250

	 JAMES		950		800		950		800		5000	950		950		1250

	 ADAMS		1100	800		1100	800		5000	1100	1100	1300

	 WARD		1250	800		1250	800		5000	1250	1250	1500

	 MARTIN	1250	800		1250	800		5000	1250	1250	1600

	 MILLER	1300	800		1300	800		5000	1300	1300	2450

	 TURNER	1500	800		1500	800		5000	1500	1500	2850

	 ALLEN		1600	800		1600	800		5000	1600	1600	2975

	 CLARK		2450	800		2450	800		5000	2450	2450	3000

	 BLAKE		2850	800		2850	800		5000	2850	2850	3000	

	 JONES		2975	800		2975	800		5000	2975	2975	5000

	 SCOTT		3000	800		3000	800		5000	3000	3000	5000

	 FORD		3000	800		3000	800		5000	3000	3000	5000

	 KING		5000	800		5000	800		5000	5000	5000	5000

OK, let's break this query down:

[bookmark: idx-APP-A-0986][bookmark: idx-APP-A-0987]

			
MIN1

			

The window function generating this column does not specify a [bookmark: idx-APP-A-0986]framing clause, so the default framing clause of UNBOUNDED PRECEDING AND CURRENT ROW kicks in. Why is MIN1 800 for all rows? It's because the lowest salary comes first (ORDER BY SAL), and it remains the lowest, or minimum, salary forever after.

			
MAX1

			

The values for MAX1 are much different from those for MIN1. Why? The answer (again) is the default framing clause UNBOUNDED PRECEDING AND CURRENT ROW. In conjunction with ORDER BY SAL, this framing clause ensures that the maximum salary will also correspond to that of the current row.

Consider the first row, for SMITH. When evaluating SMITH's salary and all prior salaries, MAX1 for SMITH is SMITH's salary, because there are no prior salaries. Moving on to the next row, JAMES, when comparing JAMES' salary to all prior salaries, in this case comparing to the salary of SMITH, JAMES' salary is the higher of the two, and thus it is the maximum. If you apply this logic to all rows, you will see that the value of MAX1 for each row is the current employee's salary.

			
MIN2 and MAX2

			

The [bookmark: idx-APP-A-0987]framing clause given for these is UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING, which is the same as specifying empty parentheses. Thus, all rows in the result set are considered when computing MIN and MAX. As you might expect, the MIN and MAX values for the entire result set are constant, and thus the value of these columns is constant as well.

			
MIN3 and MAX3

			

The framing clause for these is CURRENT ROW AND CURRENT ROW, which simply means use only the current employee's salary when looking for the MIN and MAX salary. Thus both MIN3 and MAX3 are the same as SAL for each row. That was easy, wasn't it?

			
MAX4

			

The framing clause defined for MAX4 is 3 PRECEDING AND 3 FOLLOWING, which means, for every row, consider the three rows prior and the three rows after the current row, as well as the current row itself. This particular invocation of MAX(SAL) will return from those rows the highest salary value.

If you look at the value of MAX4 for employee MARTIN you can see how the framing clause is applied. MARTIN's salary is 1250 and the three employee salaries prior to MARTIN's are WARD's (1250), ADAMS' (1100) and JAMES' (950). The three employee salaries after MARTIN's are MILLER's (1300), TURNER's (1500), and ALLEN's (1600). Out of all those salaries, including MARTIN's, the highest is ALLEN's, and thus the value of MAX4 for MARTIN is 1600.

[bookmark: sqlckbk-APP-A-SECT-2.8]

Readability + Performance = Power

As you can see, window functions are extremely powerful as they allow you to write queries that contain both detailed and aggregate information. Using window functions allows you to write smaller, more efficient queries as compared to using multiple self join and/or scalar subqueries. Consider the following query, which easily answers all of the following questions: "What is the number of employees in each department? How many different types of employees are in each department (e.g., how many clerks are in department 10)? How many total employees are in table EMP?"

	select deptno,

			job,

			count(*) over (partition by deptno) as emp_cnt,

			count(job) over (partition by deptno,job) as job_cnt,

			count(*) over () as total

		from emp

		DEPTNO JOB			EMP_CNT		JOB_CNT		TOTAL

		------ --------- ---------- ---------- ----------

			10 CLERK			3			1			14

			10 MANAGER			3			1			14

			10 PRESIDENT		3			1			14

			20 ANALYST			5			2			14

			20 ANALYST			5			2			14

			20 CLERK			5			2			14

			20 CLERK			5			2			14

			20 MANAGER			5			1			14

			30 CLERK			6			1			14

			30 MANAGER			6			1			14

			30 SALESMAN			6			4			14

			30 SALESMAN			6			4			14

			30 SALESMAN			6			4			14

			30 SALESMAN			6			4			14

To return the same result set without using window functions would require a bit more work:

	select a.deptno, a.job,

		(select count(*) from emp b

			where b.deptno = a.deptno) as emp_cnt,

		(select count(*) from emp b

			where b.deptno = a.deptno and b.job = a.job) as job_cnt,

		(select count(*) from emp) as total

	 from emp a

	order by 1,2

	DEPTNO JOB			EMP_CNT		JOB_CNT		TOTAL

	------ --------- ---------- ---------- ----------

		10 CLERK			3			1			14

		10 MANAGER			3			1			14

		10 PRESIDENT		3			1			14

		20 ANALYST			5			2			14

		20 ANALYST			5			2			14

		20 CLERK			5			2			14	

		20 CLERK			5			2			14

		20 MANAGER			5			1			14

		30 CLERK			6			1			14

		30 MANAGER			6			1			14

		30 SALESMAN			6			4			14

		30 SALESMAN			6			4			14

		30 SALESMAN			6			4			14

		30 SALESMAN			6			4			14

The non-window solution is obviously not difficult to write, yet it certainly is not as clean or efficient (you won't see performance differences with a 14-row table, but try these queries with, say, a 1,000- or 10,000-row table and then you'll see the benefit of using window functions over multiple self joins and scalar subqueries).

[bookmark: sqlckbk-APP-A-SECT-2.9]

Providing a Base

Besides readability and performance, window functions are useful for providing a "base" for more complex "report style" queries. For example, consider the following "report style" query that uses window functions in an inline view and then aggregates the results in an outer query. Using window functions allows you to return detailed as well as aggregate data, which is useful for [bookmark: idx-APP-A-0988]reports. The query below uses window functions to find counts using different partitions. Because the aggregation is applied to multiple rows, the inline view returns all rows from EMP, which the outer CASE expressions can use to transpose and create a formatted report:

	select deptno,

		 emp_cnt as dept_total,

		 total,

		 max(case when job = 'CLERK'

					then job_cnt else 0 end) as clerks,

		 max(case when job = 'MANAGER'

					then job_cnt else 0 end) as mgrs,

		 max(case when job = 'PRESIDENT'

					then job_cnt else 0 end) as prez,

		 max(case when job = 'ANALYST'

					then job_cnt else 0 end) as anals,

		 max(case when job = 'SALESMAN'

					then job_cnt else 0 end) as smen

		from (

	 select deptno,

			job,

			count(*) over (partition by deptno) as emp_cnt,

			count(job) over (partition by deptno,job) as job_cnt,

			count(*) over () as total	

		from emp

) x

	 group by deptno, emp_cnt, total

	 DEPTNO DEPT_TOTAL TOTAL CLERKS MGRS PREZ ANALS SMEN

	 ------ ---------- ----- ------ ---- ---- ----- ----

		10			3		14		1	1	1	 0		0

		20			5		14		2	1	0	 2		0

		30			6		14		1	1	0	 0		4

The query above returns each department, the total number of employees in each department, the total number of employees in table EMP, and a breakdown of the number of different job types in each department. All this is done in one query, without additional joins or temp tables!

As a final example of how easily multiple questions can be answered using window functions, consider the following query:

	select ename as name,

			sal,

			max(sal)over(partition by deptno) as hiDpt,

			min(sal)over(partition by deptno) as loDpt,

			max(sal)over(partition by job) as hiJob,

			min(sal)over(partition by job) as loJob,

			max(sal)over() as hi,

			min(sal)over() as lo,

			sum(sal)over(partition by deptno

							 order by sal,empno) as dptRT,

			sum(sal)over(partition by deptno) as dptSum,

			sum(sal)over() as ttl

		 from emp

	 order by deptno,dptRT

	 NAME		SAL HIDPT LODPT HIJOB LOJOB		HI	LO DPTRT DPTSUM		TTL

	 ------ ----- ----- ----- ----- ----- ----- ---- ------ ------ ------

	 MILLER 1300 5000 1300 1300 800 5000 800 1300 8750 29025

	 CLARK 2450 5000 1300 2975 2450 5000 800 3750 8750 29025

	 KING 5000 5000 1300 5000 5000 5000 800 8750 8750 29025

	 SMITH 800 3000 800 1300 800 5000 800 800 10875 29025

	 ADAMS 1100 3000 800 1300 800 5000 800 1900 10875 29025

	 JONES 2975 3000 800 2975 2450 5000 800 4875 10875 29025

	 SCOTT 3000 3000 800 3000 3000 5000 800 7875 10875 29025

	 FORD 3000 3000 800 3000 3000 5000 800 10875 10875 29025

	 JAMES 950 2850 950 1300 800 5000 800 950 9400 29025

	 WARD 1250 2850 950 1600 1250 5000 800 2200 9400 29025

	 MARTIN 1250 2850 950 1600 1250 5000 800 3450 9400 29025

	 TURNER 1500 2850 950	1600 1250 5000 800 4950 9400 29025

	 ALLEN 1600 2850 950 1600 1250 5000 800 6550 9400 29025

	 BLAKE 2850 2850 950 2975 2450 5000 800 9400 9400 29025

This query answers the following questions easily, efficiently, and readably (and without additional joins to EMP!). Simply match the employee and her salary with the different rows in the result set to determine:

			who makes the highest salary of all employees (HI)

			who makes the lowest salary of all employees (LO)

			who makes the highest salary in her department (HIDPT)

			who makes the lowest salary in her department (LODPT)

			who makes the highest salary in her job (HIJOB)

			who makes the lowest salary in her job (LOJOB)

			what is the sum of all salaries (TTL)

			what is the sum of salaries per department (DPTSUM)

			what is the running total of all salaries per department (DPTRT)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-A]

Appendix A. Window Function Refresher

The recipes in this book take full advantage of the window functions added to the ISO SQL standard in 2003, as well as vendor-specific window functions. This appendix is meant to serve as a brief overview of how window functions work. Window functions make many typically difficult tasks (difficult to solve using standard SQL, that is) quite easy. For a complete list of window functions available, full syntax, and in-depth coverage of how they work, please consult your vendor's documentation.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-1]

Recipe B.1. Rozenshtein's Example Tables

The following tables are based on Rozenshtein's book and will be used in this chapter:

	/* table of students */

	create table student

	(sno integer,

	 sname varchar(10),

	 age integer

)

	/* table of courses */

	create table courses

	(cno varchar(5),

	 title varchar(10),

	 credits integer

)

	

	/* table of professors */

	create table professor

	(lname varchar(10),

	 dept varchar(10),

	 salary integer,

	 age integer

)

	/* table of students and the courses they take */

	create table take

	(sno integer,

	 cno varchar(5)

)

	/* table of professors and the courses they teach */

	create table teach

	(lname varchar(10),

	 cno varchar(5)

)

	insert into student values (1,'AARON',20)

	insert into student values (2,'CHUCK',21)

	insert into student values (3,'DOUG',20)

	insert into student values (4,'MAGGIE',19)

	insert into student values (5,'STEVE',22)

	insert into student values (6,'JING',18)

	insert into student values (7,'BRIAN',21)

	insert into student values (8,'KAY',20)

	insert into student values (9,'GILLIAN',20)

	insert into student values (10,'CHAD',21)

	

	insert into courses values ('CS112','PHYSICS',4)

	insert into courses values ('CS113','CALCULUS',4)

	insert into courses values ('CS114','HISTORY',4)

	

	insert into professor values ('CHOI','SCIENCE',400,45)

	insert into professor values ('GUNN','HISTORY',300,60)

	insert into professor values ('MAYER','MATH',400,55)

	insert into professor values ('POMEL','SCIENCE',500,65)

	insert into professor values ('FEUER','MATH',400,40)

	

	insert into take values (1,'CS112')

	insert into take values (1,'CS113')

	insert into take values (1,'CS114')

	insert into take values (2,'CS112')

	insert into take values (3,'CS112')

	insert into take values (3,'CS114')

	insert into take values (4,'CS112')

	insert into take values (4,'CS113')

	insert into take values (5,'CS113')

	insert into take values (6,'CS113')

	insert into take values (6,'CS114')

	insert into teach values ('CHOI','CS112')

	insert into teach values ('CHOI','CS113')

	insert into teach values ('CHOI','CS114')

	insert into teach values ('POMEL','CS113')

	insert into teach values ('MAYER','CS112')

	insert into teach values ('MAYER','CS114')

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-2]

Recipe B.2. Answering Questions Involving Negation

[bookmark: idx-APP-B-0990]

In his book, Rozenshtein approached the teaching of SQL through an examination of the different types of fundamental problems that you are often called upon to solve, in one form or another. Negation is one such type. It is often necessary to find rows for which some condition is not true. Simple conditions are easy but, as the following questions show, some negation problems require a bit of creativity and thought to solve.

[bookmark: sqlckbk-APP-B-SECT-2.1]

Question 1

You want to find students who do not take CS112, but the following query is returning the wrong results:

	select *

	 from student

	 where sno in (select sno

					 from take

					 where cno != 'CS112')

Because a student may take several courses, this query can (and does) return students who take CS112. The query is incorrect because it does [bookmark: idx-APP-B-0991]not answer the question: "Who does not take CS112?" Instead, it answers the question "Who takes a course that is not CS112?" The correct result set should include students who take no courses as well as students who take courses but none of them CS112. Ultimately, you should return the following result set:

	SNO		 SNAME				AGE

	--------- ---------- ----------

			5 STEVE				 22

			6 JING				 18

			7 BRIAN				 21

			8 KAY				 20

			9 GILLIAN			 20

		 10 CHAD				 21

		

[bookmark: sqlckbk-APP-B-SECT-2.1.1]

MySQL and PostgreSQL

[bookmark: idx-APP-B-0992]

Use a CASE expression with the aggregate function MAX to flag CS112 if it exists for a particular student:

	1 select s.sno,s.sname,s.age

	2	from student s left join take t

	3	 on (s.sno = t.sno)

	4 group by s.sno,s.sname,s.age

	5 having max(case when t.cno = 'CS112'

	6				 then 1 else 0 end) = 0

[bookmark: sqlckbk-APP-B-SECT-2.1.2]

DB2 and SQL Server

Use a CASE expression with the window function MAX OVER to flag CS112 if it exists for a particular student:

	1 select distinct sno,sname,age

	2	from (

	3 select s.sno,s.sname,s.age,

	4		 max(case when t.cno = 'CS112'

	5				 then 1 else 0 end)

	7		 over(partition by s.sno,s.sname,s.age) as takes_CS112

	9	from student s left join take t

 10	 on (s.sno = t.sno)

 11) x

 12 where takes_CS112 = 0

[bookmark: sqlckbk-APP-B-SECT-2.1.3]

Oracle

For users on Oracle9i Database and later, you can use the DB2 solution above. Alternatively, you can use the proprietary Oracle outer-join syntax, which is mandatory for users on Oracle8i Database and earlier:

	/* group by solution */

	

	1 select s.sno,s.sname,s.age

	2	from student s, take t

	3 where s.sno = t.sno (+)

	4 group by s.sno,s.sname,s.age

	5 having max(case when t.cno = 'CS112'

	6				 then 1 else 0 end) = 0

	/* window solution */

	

	 1 select distinct sno,sname,age

	 2	 from (

	 3 select s.sno,s.sname,s.age,

	 4		 max(case when t.cno = 'CS112'

	 5				 then 1 else 0 end)

	 7		 over(partition by s.sno,s.sname,s.age) as takes_CS112

	 9	 from student s, take t

	10 where s.sno = t.sno (+)

	11) x

	12 where takes_CS112 = 0

[bookmark: sqlckbk-APP-B-SECT-2.1.4]

Discussion

Despite the different syntax for each solution, the technique is the same. The idea is to create a "Boolean" column in the result set to denote whether or [bookmark: idx-APP-B-0993]not a student takes CS112. If a student takes CS112, then return 1 in that column; otherwise, return 0. The following query moves the CASE expression into the SELECT list and shows the intermediate results thus far:

	select s.sno,s.sname,s.age,

		 case when t.cno = 'CS112'

				then 1

				else 0

		 end as takes_CS112

	 from student s left join take t

		on (s.sno=t.sno)

	SNO SNAME			 AGE TAKES_CS112

	--- ---------- ---------- -----------

	1 AARON			 20			1

	1	AARON			 20			0

	1	AARON			 20			0

	2	CHUCK			 21			1

	3	DOUG			 20			1

	3	DOUG			 20			0

	4	MAGGIE			 19			1

	4	MAGGIE			 19			0

	5	STEVE			 22			0

	6	JING			 18			0

	6	JING			 18			0

	8	KAY				 20			0

 10	CHAD			 21			0

	7	BRIAN			 21			0

	9	GILLIAN			 20			0

The outer join to table TAKE ensures that even students who take no courses are returned. The next step is to use MAX to take the greatest value returned by the CASE expression for each student. If a student takes CS112, the greatest value will be 1, because all other courses are 0. For the solution using GROUP BY, the final step is to use the HAVING clause to keep only students with 0 returned from the MAX/CASE expression. For the window solution, you need to wrap the query in an inline view and then reference TAKES_CS112, because window functions cannot be referenced directly in the WHERE clause. Because of how window functions work, it is also necessary to remove duplicates caused by multiple courses.

[bookmark: sqlckbk-APP-B-SECT-2.1.5]

Original solution

The original solution to this problem is quite clever and is shown here:

	select *

	 from student

	 where sno [bookmark: idx-APP-B-0994]not in (select sno

						from [bookmark: idx-APP-B-0995]take

						where cno = 'CS112')

This can be stated as: "Find the students in table TAKE who take CS112, and then return all students in table STUDENT who are not them." This technique follows the advice regarding [bookmark: idx-APP-B-0996]negation found at the end of Rozenshtein's book:

Remember that real negation requires two passes: To find out "who does not," first find out "who does" and then get rid of them.

[bookmark: sqlckbk-APP-B-SECT-2.2]

Question 2

You want to find students who take CS112 or CS114 but not both. The following query looks promising as a solution but returns the wrong result set:

	select *

	 from student

	 where sno in (select sno

					 from take

					 where cno != 'CS112'

					 and cno != 'CS114')

Of the students who take courses, only students DOUG and AARON take both CS112 and CS114. Those two should be excluded. Student STEVE takes CS113, but not CS112 or CS114, and should be excluded as well.

Because a student can take multiple courses, the approach here is to return a single row for each student with information regarding whether the student takes CS112 or CS114, or both. This approach allows you to easily evaluate whether or not the student takes both courses without having to make multiple passes through the data. The final result set should be:

	SNO SNAME			 AGE

	--- ---------- ----------

	2	CHUCK			 21

	4	MAGGIE			 19

	6	JING			 18

[bookmark: sqlckbk-APP-B-SECT-2.2.1]

MySQL and PostgreSQL

Use a CASE expression with the aggregate function SUM to find students who take either CS112 or CS114 but not both:

	1 select s.sno,s.sname,s.age

	2	from student s, take t

	3 where s.sno = t.sno

	4 group by s.sno,s.sname,s.age

	5 having sum(case when t.cno in ('CS112','CS114')

	6				 then 1 else 0 end) = 1

[bookmark: sqlckbk-APP-B-SECT-2.2.2]

DB2, Oracle, and SQL Server

[bookmark: idx-APP-B-0997]

Use a CASE expression with the window function SUM OVER to find students who take either CS112 or CS114 but not both:

	1 select distinct sno,sname,age

	2	from (

	3 select s.sno,s.sname,s.age,

	4		 sum(case when t.cno in ('CS112','CS114') then 1 else 0 end)

	5		 over (partition by s.sno,s.sname,s.age) as takes_either_or

	6	from student s, take t

	7 where s.sno = t.sno

	8) x

	9 where takes_either_or = 1

[bookmark: sqlckbk-APP-B-SECT-2.2.3]

Discussion

The first step in solving the problem is to use an inner join from table STUDENT to table TAKE, thus eliminating any students who do not take any courses. The next step is to use a CASE expression to denote whether a student takes each respective course. In the following query, the CASE expressions are moved into the SELECT list and return the intermediate results thus far:

	select s.sno,s.sname,s.age,

		 case when t.cno in ('CS112','CS114')

				then 1 else 0 end as takes_either_or

	 from student s, take t

	 where s.sno = t.sno

	SNO SNAME	 AGE TAKES_EITHER_OR

	--- ---------- --- ---------------

	1	AARON		20				 1

	1	AARON		20				 0

	1	AARON		20				 1

	2	CHUCK		21				 1

	3	DOUG		20				 1

	3	DOUG		20				 1

	4	MAGGIE		19				 1

	4	MAGGIE		19				 0

	5	STEVE		22				 0

	6	JING		18				 0

	6	JING		18				 1

A value of 1 for TAKES_EITHER_OR signifies the student takes CS112 or CS114. Because a student can take multiple courses, the next step is to return only one row per student by using a GROUP BY with the aggregate function SUM. The function SUM will sum all the 1's for each student:

	select s.sno,s.sname,s.age,

		 sum(case when t.cno in ('CS112','CS114')

					then 1 else 0 end) as takes_either_or

	 from student s, take t

	 where s.sno = t.sno

	 group by s.sno,s.sname,s.age

	SNO SNAME	 AGE TAKES_EITHER_OR

	--- ---------- --- ---------------

	 1 [bookmark: idx-APP-B-0998][bookmark: idx-APP-B-0999]AARON		20				 2

	 2 CHUCK		21				 1

	 3 DOUG		20				 2

	 4 MAGGIE		19				 1

	 5 STEVE		22				 0

	 6 JING		18				 1

Students who do not take CS112 or CS114 will have 0 for TAKES_EITHER_OR. Students who take both CS112 and CS114 will have 2 for TAKES_EITHER_OR. Thus the only students you want to return are those with a value of 1 for TAKES_EITHER_OR. The final solution uses the HAVING clause to keep only those students where the SUM of TAKES_EITHER_OR is one.

For the window solution, the same technique is used. You also need to wrap the query in an inline view, and then reference the column TAKES_EITHER_OR, because window functions cannot be referenced directly in the WHERE clause (they are evaluated last in SQL processing, prior only to the ORDER BY clause). Because of how window functions work, it is necessary to remove duplicates caused by multiple courses.

[bookmark: sqlckbk-APP-B-SECT-2.2.4]

Original solution

The following query is the original solution (modified slightly). The query is quite clever and uses the same approach as the original solution in Question 1. The solution uses a self join to find students who take both CS112 and CS114, and then uses a subquery to filter them out of the set of students who take either CS112 or CS114:

	select *

	 from student s, take t

	 where s.sno = t.sno

	 and t.cno in ('CS112', 'CS114')

	 and s.sno not in (select a.sno

						 from take a, take b

						 where a.sno = b.sno

						 and a.cno = 'CS112'

						 and b.cno = 'CS114')

[bookmark: sqlckbk-APP-B-SECT-2.3]

Question 3

You want to find students who take CS112 and no other courses, but the following query returns incorrect results:

	select s.*

	 from student s, take t

	 where s.sno = t.sno

	 and t.cno = 'CS112'

CHUCK is the only student who takes CS112 and no other courses, and is the only student that should be returned from the query.

This question [bookmark: idx-APP-B-1000]can be restated as "Find students who take only CS112." The query above finds students who take CS112, but also returns students who take other courses as well. The query should answer the question "Who takes only one course and that one course is CS112?"

[bookmark: sqlckbk-APP-B-SECT-2.3.1]

MySQL and PostgreSQL

Use the aggregate function COUNT to ensure that students returned by the query take only one course:

	1 select s.*

	2	from student s,

	3		 take t1,

	4		 (

	5 select sno

	6	from take

	7 group by sno

	8 having count(*) = 1

	9) t2

 10 where s.sno = t1.sno

 11 and t1.sno = t2.sno

 12	 and t1.cno = 'CS112'

[bookmark: sqlckbk-APP-B-SECT-2.3.2]

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to ensure a student takes only one course:

	1 select sno,sname,age

	2	from (

	3 select s.sno,s.sname,s.age,t.cno,

	4		 count(t.cno) over (

	5		 partition by s.sno,s.sname,s.age

	6) as cnt

	7	from student s, take t

	8 where s.sno = t.sno

	9) x

 10 where cnt = 1

 11	 and cno = 'CS112'

[bookmark: sqlckbk-APP-B-SECT-2.3.3]

Discussion

The key to the solutions is to write a query to answer both of the following questions: "Which student takes only one course?" and "Which student takes CS112?" The first approach uses inline view T2 to find students who take only one course. The next step is to join inline view T2 to table TAKE and keep only students who take CS112 (so what you are left with are students who take only one course and that one course is CS112). The query below shows the results thus far:

	select t1.*

	 from take t1,

		 (

	select sno

	 from [bookmark: idx-APP-B-1001]take

	 group by sno

	having count(*) = 1

) t2

	 where t1.sno = t2.sno

	 and t1.cno = 'CS112'

	SNO CNO

	--- -----

	 2 CS112

The final step is to join to table STUDENT and find the students who match those returned by the join between inline view T2 and table TAKE. The window solution takes a similar approach but does so in a different (more efficient) way. Inline view X returns the students, the courses they take, and the number of courses they take (the inner join between table TAKE and table STUDENT guarantees that students who take no courses are excluded). The results are shown below:

	select s.sno,s.sname,s.age,t.cno,

		 count(t.cno) over (

		 partition by s.sno,s.sname,s.age

) as cnt

	 from student s, take t

	 where s.sno = t.sno

	SNO SNAME			 AGE CNO		 CNT

	--- ---------- ---------- ----- ----------

	 1 AARON			 20 CS112			 3

	 1 AARON			 20 CS113			 3

	 1 AARON			 20 CS114			 3

	 2 CHUCK			 21 CS112			 1

	 3 DOUG			 20 CS112			 2

	 3 DOUG			 20 CS114			 2

	 4 MAGGIE			 19 CS112			 2

	 4 MAGGIE			 19 CS113			 2

	 5 STEVE			 22 CS113			 1

	 6 JING			 18 CS113			 2

	 6 JING			 18 CS114			 2

With the course and count available, the last step is to simply keep only rows such that CNT is 1 and CNO is CS112.

[bookmark: sqlckbk-APP-B-SECT-2.3.4]

Original solution

The original solution uses a subquery and double [bookmark: idx-APP-B-1002]negation:

	select s.*

	 from student s, take t

	 where s.sno = t.sno

	 and s.sno not in (select sno

							from take

						 where cno != 'CS112')

This is [bookmark: idx-APP-B-1003]an extremely clever solution, because nowhere in the query is the number of courses checked, nor is there a filter to ensure that students returned by the query actually take CS112! How does this work, then? The subquery returns all students who take a course other than CS112 and the results are shown below:

	select sno

	 from take

	 where cno != 'CS112'

	SNO

	 1

	 1

	 3

	 4

	 5

	 6

	 6

The outer query returns all students who take a course (any course) and are not amongst the students returned by the subquery. Ignoring the NOT IN portion of the outer query for a moment, the results would be the following (showing all students who take a course):

	select s.*

	 from student s, take t

	 where s.sno = t.sno

	SNO SNAME			 AGE

	--- ---------- ----------

	 1 AARON			 20

	 1 AARON			 20

	 1 AARON			 20

	 2 CHUCK			 21

	 3 DOUG			 20

	 3 DOUG			 20

	 4 MAGGIE			 19

	 4 MAGGIE			 19

	 5 STEVE			 22

	 6 JING			 18

	 6 JING			 18

If you compare the two results sets, you see that the addition of NOT IN to the outer query effectively performs a set difference between SNO from the outer query and SNO from the subquery, returning only the student whose SNO is 2. In summary, the subquery finds all students who take a course that is not CS112. The outer query returns all students who are not amongst those that take a course other than CS112 (at this point the only available students are those who actually take CS112 or take nothing at all). The join between table STUDENT and table TAKE filters out the students who do not take any classes at all, leaving you only with the student who takes CS112 and only CS112. Set-based problem solving at its best!

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-3]

Recipe B.3. Answering Questions Involving "at Most"

[bookmark: idx-APP-B-1004]

Questions involving "at most" represent another type of query problem that you'll encounter from time to time. It's easy enough to find rows for which a condition is true, but what if you want to place a limit on the number of such rows? That's what the next next two questions are all about.

[bookmark: sqlckbk-APP-B-SECT-3.1]

Question 4

You want to find the students who take at most two courses. Students who do not take any courses should be excluded. Of the students who take courses, only AARON takes more than two and should be excluded from the result set. Ultimately, you want to return the following result set:

	SNO SNAME			 AGE

	--- ---------- ----------

	 2 CHUCK			 21

	 3 DOUG			 20

	 4 MAGGIE			 19

	 5 STEVE			 22

	 6 JING			 18

[bookmark: sqlckbk-APP-B-SECT-3.1.1]

MySQL and PostgreSQL

Use the aggregate function COUNT to determine which students take no more than two courses:

	1 select s.sno,s.sname,s.age

	2	from student s, take t

	3 where s.sno = t.sno

	4 group by s.sno,s.sname,s.age

	5 having count(*) <= 2

[bookmark: sqlckbk-APP-B-SECT-3.1.2]

DB2, Oracle, and SQL Server

Use the window function COUNT OVER, again to determine which students take no more than two courses:

	1 select distinct sno,sname,age

	2 from (

	3 select s.sno,s.sname,s.age,

	4		 count(*) over (

	5		 partition by s.sno,s.sname,s.age

	6) as cnt

	7	from student s, take t

	 8 where s.sno = t.sno

	 9) x

	10 where cnt <= 2

[bookmark: sqlckbk-APP-B-SECT-3.1.3]

Discussion

Both solutions work by simply counting the number of times a particular SNO occurs in table TAKE. The inner join to table TAKE ensures that students who take no courses are excluded from the final result set.

[bookmark: sqlckbk-APP-B-SECT-3.1.4]

Original solution

Rozenshtein used the aggregate solution shown here for MySQL and PostgreSQL in his book along with an alternative solution using multiple self joins, shown here:

	select distinct s.*

	 from student s, take t

	 where s.sno = t.sno

	 and s.sno not in (select t1.sno

							from take t1, take t2, take t3

						 where t1.sno = t2.sno

						 and t2.sno = t3.sno

							 and t1.cno < t2.cno

							 and t2.cno < t3.cno)

The multiple self-join solution is interesting because it solves the problem without using aggregation. To understand how the solution works, focus on the WHERE clause of the subquery. The inner joins on SNO ensure that you are dealing with the same student across all columns of each row that can potentially be returned by the subquery. The less-than comparisons are what determine whether or not a student is taking more than two courses. The WHERE clause in the subquery can be stated as: "For a particular student, return rows where the first CNO is less than the second CNO and the second CNO is less than the THIRD CNO." If a student has fewer than three courses, that expression can never evaluate to true as there is no third CNO. The job of the subquery is to find students who take three or more courses. The outer query then returns students who take at least one course and are not amongst those returned by the subquery.

[bookmark: sqlckbk-APP-B-SECT-3.2]

Question 5

You want to find students who are older than [bookmark: idx-APP-B-1005]at most two other students. Another way to think about the problem is to find only the students who are older than zero, one, or two other students. The final result set should be:

	SNO SNAME AGE

	---- ---------- ---

	 6 JING		 18

	 4 MAGGIE		 19

	 1 AARON		 20

	 9 GILLIAN	 20

	 8 KAY		 20

	 3 DOUG		 20

[bookmark: sqlckbk-APP-B-SECT-3.2.1]

MySQL and PostgreSQL

Use the [bookmark: idx-APP-B-1006]aggregate function COUNT and a correlated subquery to find the students who are older than zero, one, or two other students:

	1 select s1.*

	2	from student s1

	3 where 2 >= (select count(*)

	4					from student s2

	5				 where s2.age < s1.age)

[bookmark: sqlckbk-APP-B-SECT-3.2.2]

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the students who are older than zero, one, or two other students:

	1 select sno,sname,age

	2	from (

	3 select sno,sname,age,

	4		 dense_rank()over(order by age) as dr

	5	from student

	6) x

	7 where dr <= 3

[bookmark: sqlckbk-APP-B-SECT-3.2.3]

Discussion

The aggregate solution uses a scalar subquery to find all students who are older than no more than two other students. To see how this works, rewrite the solution to use a scalar subquery. In the following example, the column CNT represents the number of students that are younger than the current student:

	select s1.*,

		 (select count(*) from student s2

			 where s2.age < s1.age) as cnt

	 from student s1

	 order by 4

	SNO SNAME			 AGE		 CNT

	--- ---------- ---------- ----------

	 6 JING			 18		 0

	 4 MAGGIE			 19		 1

	 1 AARON			 20		 2

	 3 DOUG			 20		 2

	 8 KAY				 20		 2	

	 9 GILLIAN			 20		 2

	 2 CHUCK			 21		 6

	 7 BRIAN			 21		 6

	 10 CHAD			 21		 6

	 5 STEVE			 22		 9

Rewriting the solution this way makes it easy to see that the students in the final result set are those for whom CNT is less than or equal to 2.

The solution using the window function DENSE_RANK is similar to the scalar subquery example in that every row is ranked based on how many students are younger than the current student (ties are allowed and there are no gaps). The following query shows the output from the DENSE_RANK function:

	select sno,sname,age,

		 dense_rank()over(order by age) as dr

	 from student

	SNO SNAME			 AGE		 DR

	--- ---------- ---------- ----------

	 6 JING			 18		 1

	 4 MAGGIE			 19		 2

	 1 AARON			 20		 3

	 3 DOUG			 20		 3

	 8 KAY				 20		 3

	 9 GILLIAN			 20		 3

	 2 CHUCK			 21		 4

	 7 BRIAN			 21		 4

	 10 CHAD			 21		 4

	 5 STEVE			 22		 5

The final step is to wrap the query in an inline view and keep only those rows where DR is less than or equal to 3.

[bookmark: sqlckbk-APP-B-SECT-3.2.4]

Original solution

Rozenshtein takes an interesting approach to solving this problem by rephrasing it. Instead of "find the students who are older than [bookmark: idx-APP-B-1007]at most two students," his approach is to "find the students who are not older than three or more (at least three) students." This approach is brilliant for those of you who want to learn how to problem solve in sets, because it forces you to find the solution in two passes:

			Find the set of students who are older than three or more students.

			Simply return all students who are not amongst the students returned by step 1.

The solution is shown below:

	select *

	 from student

	 where sno not in (

	select s1.sno

	 from student s1,

		 student s2,

		 student s3,

		 student s4

	 where s1.age > s2.age

	 and s2.age > s3.age

	 and s3.age > s4.age

)

	SNO SNAME	 AGE

	--- ---------- ---

	 6 JING		18

	 4 MAGGIE		19

	 1 AARON		20

	 9 GILLIAN		20

	 8 KAY			20

	 3 DOUG		20

If you examine the solution from bottom up, you see [bookmark: idx-APP-B-1008]that step 1, "find all students who are older than three or more students," is performed first and is shown below (using DISTINCT to reduce the result set size for readability):

	select distinct s1.*

	 from student s1,

		 student s2,

		 student s3,

		 student s4

	 where s1.age > s2.age

	 and s2.age > s3.age

	 and s3.age > s4.age

	SNO SNAME	 AGE

	--- ---------- ---

	 2 CHUCK		21

	 5 STEVE		22

	 7 BRIAN		21

	 10 CHAD	 21

If you are getting confused by all the self joins, simply focus on the WHERE clause. S1.AGE is greater than S2.AGE so you know at that point any student who is older than at least one other student is considered. Next, S2.AGE is greater than S3.AGE. At this point any student who is older than two other students is considered. If you are stumbling at this point, try to keep in mind that greater-than comparisons are transitive. If S1.AGE is greater than S2.AGE, and S2.AGE is greater than S3.AGE, then it is also true that S1AGE is greater than S3.AGE. You may find it helpful to strip down the query to one self join and build the query once you understand what is returned by each step. For example, find all students who are older than at least one other student (all students except the youngest, JING, should be returned):

	select distinct s1.*

	 from student s1,

		 student s2

	 where s1.age > s2.age

	SNO SNAME	 AGE

	--- ---------- ---

	 5 STEVE		22

	 7 BRIAN		21

	 10 CHAD		21

	 2 CHUCK		21

	 1 AARON		20

	 3 DOUG		20

	 9 GILLIAN		20

	 8 KAY			20

	 4 MAGGIE		19

Next, find all students who are older than two or more students (now, both JING and MAGGIE should be excluded from the result set):

	select distinct s1.*

	 from student s1,

		 student s2,

		 student s3

	 where s1.age > s2.age

	 and s2.age > s3.age

	SNO SNAME	 AGE

	--- ---------- ---

	 1 AARON		20

	 2 CHUCK	 21

	 3 DOUG		20

	 5 STEVE		22

	 7 BRIAN		21

	 8 KAY		 20

	 9 GILLIAN		20

	 10 CHAD		21

Finally, find all students who are older than three or more students (only CHUCK, STEVE, BRIAN, and CHAD are in this result set):

	select distinct s1.*

	 from student s1,

		 student s2,

		 student s3,

		 student s4

	 where s1.age > s2.age

	 and s2.age > s3.age

	 and s3.age > s4.age

	SNO SNAME	 AGE

	--- ---------- ---

	 2 CHUCK		21

	 5 STEVE	 22

	 7 BRIAN		21

	 10 CHAD		21

Now that you know which students are older than three or more other students, simply return only those students who are not amongst the four students above by using NOT IN with a subquery.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-4]

Recipe B.4. Answering Questions Involving "at Least"

[bookmark: idx-APP-B-1009]

The flip side of "[bookmark: idx-APP-B-1010]at most" is "at least." You can often solve "at least" questions by applying variations of the techniques described for "at most" questions. When solving "at least" problems it is often helpful to rephrase them as "having no fewer than."

In general, if you can identify a threshold in your requirement, you've already solved half the problem. Once you know the threshold, you can decide to solve the problem using one pass (aggregate or window functions typically using COUNT) or two passes (negation with subquery).

[bookmark: sqlckbk-APP-B-SECT-4.1]

Question 6

You want to find students who take [bookmark: idx-APP-B-1011]at least two courses.

You may find it helpful to restate the problem as "Find students who take two or more courses" or as "Find students who take no fewer than two courses." You can use the same technique used for Question 4: use the aggregate function COUNT or window function COUNT OVER. The final result set should be:

	SNO SNAME		 AGE

	--- ---------- ----------

	 1 AARON			 20

	 3 DOUG			 20

	 4 MAGGIE			 19

	 6 JING			 18

[bookmark: sqlckbk-APP-B-SECT-4.1.1]

MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take at least two courses:

	1 select s.sno,s.sname,s.age

	2	from student s, take t

	3 where s.sno = t.sno

	4 group by s.sno,s.sname,s.age

	5 having count(*) >= 2

[bookmark: sqlckbk-APP-B-SECT-4.1.2]

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to find students who take at least two courses:

	1 select distinct sno,sname,age

	2 from (

	3 select s.sno,s.sname,s.age,

	4		 count(*) over (

	5		 partition by s.sno,s.sname,s.age

	6) as cnt

	7	from student s, take t

	8 where s.sno = t.sno

	9) x

 10 where cnt >= 2

[bookmark: sqlckbk-APP-B-SECT-4.1.3]

Discussion

See Question 4 for a full discussion of the solutions presented in this section; the techniques are the same. For the aggregate solution, join table STUDENT to table TAKE and use COUNT in the HAVING clause to keep only those students with two or more courses. For the window solution, join table STUDENT to table TAKE and perform a count over the partition that is defined by specifying all the columns from table STUDENT. From there, simply keep only those rows where CNT is two or greater.

[bookmark: sqlckbk-APP-B-SECT-4.1.4]

Original solution

The solution below uses a self join on table TAKE to find students who take two or more classes. The equi-join on SNO in the subquery ensures that each student is evaluated against his/her own courses only. The greater-than comparison on CNO can only be true if a student takes more than one course, otherwise CNO would equal CNO (as there is only one course to be compared with itself). The last step is to return all students who are amongst those returned by the subquery, and is shown below:

	select *

	 from student

	 where sno in (

	select t1.sno

	 from take t1,

		 take t2

	 where t1.sno = t2.sno

	 and t1.cno > t2.cno

)

	SNO SNAME			 AGE

	--- ---------- ----------

	 1 AARON			 20

	 3 DOUG			 20

	 4 MAGGIE			 19

	 6 JING			 18

[bookmark: sqlckbk-APP-B-SECT-4.2]

Question 7

You want to find students who take both CS112 and CS114. The students may take other courses, but they must take CS112 and CS114 as well.

This problem is similar to Question 2, except that in that case a student may take more than two courses whereas in this case they take [bookmark: idx-APP-B-1012]at least 2 courses (AARON and DOUG are the only students who take both CS112 and CS114). You can easily modify the solution from Question 2 to work here. The final result set should be:

	SNO SNAME	 AGE

	--- ---------- ----

	 1 AARON		 20

	 3 DOUG		 20

[bookmark: sqlckbk-APP-B-SECT-4.2.1]

MySQL and PostgreSQL

Use the [bookmark: idx-APP-B-1013]aggregate functions MIN and MAX to find students who take both CS112 and CS114:

	1 select s.sno, s.sname, s.age

	2	from student s, take t

	3 where s.sno = t.sno

	4	 and t.cno in ('CS114','CS112')

	5 group by s.sno, s.sname, s.age

	6 having min(t.cno) != max(t.cno)

[bookmark: sqlckbk-APP-B-SECT-4.2.2]

DB2, Oracle, and SQL Server

Use the window functions MIN OVER and MAX OVER to find students who take both CS112 and CS114:

	1 select distinct sno, sname, age

	2 from (

	3 select s.sno, s.sname, s.age,

	4		 min(cno) over (partition by s.sno) as min_cno,

	5		 max(cno) over (partition by s.sno) as max_cno

	6 from student s, take t	

	7 where s.sno = t.sno

	8 and t.cno in ('CS114','CS112')

	9) x

 10 where min_cno != max_cno

[bookmark: sqlckbk-APP-B-SECT-4.2.3]

Discussion

Both solutions use the same technique to find the answer. The IN list ensures only students who take CS112 or CS114, or both, are returned. If a student does not take both courses, then MIN(CNO) will equal MAX(CNO) and that student is excluded. To help visualize how this works, the intermediate results of the window solution are shown below (T.CNO is added for clarity):

	select s.sno, s.sname, s.age, t.cno,

		 min(cno) over (partition by s.sno) as min_cno,

		 max(cno) over (partition by s.sno) as max_cno

	 from student s, take t

	 where s.sno = t.sno

	 and t.cno in ('CS114','CS112')

	SNO SNAME		AGE CNO	 MIN_C MAX_C

	--- ---------- ---- ----- ----- -----

	 1 AARON		20 CS114 CS112 CS114

	 1 AARON		20 CS112 CS112 CS114

	 2 CHUCK		21 CS112 CS112 CS112

	 3 DOUG		20 CS114 CS112 CS114

	 3 DOUG	 20 CS112 CS112 CS114

	 4 MAGGIE		19 CS112 CS112 CS112

	 6 JING		18 CS114 CS114 CS114

Examining the results, it's easy to see only AARON and DOUG have rows where MIN(CNO) != MAX(CNO).

[bookmark: sqlckbk-APP-B-SECT-4.2.4]

Original solution

The original solution by Rozenshtein uses a self join on table TAKE. Following is the original solution, which performs extremely well with the proper indexes in place:

	select s.*

	 from student s,

		 take t1,

		 take t2

	 where s.sno = t1.sno

	 and t1.sno = t2.sno

	 and t1.cno = 'CS112'

	 and t2.cno = 'CS114'

	 SNO SNAME AGE

	 --- ----- ---

	 1 AARON 20

	 3 DOUG 20

All the solutions work by ensuring that, regardless of the other courses a student may take, they must take both CS112 and CS114. If you are having trouble understanding the self join, you may find it easier to understand the following example:

	select s.*

	 from take t1, student s

	 where s.sno = t1.sno

 and t1.cno = 'CS114'

	 and 'CS112' = any (select t2.cno

					 from take t2

						 where t1.sno = t2.sno

							and t2.cno != 'CS114')

 	SNO SNAME AGE

 --- ----- ---

	 1 AARON 20

	 3 DOUG 20

[bookmark: sqlckbk-APP-B-SECT-4.3]

Question 8

Find students who are older than [bookmark: idx-APP-B-1014]at least two other students.

You may find it helpful to restate the problem as "Find students who are older than two or more other students." You can use the same technique used in Question 5. The final result set is shown below (only JING and MAGGIE are not older than two or more students):

	SNO SNAME			 AGE

	--- ---------- ----------

	 1 AARON 20

	 2 CHUCK			 21

	 3 DOUG			 20

	 5 STEVE			 22

	 7 BRIAN			 21

	 8 KAY			 20

	 9 GILLIAN			 20

	10 CHAD			 21

[bookmark: sqlckbk-APP-B-SECT-4.3.1]

MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to find students older than [bookmark: idx-APP-B-1015]at least two other students:

	1 select s1.*

	2 from student s1

	3 where 2 <= (select count(*)

	4 from student s2

	5 where s2.age < s1.age)

[bookmark: sqlckbk-APP-B-SECT-4.3.2]

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find students older than at least two other students:

	1 select sno,sname,age

	2 from (

	3 select sno,sname,age,

	4 dense_rank()over(order by age) as dr

	5 from student

	6) x

	7 where dr >= 3

[bookmark: sqlckbk-APP-B-SECT-4.3.3]

Discussion

For a full discussion see Question 5. The technique is exactly the same for both solutions, with the only difference being the final evaluation on the count or rank.

[bookmark: sqlckbk-APP-B-SECT-4.3.4]

Original solution

The problem is a variation of Question 6, the difference being you are now only dealing with the STUDENT table. This solution in Question 6 can be easily adapted to "find students older than at least two other students" and is shown below:

	select distinct s1.*

	 from student s1,

		 student s2,

		 student s3

	 where s1.age > s2.age

	 and s2.age > s3.age

	 SNO SNAME AGE

	 --- ---------- ----------

	 1 AARON 20

	 2 CHUCK 21

	 3 DOUG 20

	 5 STEVE 22

	 7 BRIAN 21

	 8 KAY 20

	 9 GILLIAN 20

	 10 CHAD 21

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-5]

Recipe B.5. Answering Questions Involving "Exactly"

[bookmark: idx-APP-B-1016]

You would think [bookmark: idx-APP-B-1017]that answering the question of whether or not something is true would be easy. In many cases it is easy. But sometimes it can be tricky to answer questions of whether something is "exactly" true, especially when answering involves joining master/detail data. The problem stems from the exclusive nature of "exactly." It may be more helpful to think of it as "only." Consider the difference between people who wear shoes and those who wear only shoes. It is not enough to satisfy the condition; you must satisfy the condition while ensuring that no other conditions are satisfied.

[bookmark: sqlckbk-APP-B-SECT-5.1]

Question 9

Find professors who teach exactly one course.

You can restate the problem as "Find professors who teach only one course." Which course they teach is unimportant; what matters is that only one course is taught. The final result set should be:

	LNAME DEPT SALARY AGE

	---------- ---------- ---------- ----

	POMEL SCIENCE 500 65

[bookmark: sqlckbk-APP-B-SECT-5.1.1]

MySQL and PostgreSQL

Use the aggregate function COUNT to find the professors who teach exactly one course:

	1 select p.lname,p.dept,p.salary,p.age

	2 from professor p, teach t

	3 where p.lname = t.lname

	4 group by p.lname,p.dept,p.salary,p.age

	5 having count(*) = 1

[bookmark: sqlckbk-APP-B-SECT-5.1.2]

DB2, Oracle, and SQL Server

Use the window function COUNT OVER to find the professors who teach exactly one course:

	1 select lname, dept, salary, age

	2 from (

	3 select p.lname,p.dept,p.salary,p.age,

	4 count(*) over (partition by p.lname) as cnt

	5 from professor p, teach t

	6 where p.lname = t.lname

	7) x

	8 where cnt = 1

[bookmark: sqlckbk-APP-B-SECT-5.1.3]

Discussion

By inner joining table PROFESSOR to table TEACH you ensure that all professors who teach no courses are excluded. The aggregate solution uses the COUNT function in the HAVING clause to return only professors who teach [bookmark: idx-APP-B-1018]exactly one course. The window solution uses the COUNT OVER function, but notice that the columns from table PROFESSOR that are used in the PARTITION clause of the COUNT OVER function are different from the columns that are used in the GROUP BY of the aggregate solution. In this example it is safe for the GROUP BY and PARTITION BY clauses to be different, because the last names are unique in table TEACHER, i.e., excluding P.DEPT, P.SALARY, and .PAGE from the partition does not affect the COUNT operation. In solutions prior to this one, I purposely use the same columns in the PARTITION clause of a window function solution as I use in the GROUP BY clause of an aggregate solution to show that the PARTITION is a moving, more flexible kind of GROUP BY.

[bookmark: sqlckbk-APP-B-SECT-5.1.4]

Original solution

This solution uses the same technique used in Question 3: perform two passes to find the answer. The first step is to find those professors who teach two or more classes. The second step is to find those professors who teach a course and are not amongst those returned by step 1. Please refer to Question 3 for a full discussion. The solution is shown below:

	select p.*

	 from professor p,

	 teach t

	 where p.lname = t.lname

	 and p.lname not in (

	select t1.lname

	 from teach t1,

	 teach t2

	 where t1.lname = t2.lname

	 and t1.cno > t2.cno

)

	LNAME DEPT SALARY AGE

	---------- ---------- ---------- ----------

	POMEL SCIENCE 500 65

[bookmark: sqlckbk-APP-B-SECT-5.2]

Question 10

You want to find students who take only CS112 and CS114 (exactly those two courses and no other courses), but the following query returns an empty result set:

	select s.*

	 from student s, take t

	 where s.sno = t.sno

	 and t.cno = 'CS112'

	 and t.cno = 'CS114'

No row can have a column that is simultaneously two values (assuming simple scalar data types such as those used for table STUDENT), so the query will never work. Rozenshtein's book does a nice job of discussing how intuitive thinking when writing [bookmark: idx-APP-B-1019]queries causes errors such as this one. DOUG is the only student who takes only CS112 and CS114 and should be the only student returned for this query.

[bookmark: sqlckbk-APP-B-SECT-5.2.1]

MySQL and PostgreSQL

Use a CASE expression and the aggregate function COUNT to find students who take only CS112 and CS114:

	1 select s.sno, s.sname, s.age

	2 from student s, take t

	3 where s.sno = t.sno

	4 group by s.sno, s.sname, s.age

	5 having count(*) = 2

	6 and max(case when cno = 'CS112' then 1 else 0 end) +

	7 max(case when cno = 'CS114' then 1 else 0 end) = 2

[bookmark: sqlckbk-APP-B-SECT-5.2.2]

DB2, Oracle, and SQL Server

Use the window function COUNT OVER with a CASE expression to find students who take only CS112 and CS114:

	 1 select sno,sname,age

	 2 from (

	 3 select s.sno,	

	 4 s.sname,	

	 5		 s.age,

	 6		 count(*) over (partition by s.sno) as cnt,

	 7		 sum(case when t.cno in ('CS112', 'CS114')

	 8				 then 1 else 0

	 9			 end)

	10	 over (partition by s.sno) as both,

	11		 row_number()

	12		 over (partition by s.sno order by s.sno) as rn

	13 from student s, take t

	14 where s.sno = t.sno

	15) x

	16 where cnt = 2

	17 and both = 2

	18 and rn = 1

[bookmark: sqlckbk-APP-B-SECT-5.2.3]

Discussion

The aggregate solution uses the same technique found in Question 1 and Question 2. The inner join from table STUDENT to table TAKE ensures that any students who take no courses are excluded. The COUNT expression in the HAVING clause keeps only students who take [bookmark: idx-APP-B-1020]exactly two courses. The results of the CASE expressions counting the number of courses are summed. Only those students who take both CS112 and CS114 have a sum of 2.

The window solution uses a technique similar to the window solutions found in Question 1 and Question 2. This version is slightly different as the value of the CASE expression is returned to the window function SUM OVER. Another variation in this solution is the use of the window function ROW_NUMBER to avoid using DISTINCT. The results of the window solution without the final filters are shown below:

	select s.sno,

	 s.sname,

		 s.age,

		 count(*) over (partition by s.sno) as cnt,

		 sum(case when t.cno in ('CS112', 'CS114')

		 then 1 else 0

			 end)

		 over (partition by s.sno) as both,

		 row_number()

		 over (partition by s.sno order by s.sno) as rn

	 from student s, take t

	 where s.sno = t.sno

	

	 SNO SNAME AGE CNT BOTH RN

	 --- ------ ---- ---- ---- ----

	 1 AARON 20 3 2 1

	 1 AARON 20 3 2 2

	 1 AARON 20 3 2 3

	 2 CHUCK 21 1 1 1

	 3 DOUG 20 2 2 1

	 3 DOUG 20 2 2 2

	 4 MAGGIE 19 2 1 1

	 4 MAGGIE 19 2 1 2

 	 5 STEVE 22 1 0 1

	 6 JING 18 2 1 1

	 6 JING 18 2 1 2

Examining these results, you can see that the final result set is the one where BOTH and CNT are 2. RN can be either 1 or 2, it doesn't matter; that column exists only to help filter out duplicates without using DISTINCT.

[bookmark: sqlckbk-APP-B-SECT-5.2.4]

Original solution

This solution uses a subquery with multiple self joins to first find students who take at least three classes. The next step is to use a self join on table TAKE to find those students who take both CS112 and CS114. The final step is to keep only those students who take both CS112 and CS114 and do not take three or more classes. The solution is shown below:

	select s1.*

	 from student s1,

		 take t1,

	 take t2

	 where s1.sno = t1.sno

	 and s1.sno = t2.sno

	 and t1.cno = 'CS112'

	 and t2.cno = 'CS114'

	 and s1.sno not in (

	select s2.sno

	 from student s2,

		 take t3,

		 take t4,

		 take t5

	 where s2.sno = t3.sno

	 and s2.sno = t4.sno

	 and s2.sno = t5.sno

	 and t3.cno > t4.cno

	 and t4.cno > t5.cno

)

	SNO SNAME AGE

	--- ---------- ---

	 3 DOUG 20

[bookmark: sqlckbk-APP-B-SECT-5.3]

Question 11

You want to find students who are older than [bookmark: idx-APP-B-1021]exactly two other students. Another way of stating the problem is that you want to find the third youngest student(s). The final result set should be:

	SNO SNAME AGE

	--- ---------- ----------

 	 1 AARON 20

	 3 DOUG 20

	 8 KAY 20

	 9 GILLIAN 20

[bookmark: sqlckbk-APP-B-SECT-5.3.1]

MySQL and PostgreSQL

Use the aggregate function COUNT and a correlated subquery to find the third youngest student:

	1 select s1.*

	2 from student s1

	3 where 2 = (select count(*)

	4 from student s2

	5 where s2.age < s1.age)

[bookmark: sqlckbk-APP-B-SECT-5.3.2]

DB2, Oracle, and SQL Server

Use the window function DENSE_RANK to find the third youngest student:

	1 select sno,sname,age

	2 from (

	3 select sno,sname,age,

	4 dense_rank()over(order by age) as dr

	5 from student

	6) x

	7 where dr = 3

[bookmark: sqlckbk-APP-B-SECT-5.3.3]

Discussion

The aggregate solution uses a scalar subquery to find all students who are older than two (and only two) other students. To see how this works, rewrite the solution to use a scalar subquery. In the following example, the column CNT represents the number of students that are younger than the current student:

	select s1.*,

	 (select count(*) from student s2

	 where s2.age < s1.age) as cnt

	 from student s1

	 order by 4

	SNO SNAME AGE CNT

	--- ---------- ---------- ----------

	 6 JING 18 0

	 4 MAGGIE 19		 1

	 1 AARON 20 2

	 3 DOUG 20 2

	 8 KAY 20 2

	 9 GILLIAN 20 2

	 2 CHUCK 21 6

	 7 BRIAN 21 6

	10 CHAD 21 6

	 5 STEVE 22 9

Rewriting the solution this way makes it easy to see who the third youngest students are (those whose CNT is 2).

The solution using the window function DENSE_RANK is similar to the scalar subquery example in that every row is ranked based on how many students are younger than the current student (ties are allowed and there are no gaps). The following query shows the output from the DENSE_RANK function:

	select sno,sname,age,

	 dense_rank()over(order by age) as dr

	 from student

	 SNO SNAME AGE DR

	 --- ---------- ---------- ----------

	 6 JING 18 1

	 4 MAGGIE 19 2

	 1 AARON 20 3

	 3 DOUG 20 3

	 8 KAY 20 3

	 9 GILLIAN 20 3

	 2 CHUCK 21 4

		7 BRIAN 21 4

	 10 CHAD 21 4

		5 STEVE 22 5

The final step is to wrap the query in an inline view and keep only those rows where DR is 3.

[bookmark: sqlckbk-APP-B-SECT-5.3.4]

Original solution

The original solution uses a two-pass approach: step 1, find the students who are older than three or more students; step 2, find the students who are older than two students who are not amongst the students returned by step 1. Alternatively, Rozenshtein would rephrase this as, "Find students who are older than at least two students and are not older than at least three students." The solution is shown below:

	select s5.*

	 from student s5,

			student s6,

			student s7

	 where	s5.age > s6.age

		and s6.age > s7.age

		and s5.sno not in (

 	 select	s1.sno

	 from student s1,

			student s2,

			student s3,

			student s4

	 where	s1.age > s2.age

	 and	s2.age > s3.age

	 and	s3.age > s4.age

)

	SNO SNAME	AGE

	--- ------ ----

	1	AARON	20

	3	DOUG	20

	9	GILLIAN 20

	8	KAY		20

The solution above uses the technique shown in Question 5. Refer to Question 5 for a complete discussion of how extremes are found using self joins.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B-SECT-6]

Recipe B.6. Answering Questions Involving "Any" or "All"

[bookmark: idx-APP-B-1022]

[bookmark: idx-APP-B-1023]Queries involving "any" or "all" typically require you to find rows that satisfy one or more conditions completely. For example, if you are asked to find people who eat all vegetables, you are essentially looking for people for whom there is no vegetable that they do not eat. This type of problem statement is typically categorized as [bookmark: idx-APP-B-1024]relational division. With questions regarding "any," it is crucial you pay close attention to how the question is phrased. Consider the difference between these two requirements: "a student who takes [bookmark: idx-APP-B-1025]any class" and "a plane faster than any train." The former implies, "find a student who takes at least one class," while the latter implies "find a plane that is faster than all trains."

[bookmark: sqlckbk-APP-B-SECT-6.1]

Question 12

You want to find students who take all courses.

The number of courses for a student in table TAKE must be equal to the total number of courses in table COURSES. There are three courses in table COURSES. Only AARON takes all three courses and should be the only student returned. The final result set should be:

	SNO SNAME	AGE

	--- ------ ---

	 1 AARON	20

[bookmark: sqlckbk-APP-B-SECT-6.1.1]

MySQL and PostgreSQL

Use the aggregate function COUNT to find students who take every course:

	1 select s.sno,s.sname,s.age

	2	from student s, take t

	3 where s.sno = t.sno

	4 group by s.sno,s.sname,s.age

	5 having count(t.cno) = (select count(*) from courses)

[bookmark: sqlckbk-APP-B-SECT-6.1.2]

DB2 and SQL Server

Use the window function COUNT OVER and an outer join instead of a subquery:

	1 select sno,sname,age

	2	from (

	3 select s.sno,s.sname,s.age,

	4		 count(t.cno)

	5		 over (partition by s.sno) as cnt,

	6		 count(distinct c.title) over() as total,

	7		 row_number() over

	8		 (partition by s.sno order by c.cno) as rn

	9	from courses c

	10		 left join take t on (c.cno = t.cno)

	11		 left join student s on (t.sno = s.sno)

	12) x

	13	where cnt = total

	14	 and rn = 1

[bookmark: sqlckbk-APP-B-SECT-6.1.3]

Oracle

[bookmark: idx-APP-B-1026]

Users on Oracle9i and later can use the DB2 solution. Alternatively, you can use the proprietary Oracle outer-join syntax, which is mandatory for users on 8i and earlier:

	1 select sno,sname,age

	2	 from (

	3 select s.sno,s.sname,s.age,

	4		 count(t.cno)

	5		 over (partition by s.sno) as cnt,

	6 count(distinct c.title) over() as total,

	7 row_number() over

	8		 (partition by s.sno [bookmark: idx-APP-B-1027]order by c.cno) as rn

	9 from courses c, take t, student s

	10 where c.cno = t.cno (+)

	11		and t.sno = s.sno (+)

	12)

	13 where cnt = total

	14 and rn = 1

[bookmark: sqlckbk-APP-B-SECT-6.1.4]

Discussion

The aggregate solution uses a subquery to return the total number of courses available. The outer query keeps only students who take the same number of courses as the value returned by the subquery. The window solution takes a different approach: it uses an outer join to table COURSES instead of a subquery. The window solution also uses window functions to return the number of courses a student takes (aliased CNT) along with the total number of courses there are in table COURSES (aliased TOTAL). The query below shows the intermediate results from those window functions:

	select s.sno,s.sname,s.age,

			count(distinct t.cno)

			over (partition by s.sno) as cnt,

			count(distinct c.title) over() as total,

			row_number()

			over(partition by s.sno order by c.cno) as rn

	 from courses c

			left join take t on (c.cno = t.cno)

			left join student s on (t.sno = s.sno)

	 order by 1

	SNO SNAME	AGE	 CNT		TOTAL	RN

	--- ------ ----	 ---- ---------- ----

	 1 AARON	20		3			3	1

	 1 AARON	20		3			3	2

	 1 AARON	20		3			3	3

	 2 CHUCK	21		1			3	1

	 3 DOUG	20		2			3	1

	 3 DOUG	20		2			3	2

	 4 MAGGIE	19		2			3	1

	 4 MAGGIE	19		2			3	2

	 5 STEVE	22		1			3	1

	 6 JING	18		2			3	1

	 6 JING	18		2			3	2

The student who takes all courses is the one where CNT equals TOTAL. ROW_NUMBER is used instead of DISTINCT to filter out the duplicates from the final result set. Strictly speaking, the outer joins to tables TAKE and STUDENT are not necessary, as there are no courses that aren't taken by at least one student. If there is a course that no students take, CNT would not equal TOTAL, and a row with NULL values for SNO, SNAME, and AGE would be returned. The example below creates a new course that no students take. The following query demonstrates what the intermediate result set would look like if there exists a course no students take (for clarity, C.TITLE is included below):

	insert into courses values ('CS115','BIOLOGY',4)

	select s.sno,s.sname,s.age,c.title,

		 count(distinct t.cno)

		 over (partition by s.sno) as cnt,

		 count(distinct c.title) over() as total,

		 row_number()

		 over(partition by s.sno order by c.cno) as rn

	 from courses c

		 left join take t on (c.cno = t.cno)

		 left join student s on (t.sno = s.sno)

 order by 1

	 SNO SNAME AGE TITLE	 CNT TOTAL RN

	 --- ------ --- ---------- --- ----- ---

	 1	 AARON	20	PHYSICS		3	4	 1

	 1	 AARON	20	CALCULUS	3	4	 2

	 1 AARON	20	HISTORY		3	4	 3

	 2 CHUCK	21	PHYSICS		1	4	 1

	 3 DOUG	20	PHYSICS		2	4	 1

	 3 DOUG	20	HISTORY		2	4	 2

	 4 MAGGIE	19	PHYSICS		2	4	 1

	 4 MAGGIE	19	CALCULUS	2	4	 2

	 5 STEVE	22	CALCULUS	1	4	 1

	 6 JING	18	CALCULUS	2	4	 1

	 6 JING	18	HISTORY		2	4	 2

					BIOLOGY		0	4	 1

Examining these results, it's easy to see no rows will be returned when the final filters are applied. Additionally, keep in mind that window functions take effect after the WHERE clause is evaluated so it is necessary to use DISTINCT when counting the total courses available in table COURSES (otherwise you get the total from the result set, which would be the total number of courses taken by all students, i.e., select count(cno) from take).

						[image:]			

The sample data used for this example does not have [bookmark: idx-APP-B-1028]any duplicates in table TAKE, so the solution provided works fine. If there had been duplicates in TAKE, for example, a student that takes the same courses three times, the solution would fail. The workaround for dealing with duplicates in this solution is trivial; simply add DISTINCT when performing the count on T.CNO and the solution will work correctly.

[bookmark: sqlckbk-APP-B-SECT-6.1.5]

Original solution

[bookmark: idx-APP-B-1029]

The original solution avoids aggregates by using a Cartesian product in a devilishly clever way. The query below is based on the original:

	select *

		from student

	where sno not in

			(select s.sno

				from student s, courses c

			 where (s.sno,c.cno) not in (select sno,cno from take))

Rozenshtein restates the problem to be "Which students are not among those for whom there is a course that they do not take?" If you look at the problem that way, you are now working with negation. Recall how Rozenshtein suggests handling negation:

Remember that real negation requires two passes: To find out "who does not," first find out "who does" and then get rid of them.

The innermost subquery returns all valid SNO/CNO combinations. The middle subquery, which uses a Cartesian product between tables STUDENT and COURSES, returns all students and all courses (i.e., every student taking every course) and filters out the valid SNO/CNO combinations (leaving only "made up" SNO/CNO combinations). The outermost query returns only the rows from table STUDENT where the SNO is not amongst those returned by the middle subquery. The following queries may make the solution a bit more clear. To keep it readable, I'll use only AARON and CHUCK (only AARON takes all courses):

	select *

		from student

	 where sno in (1,2)

	

	 SNO SNAME		 AGE

	 --- ---------- ----

		1 AARON		 20

		2 CHUCK		 21

	select *

		from take

	 where sno in (1,2)

	 SNO CNO

	 --- -----

		1 CS112

		1 CS113

		1 CS114

		2 CS112

	select s.sno, c.cno

		from student s, courses c

	 where s.sno in (1,2)

	 order by 1

	 SNO CNO

	 --- -----

	 1 CS112

	 1 CS113

	 1 CS114

	 2 CS112

	 2 CS113

	 2 CS114

These queries show the rows from table STUDENT for AARON and CHUCK, the courses that AARON and CHUCK take, and a Cartesian product that returns AARON and CHUCK taking all courses, respectively. The result set from the Cartesian product for AARON matches the result set returned for AARON from table TAKE, but CHUCK has two "made up" rows as a result of the Cartesian product that do not match his rows in table TAKE. The following query is the middle subquery and uses NOT IN to filter out the valid SNO/CNO combinations:

	select s.sno, c.cno

		from student s, courses c

	 where s.sno in (1,2)

			and (s.sno,c.cno) not in (select sno,cno from take)

 SNO CNO

	 --- ----

	 2 CS113

	 2 CS114

Notice that AARON is not returned by the middle subquery (because AARON takes all courses). The result set of the middle subquery contains rows that exist due to the Cartesian product, not because CHUCK actually takes those courses. The outermost query then returns rows from table STUDENT where the SNO is not amongst the SNO returned by the middle subquery:

	select *

		from student

	 where sno in (1,2)

			and sno not in

				(select s.sno from student s, courses c

					where s.sno in (1,2)

						and (s.sno,c.cno) not in (select sno,cno from take))

	SNO SNAME		AGE

	--- ---------- -----

	1	AARON		20

		

[bookmark: sqlckbk-APP-B-SECT-6.2]

Question 13

Find students who are older than [bookmark: idx-APP-B-1030]any other students.

You can restate the problem as "Find the oldest students." The final result set should be:

	SNO SNAME		AGE

	--- -------- ------

	 5 STEVE		22

[bookmark: sqlckbk-APP-B-SECT-6.2.1]

MySQL and PostgreSQL

Use the aggregate function MAX in a subquery to find the oldest students:

	1 select *

	2	from student

	3 where age = (select max(age) from student)

[bookmark: sqlckbk-APP-B-SECT-6.2.2]

DB2, Oracle, and SQL Server

[bookmark: idx-APP-B-1031]

Use the window function MAX OVER in an inline view to find the oldest students:

	1 select sno,sname,age

	2 from (

	3 select s.*,

	4		max(s.age)over() as oldest

	5 from student s

	6) x

	7 where age = oldest

[bookmark: sqlckbk-APP-B-SECT-6.2.3]

Discussion

Both solutions use the function MAX to find the oldest student. The subquery solution first finds the greatest age in table STUDENT and returns it to the outer query, which finds student of that age. The window version does the same as the subquery solution but returns the greatest age for each row. The intermediate results of the window query are as follows:

	select s.*,

			max(s.age) over() as oldest

		from student s

	SNO SNAME	 AGE	 OLDEST

	--- ---------- ---- ----------

	 1	AARON		20			22

	 2	CHUCK		21			22

	 3	DOUG		20			22

	 4	MAGGIE	 19			22

	 5	STEVE		22			22

	 6	JING		18			22

	 7	BRIAN		21			22

	 8	KAY			20			22

	 9	GILLIAN		20			22

 10	CHAD		21			22

To find the oldest students, simply keep the rows where AGE = OLDEST.

[bookmark: sqlckbk-APP-B-SECT-6.2.4]

Original solution

The original solution uses a self join on table STUDENT in a subquery to find all students who are younger than some other student. The outer query returns all students from table STUDENT who are not amongst those returned by the subquery. The operation can be rephrased as "find all students who are not amongst those students who are younger than at least one other student":

	select *

		from student

	 where age not in (select a.age

							from student a, student b

						 where a.age < b.age)

The subquery returns use a Cartesian product to find all ages in A that are younger than all ages in B. The only age that would not be younger than any other age is the greatest age. The greatest age is not returned by the subquery. The outer query uses NOT IN to return all rows from table STUDENT where AGE is not amongst the AGE returned by the subquery (if A.AGE is returned, that means there is an AGE somewhere in table STUDENT that is greater than it). If you have trouble understanding how it works, examine the following query. Conceptually they both work in a similar way, but the following is probably more common:

	select *

		from student

	 where age >= all (select age from student)

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-APP-B]

Appendix B. Rozenshtein Revisited

This appendix is a tribute to David Rozenshtein. As I mentioned in the introduction, I feel his book [bookmark: idx-APP-B-0989]The Essence of SQL is (even today) the best book ever written on SQL. Although only 119 pages long, the book covers what I consider to be crucial topics for any SQL programmer. In particular, David shows how to think through a problem and arrive at an answer. The solutions provided by Rozenshtein are very set oriented. Even if the size of your tables do not permit you to use his solutions in a practical environment, his approach is excellent as it forces you to stop searching for a procedural solution to a problem and start thinking in sets.

The Essence of SQL was published long before window functions and MODEL clauses. In this appendix I provide alternative solutions to some of the questions in Rozenshtein's book using some of the newer functions available in standard SQL. (Whether these new solutions are "better" than Rozenshtein's depends on the circumstances.) At the end of each discussion, I present a solution based on the original solution from Rozenshtein's book. For the examples in which I present a variation of a problem found in Rozenshtein's text, I will also present a variation of a solution (a solution that may not necessarily exist in Rozenshtein's book, but that uses a similar technique).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-1]

Recipe 1.1. Retrieving All Rows and Columns from a Table

[bookmark: idx-CHP-1-0002]

[bookmark: idx-CHP-1-0003]

[bookmark: sqlckbk-CHP-1-SECT-1.1]

Problem

You have a table and want to see all of the data in it.

[bookmark: sqlckbk-CHP-1-SECT-1.2]

Solution

Use the special "*" character and issue a SELECT against the table:

	1 select *

	2 from emp

[bookmark: sqlckbk-CHP-1-SECT-1.3]

Discussion

The character "*" has special meaning in SQL. Using it will return every column for the table specified. Since there is no WHERE clause specified, every row will be returned as well. The alternative would be to list each column individually:

	select empno,ename,job,sal,mgr,hiredate,comm,deptno

	 from emp

In ad hoc queries that you execute interactively, it's easier to use SELECT *. However, when writing program code it's better to specify each column individually. The performance will be the same, but by being explicit you will always know what columns you are returning from the query. Likewise, such queries are easier to understand by people other than yourself (who may or may not know all the columns in the tables in the query).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-10]

Recipe 1.10. Returning n Random Records from a Table

[bookmark: idx-CHP-1-0027]

[bookmark: sqlckbk-CHP-1-SECT-10.1]

Problem

You want to return a specific number of [bookmark: idx-CHP-1-0028]random records from a table. You want to modify the following statement such that successive executions will produce a different set of five rows:

	select ename, job

	 from emp

[bookmark: sqlckbk-CHP-1-SECT-10.2]

Solution

Take any built-in function supported by your DBMS for returning [bookmark: idx-CHP-1-0029]random values. Use that function in an ORDER BY clause to sort rows randomly. Then, use the previous recipe's technique to limit the number of randomly sorted rows to return.

[bookmark: sqlckbk-CHP-1-SECT-10.2.1]

DB2

Use the built-in function RAND in conjunction with ORDER BY and FETCH:

	1 select ename,job

	2 from emp

	3 order by rand() fetch first 5 rows only

[bookmark: sqlckbk-CHP-1-SECT-10.2.2]

MySQL

Use the built-in RAND function in conjunction with LIMIT and ORDER BY:

	1 select ename,job

	2 from emp

	3 order by rand() limit 5

[bookmark: sqlckbk-CHP-1-SECT-10.2.3]

PostgreSQL

Use the built-in [bookmark: idx-CHP-1-0030]RANDOM function in conjunction with LIMIT and ORDER BY:

	1 select ename,job

	2 from emp

	3 order by [bookmark: idx-CHP-1-0031]random() limit 5

[bookmark: sqlckbk-CHP-1-SECT-10.2.4]

Oracle

Use the built-in function VALUE, found in the built-in package DBMS_[bookmark: idx-CHP-1-0032]RANDOM, in conjunction with ORDER BY and the built-in function ROWNUM:

	1 select *

	2 from (

	3 select ename, job

	4 from emp

	6 order by dbms_random.value()

	7)

	8 where rownum <= 5

[bookmark: sqlckbk-CHP-1-SECT-10.2.5]

SQL Server

Use the built-in function NEWID in conjunction with TOP and ORDER BY to return a random result set:

	1 select top 5 ename,job

	2 from emp

	3 order by newid()

[bookmark: sqlckbk-CHP-1-SECT-10.3]

Discussion

The [bookmark: idx-CHP-1-0033]ORDER BY clause can accept a function's return value and use it to change the order of the result set. The solution queries all restrict the number of rows to return after the function in the ORDER BY clause is executed. Non-Oracle users may find it helpful to look at the Oracle solution as it shows (conceptually) what is happening under the covers of the other solutions.

It is important that you don't confuse using a function in the ORDER BY clause with using a numeric constant. When specifying a numeric constant in the ORDER BY clause, you are requesting that the sort be done according the column in that ordinal position in the SELECT list. When you specify a function in the ORDER BY clause, the sort is performed on the result from the function as it is evaluated for each row.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-11]

Recipe 1.11. Finding Null Values

[bookmark: idx-CHP-1-0034]

[bookmark: sqlckbk-CHP-1-SECT-11.1]

Problem

You want [bookmark: idx-CHP-1-0035]to find all rows that are null for a particular column.

[bookmark: sqlckbk-CHP-1-SECT-11.2]

Solution

To determine whether a value [bookmark: idx-CHP-1-0036]is null, you must use IS NULL:

	1 select *

	2 from emp

	3 where comm is null

[bookmark: sqlckbk-CHP-1-SECT-11.3]

Discussion

NULL is never equal/not equal to anything, not even itself, therefore you cannot use = or != for testing whether a column is NULL. To determine whether or not a row has NULL values you must use IS NULL. You can also use IS NOT NULL to find rows without a null in a given column.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-12]

Recipe 1.12. Transforming Nulls into Real Values

[bookmark: sqlckbk-CHP-1-SECT-12.1]

Problem

You have rows that contain nulls and would like to return non-null values in place of those nulls.

[bookmark: sqlckbk-CHP-1-SECT-12.2]

Solution

Use the function COALESCE to substitute real values for nulls:

	1 select coalesce(comm,0)

	2 from emp

[bookmark: sqlckbk-CHP-1-SECT-12.3]

Discussion

The [bookmark: idx-CHP-1-0037]COALESCE function takes one or more values as arguments. The function returns the first non-null value in the list. In the solution, the value of COMM is returned whenever COMM is not null. Otherwise, a zero is returned.

When working with nulls, it's best to take advantage of the built-in functionality provided by your DBMS; in many cases you'll find several functions work equally as well for this task. COALESCE happens to work for all DBMSs. Additionally, CASE can be used for all DBMSs as well:

	select case

	 when comm is null then 0

	 else comm

	 end

	 from emp

While you can use CASE to translate nulls into values, you can see that it's much easier and more succinct to use COALESCE.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-13]

Recipe 1.13. Searching for Patterns

[bookmark: idx-CHP-1-0038]

[bookmark: sqlckbk-CHP-1-SECT-13.1]

Problem

You want to return rows that match a particular substring or pattern. Consider the following query and result set:

	

	select ename, job

	 from emp

	 where deptno in (10,20)

	ENAME JOB

	---------- ---------

	SMITH CLERK

	JONES MANAGER

	CLARK MANAGER

	SCOTT ANALYST

	KING PRESIDENT

	ADAMS CLERK

	FORD ANALYST

	MILLER CLERK

Of the employees in departments 10 and 20, you want to return only those that have either an "I" somewhere in their name or a job title ending with "ER":

	ENAME JOB

	---------- ---------

	SMITH CLERK

	JONES MANAGER

	CLARK MANAGER

	KING PRESIDENT

	MILLER CLERK

[bookmark: sqlckbk-CHP-1-SECT-13.2]

Solution

Use the [bookmark: idx-CHP-1-0039]LIKE operator in conjunction with the SQL [bookmark: idx-CHP-1-0040]wildcard operator ("[bookmark: idx-CHP-1-0041]%"):

	1 select ename, job

	2 from emp

	3 where deptno in (10,20)

	4 and (ename like '%I%' or job like '%ER')

[bookmark: sqlckbk-CHP-1-SECT-13.3]

Discussion

When used in a LIKE pattern-match operation, the percent ("%") operator matches any sequence of characters. Most SQL implementations also provide the [bookmark: idx-CHP-1-0042]underscore ("_") operator to match a single character. By enclosing the search pattern "I" with "%" operators, any string that contains an "I" (at any position) will be returned. If you do not enclose the search pattern with "%", then where you place the operator will affect the results of the query. For example, to find job titles that end in "ER", prefix the "%" operator to "ER"; if the requirement is to search for all job titles beginning with "ER", then append the "%" operator to "ER".

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-2]

Recipe 1.2. Retrieving a Subset of Rows from a Table

[bookmark: idx-CHP-1-0004]

[bookmark: sqlckbk-CHP-1-SECT-2.1]

Problem

You have a table and want to see only rows that satisfy a specific condition.

[bookmark: sqlckbk-CHP-1-SECT-2.2]

Solution

Use the WHERE clause to specify which rows to keep. For example, to view all employees assigned to department number 10:

	1 select *

	2 from emp

	3 where deptno = 10

[bookmark: sqlckbk-CHP-1-SECT-2.3]

Discussion

The WHERE clause allows you to retrieve only rows you are interested in. If the expression in the WHERE clause is true for any row, then that row is returned.

Most vendors support common operators such as: =, <, >, <=, >=, !, <>. Additionally, you may want rows that satisfy multiple conditions; this can be done by specifying AND, OR, and parenthesis, as shown in the next recipe.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-3]

Recipe 1.3. Finding Rows That Satisfy Multiple Conditions

[bookmark: sqlckbk-CHP-1-SECT-3.1]

Problem

You want to return rows that satisfy multiple conditions.

[bookmark: sqlckbk-CHP-1-SECT-3.2]

Solution

Use the WHERE clause along with the OR and AND clauses. For example, if you would like to find all the employees in department 10, along with any employees who earn a commission, along with any employees in department 20 who earn at most $2000:

	1 select *

	2 from emp

	3 where deptno = 10

	4 or comm is not null

	5 or sal <= 2000 and deptno=20

[bookmark: sqlckbk-CHP-1-SECT-3.3]

Discussion

You can use a combination of AND, OR, and parenthesis to return rows that satisfy multiple conditions. In the solution example, the WHERE clause finds rows such that:

			the DEPTNO is 10, or

			the COMM is NULL, or

			the salary is $2000 or less for any employee in DEPTNO 20.

The presence of parentheses causes conditions within them to be evaluated together.

For example, consider how the result set changes if the query was written with the parentheses as shown below:

	select *

	 from emp

	where (deptno = 10

	 or comm is not null

	 or sal <= 2000

)

	 and deptno=20

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

	----- ------ ----- ----- ----------- ----- ---------- ------

	 7369 SMITH CLERK 7902 17-DEC-1980 800 20

	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-4]

Recipe 1.4. Retrieving a Subset of Columns from a Table

[bookmark: idx-CHP-1-0005]

[bookmark: sqlckbk-CHP-1-SECT-4.1]

Problem

You have a table and want to see values for specific [bookmark: idx-CHP-1-0006]columns rather than for all the columns.

[bookmark: sqlckbk-CHP-1-SECT-4.2]

Solution

Specify the columns you are interested in. For example, to see only name, department number, and salary for employees:

	1 select ename,deptno,sal

	2 from emp

[bookmark: sqlckbk-CHP-1-SECT-4.3]

Discussion

By specifying the columns in the SELECT clause, you ensure that no extraneous data is returned. This can be especially important when retrieving data across a network, as it avoids the waste of time inherent in retrieving data that you do not need.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-5]

Recipe 1.5. Providing Meaningful Names for Columns

[bookmark: sqlckbk-CHP-1-SECT-5.1]

Problem

You would like to change the names of the columns that are returned by your query so they are more readable and understandable. Consider this query that returns the salaries and commissions for each employee:

	1 select sal,comm

	2 from emp

What's "sal"? Is it short for "sale"? Is it someone's name? What's "comm"? Is it communication? You want the results to have more meaningful labels.

[bookmark: sqlckbk-CHP-1-SECT-5.2]

Solution

To change the names of your query results use the [bookmark: idx-CHP-1-0007]AS keyword in the form: original_name AS new_name. Some databases do not require AS, but all accept it:

	

	1 select sal as salary, comm as commission

	2 from emp

	SALARY COMMISSION

	------- ----------

	 800

	 1600 300

	 1250 500

	 2975

	 1250 1300

	 2850

	 2450

	 3000

	 5000

	 1500 0

	 1100

	 950

	 3000

	 1300

[bookmark: sqlckbk-CHP-1-SECT-5.3]

Discussion

Using the AS keyword to give new names to columns returned by your query is known as aliasing those columns. The new names that you give are known as aliases. Creating good aliases can go a long way toward making a query and its results understandable to others.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-6]

Recipe 1.6. Referencing an Aliased Column in the WHERE Clause

[bookmark: idx-CHP-1-0008]

[bookmark: sqlckbk-CHP-1-SECT-6.1]

Problem

You have used aliases to provide more meaningful column names for your result set and would like to exclude some of the rows using the WHERE clause. However, your attempt to reference alias names in the WHERE clause fails:

	select sal as salary, comm as commission

	 from emp

	 where salary < 5000

[bookmark: sqlckbk-CHP-1-SECT-6.2]

Solution

By wrapping your query as an inline view you can reference the aliased columns:

	1 select *

	2 from (

	3 select sal as salary, comm as commission

	4 from emp

	5) x

	6 where salary < 5000

[bookmark: idx-CHP-1-0009]

[bookmark: sqlckbk-CHP-1-SECT-6.3]

Discussion

In this [bookmark: idx-CHP-1-0010]simple example, you can avoid the inline view and reference COMM or SAL directly in the [bookmark: idx-CHP-1-0011]WHERE clause to achieve the same result. This solution introduces you to what you would need to do when attempting to reference any [bookmark: idx-CHP-1-0012]of the following in a [bookmark: idx-CHP-1-0013]WHERE clause:

			Aggregate functions

			Scalar subqueries

			Windowing functions

			Aliases

Placing your query, the one giving aliases, in an inline view gives you the ability to reference the aliased [bookmark: idx-CHP-1-0014]columns in your outer query. Why do you need to do this? The WHERE clause is evaluated before the SELECT, thus, SALARY and COMMISSION do not yet exist when the "Problem" query's WHERE clause is evaluated. Those aliases are not applied until after the WHERE clause processing is complete. However, the FROM clause is evaluated before the WHERE. By placing the original query in a FROM clause, the results from that query are generated before the outermost WHERE clause, and your outermost WHERE clause "sees" the alias names. This technique is particularly useful when the [bookmark: idx-CHP-1-0015]columns in a table are not named particularly well.

						[image:]			

The inline view in this solution is aliased X. Not all databases require an inline view to be explicitly aliased, but some do. All of them accept it.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-7]

Recipe 1.7. Concatenating Column Values

[bookmark: idx-CHP-1-0016]

[bookmark: sqlckbk-CHP-1-SECT-7.1]

Problem

You want to return values in multiple columns as one column. For example, you would like to produce this result set from a query against the EMP table:

	CLARK WORKS AS A MANAGER

	KING WORKS AS A PRESIDENT

	MILLER WORKS AS A CLERK

However, the data that you need to generate this result set comes from two different columns, the ENAME and JOB columns in the EMP table:

	

	select ename, job

	 from emp

	 where deptno = 10

	 ENAME JOB

	 ---------- ---------

	 CLARK MANAGER

	 KING PRESIDENT

	 MILLER CLERK

[bookmark: sqlckbk-CHP-1-SECT-7.2]

Solution

Find and use the built-in function provided by your DBMS to concatenate values from multiple columns.

[bookmark: sqlckbk-CHP-1-SECT-7.2.1]

DB2, Oracle, PostgreSQL

These databases use the double vertical bar as the concatenation [bookmark: idx-CHP-1-0017]operator:

	1 select ename||' WORKS AS A '||job as msg

	2 from emp

	3 where deptno=10

[bookmark: sqlckbk-CHP-1-SECT-7.2.2]

MySQL

This database supports a function called CONCAT:

	1 select concat(ename, ' WORKS AS A ',job) as msg

	2 from

	3 where deptno=10

[bookmark: sqlckbk-CHP-1-SECT-7.2.3]

SQL Server

Use the "[bookmark: idx-CHP-1-0018]+" [bookmark: idx-CHP-1-0019]operator for concatenation:

	1 select ename + ' WORKS AS A ' + job as msg

	2 from emp

	3 where deptno=10

[bookmark: sqlckbk-CHP-1-SECT-7.3]

Discussion

Use the [bookmark: idx-CHP-1-0020]CONCAT function to concatenate values from multiple columns. The || is a shortcut for the CONCAT function in DB2, Oracle, and PostgreSQL, while + is the shortcut for SQL Server.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-8]

Recipe 1.8. Using Conditional Logic in a SELECT Statement

[bookmark: idx-CHP-1-0021]

[bookmark: sqlckbk-CHP-1-SECT-8.1]

Problem

You want to perform [bookmark: idx-CHP-1-0022]IF-ELSE operations on values in your SELECT statement. For example, you would like to produce a result set such that, if an employee is paid $2000 or less, a message of "UNDERPAID" is returned, if an employee is paid $4000 or more, a message of "OVERPAID" is returned, if they make somewhere in between, then "OK" is returned. The result set should look like this:

	ENAME SAL STATUS

	---------- ---------- ---------

	SMITH 800 UNDERPAID

	ALLEN 1600 UNDERPAID

	WARD 1250 UNDERPAID

	JONES 2975 OK

	MARTIN 1250 UNDERPAID

	BLAKE 2850 OK

	CLARK 2450 OK

	SCOTT 3000 OK

	KING 5000 OVERPAID

	TURNER 1500 UNDERPAID

	ADAMS 1100 UNDERPAID

	JAMES 950 UNDERPAID

	[bookmark: idx-CHP-1-0023]

	FORD 3000 OK

	MILLER 1300 UNDERPAID

[bookmark: sqlckbk-CHP-1-SECT-8.2]

Solution

Use the CASE expression to perform conditional logic directly in your SELECT statement:

	1 select ename,sal,

	2 case when sal <= 2000 then 'UNDERPAID'

	3 when sal >= 4000 then 'OVERPAID'

	4 else 'OK'

	5 end as status

	6 from emp

[bookmark: sqlckbk-CHP-1-SECT-8.3]

Discussion

The CASE expression allows you to perform condition logic on values returned by a query. You can provide an alias for a CASE expression to return a more readable result set. In the solution, you'll see the alias STATUS given to the result of the CASE expression. The ELSE clause is optional. Omit the ELSE, and the CASE expression will return NULL for any row that does not satisfy the test condition.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1-SECT-9]

Recipe 1.9. Limiting the Number of Rows Returned

[bookmark: idx-CHP-1-0024]

[bookmark: sqlckbk-CHP-1-SECT-9.1]

Problem

You want to limit the number of rows returned in your query. You are not concerned with order; any n rows will do.

[bookmark: sqlckbk-CHP-1-SECT-9.2]

Solution

Use the built-in function provided by your database to control the number of rows returned.

[bookmark: sqlckbk-CHP-1-SECT-9.2.1]

DB2

In DB2 use the FETCH FIRST clause:

	1 select *

	2 from emp fetch first 5 rows only

[bookmark: sqlckbk-CHP-1-SECT-9.2.2]

MySQL and PostgreSQL

Do the same thing in MySQL and PostgreSQL using [bookmark: idx-CHP-1-0025]LIMIT:

	1 select *

	2 from emp limit 5

[bookmark: sqlckbk-CHP-1-SECT-9.2.3]

Oracle

In Oracle, place a restriction on the number of rows returned by restricting [bookmark: idx-CHP-1-0026]ROWNUM in the WHERE clause:

	1 select *

	2 from emp

	3 where rownum <= 5

[bookmark: sqlckbk-CHP-1-SECT-9.2.4]

SQL Server

Use the TOP keyword to restrict the number of rows returned:

	1 select top 5 *

	2 from emp

[bookmark: sqlckbk-CHP-1-SECT-9.3]

Discussion

Many vendors provide clauses such as FETCH FIRST and LIMIT that let you specify the number of rows to be returned from a query. Oracle is different, in that you must make use of a function called ROWNUM that returns a number for each row returned (an increasing value starting from 1).

Here is what happens when you use ROWNUM <= 5 to return the first five rows:

			Oracle executes your query.

			Oracle fetches the first row and calls it row number 1.

			Have we gotten past row number 5 yet? If no, then Oracle returns the row, because it meets the criteria of being numbered less than or equal to 5. If yes, then Oracle does not return the row.

			Oracle fetches the next row and advances the row number (to 2, and then to 3, and then to 4, and so forth).

			Go to step 3.

As this process shows, values from Oracle's ROWNUM are assigned after each row is fetched. This is a very important and key point. Many Oracle developers attempt to return only, say, the fifth row returned by a query by specifying ROWNUM = 5.

Using an equality condition in conjunction with ROWNUM is a bad idea. Here is what happens when you try to return, say, the fifth row using ROWNUM = 5:

			Oracle executes your query.

			Oracle fetches the first row and calls it row number 1.

			Have we gotten to row number 5 yet? If no, then Oracle discards the row, because it doesn't meet the criteria. If yes, then Oracle returns the row. But the answer will never be yes!

			Oracle fetches the next row and calls it row number 1. This is because the first row to be returned from the query must be numbered as 1.

			Go to step 3.

Study this process closely, and you can see why the use of ROWNUM = 5 to return the fifth row fails. You can't have a fifth row if you don't first return rows one through four!

You may notice that ROWNUM = 1 does, in fact, work to return the first row, which may seem to contradict the explanation thus far. The reason ROWNUM = 1 works to return the first row is that, to determine whether or not there are any rows in the table, Oracle has to attempt to fetch at least once. Read the preceding process carefully, substituting 1 for 5, and you'll understand why it's OK to specify ROWNUM = 1 as a condition (for returning one row).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-1]

Chapter 1. Retrieving Records

[bookmark: idx-CHP-1-0001]

This chapter focuses on very basic SELECT statements. It is important to have a solid understanding of the basics as many of the topics covered here are not only present in more difficult recipes but also are found in everyday SQL.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10-SECT-1]

Recipe 10.1. Locating a Range of Consecutive Values

[bookmark: sqlckbk-CHP-10-SECT-1.1]

Problem

You want to determine which rows represent a range of consecutive projects. Consider the following result set from view V, which contains data about a project and its start and end dates:

	select *

	 from V

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

	 5 06-JAN-2005 07-JAN-2005

	 6 16-JAN-2005 17-JAN-2005

	 7 17-JAN-2005 18-JAN-2005

	 8 18-JAN-2005 19-JAN-2005

	 9 19-JAN-2005 20-JAN-2005

	 10 21-JAN-2005 22-JAN-2005

	 11 26-JAN-2005 27-JAN-2005

	 12 27-JAN-2005 28-JAN-2005

	 13 28-JAN-2005 29-JAN-2005

	 14 29-JAN-2005 30-JAN-2005

Excluding the first row, each row's PROJ_START should equal the PROJ_END of the row before it ("before" is defined as PROJ_ID1 for the current row). Examining the first five rows from view V, PROJ_IDs 1 through 3 are part of the same "group" as each PROJ_END equals the PROJ_START of the row after it. Because you want [bookmark: idx-CHP-10-0580]to find the range of dates for [bookmark: idx-CHP-10-0581]consecutive projects, you would like to return all rows where the current PROJ_END equals the next row's PROJ_START. If the first five rows comprised the entire result set, you would like to return only the first three rows. The final result set (using all 14 rows from view V) should be:

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 6 16-JAN-2005 17-JAN-2005

	 7 17-JAN-2005 18-JAN-2005

	 8 18-JAN-2005 19-JAN-2005

	 11 26-JAN-2005 27-JAN-2005

	 12 27-JAN-2005 28-JAN-2005

	 13 28-JAN-2005 29-JAN-2005

The rows with PROJ_IDs 4,5,9,10, and 14 are excluded from this result set because the PROJ_END of each of these rows does not match the PROJ_START of the row following it.

[bookmark: sqlckbk-CHP-10-SECT-1.2]

Solution

[bookmark: sqlckbk-CHP-10-SECT-1.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

Use a [bookmark: idx-CHP-10-0582]self join to find the rows with consecutive values:

	1 select v1.proj_id,

	2 v1.proj_start,

	3 v1.proj_end

	4 from V v1, V v2

	5 where v1.proj_end = v2.proj_start

[bookmark: sqlckbk-CHP-10-SECT-1.2.2]

Oracle

The preceding solution will also work for Oracle. Alternatively, here is another solution that takes advantage of the window function LEAD OVER to look at the "next" row's BEGIN_DATE, thus avoiding the need to self join:

	1 select proj_id, proj_start, proj_end

	2 from (

	3 select proj_id, proj_start, proj_end,

	4 lead(proj_start)over(order by proj_id) next_proj_start

	5 from V

	6)

	7 where next_proj_start = proj_end

[bookmark: sqlckbk-CHP-10-SECT-1.3]

Discussion

[bookmark: sqlckbk-CHP-10-SECT-1.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

By self joining the view to itself, each row can be compared to every other row returned. Consider a partial result set for IDs 1 and 4:

	

	select v1.proj_id as v1_id,

	 v1.proj_end as v1_end,

	 v2.proj_start as v2_begin,

	 v2.proj_id as v2_id

	 from v v1, v v2

	where v1.proj_id in (1, 4)

	V1_ID V1_END V2_BEGIN V2_ID

	----- ----------- ----------- ----------

	 1 02-JAN-2005 01-JAN-2005 1

	 1 02-JAN-2005 02-JAN-2005 2

	 1 02-JAN-2005 03-JAN-2005 3

	 1 02-JAN-2005 04-JAN-2005 4

	 1 02-JAN-2005 06-JAN-2005 5

	 1 02-JAN-2005 16-JAN-2005 6

	 1 02-JAN-2005 17-JAN-2005 7

	 1 02-JAN-2005 18-JAN-2005 8

	 1 02-JAN-2005 19-JAN-2005 9

	 1 02-JAN-2005 21-JAN-2005 10

	 1 02-JAN-2005 26-JAN-2005 11

	 1 02-JAN-2005 27-JAN-2005 12

	 1 02-JAN-2005 28-JAN-2005 13

	 1 02-JAN-2005 29-JAN-2005 14

	 4 05-JAN-2005 01-JAN-2005 1

	 4 05-JAN-2005 02-JAN-2005 2

	 4 05-JAN-2005 03-JAN-2005 3

	 4 05-JAN-2005 04-JAN-2005 4

	 4 05-JAN-2005 06-JAN-2005 5

	 4 05-JAN-2005 16-JAN-2005 6

	 4 05-JAN-2005 17-JAN-2005 7

	 4 05-JAN-2005 18-JAN-2005 8

	 4 05-JAN-2005 19-JAN-2005 9

	 4 05-JAN-2005 21-JAN-2005 10

	 4 05-JAN-2005 26-JAN-2005 11

	 4 05-JAN-2005 27-JAN-2005 12

	 4 05-JAN-2005 28-JAN-2005 13

	 4 05-JAN-2005 29-JAN-2005 14

Examining this result set, you can see why PROJ_ID 1 is included in the final result set and PROJ_ID 4 is not: there is no corresponding V2_BEGIN value for the V1_ END value returned for V1_ID 4.

Depending on how you view the data, PROJ_ID 4 can just as easily be considered contiguous. Consider the following result set:

	

	select *

	 from V

	where proj_id <= 5

	PROJ_ID PROJ_START PROJ_END

	------- ---------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

	 5 06-JAN-2005 07-JAN-2005

If "contiguous" is defined as a project that starts the same day another project ends, then PROJ_ID 4 should be included in the result set. PROJ_ID 4 was originally eliminated because of the forward comparison (comparing its PROJ_END with the next PROJ_START), but if you do a backwards comparison (PROJ_START with the prior PROJ_END), then PROJ_ID 4 will be included in the result set.

Modifying the solution [bookmark: idx-CHP-10-0583]to include PROJ_ID 4 is trivial: simply add an additional predicate to ensure that both PROJ_START and PROJ_END are checked for being contiguous, not just PROJ_END. The modification shown in the following query produces a result set that includes PROJ_ID 4 (DISTINCT is necessary because some rows satisfy both predicate conditions):

	

	select distinct

	 v1.proj_id,

	 v1.proj_start,

	 v1.proj_end

	 from V v1, V v2

	where v1.proj_end = v2.proj_start

	 or v1.proj_start = v2.proj_end

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

[bookmark: sqlckbk-CHP-10-SECT-1.3.2]

Oracle

While the [bookmark: idx-CHP-10-0584]self-join solution certainly works, the window function LEAD OVER is perfect for this type of problem. The function LEAD OVER allows you to examine other rows without performing a self join (though the function must impose order on the result set to do so). Consider the results of the inline view (lines 35) for IDs 1 and 4:

	

	select *

	 from (

	select proj_id, proj_start, proj_end,

	 lead(proj_start)over(order by proj_id) next_proj_start

	 from v

)

	 where proj_id in (1, 4)

	PROJ_ID PROJ_START PROJ_END NEXT_PROJ_START

	------- ----------- ----------- ---------------

	 1 01-JAN-2005 02-JAN-2005 02-JAN-2005

	 4 04-JAN-2005 05-JAN-2005 06-JAN-2005

Examining the above snippet [bookmark: idx-CHP-10-0585]of code and its result set, it is particularly easy to see why PROJ_ID 4 is excluded from the final result set of the complete solution. It's excluded because its PROJ_END date of 05-JAN-2005 does not match the "next" project's start date of 06-JAN-2005.

The function LEAD OVER is extremely handy when it comes to problems such as this one, particularly when examining partial results. When working with window functions, keep in mind that they are evaluated after the FROM and WHERE [bookmark: idx-CHP-10-0586]clauses, so the LEAD OVER function in the preceding query must be embedded within an inline view. Otherwise the LEAD OVER function is applied to the result set after the WHERE clause has filtered out all rows except for PROJ_ID's 1 and 4.

Now, depending on how you view the data, you may very well want to include PROJ_ID 4 in the final result set. Consider the first five rows from view V:

	

	select *

	 from V

	 where proj_id <= 5

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

	 5 06-JAN-2005 07-JAN-2005

If your requirement is such that PROJ_ID 4 is in fact contiguous (because PROJ_ START for PROJ_ID 4 matches PROJ_END for PROJ_ID 3), and that only PROJ_ ID 5 should be discarded, the proposed solution for this recipe is incorrect (!), or at the very least, incomplete:

	

	select proj_id, proj_start, proj_end

	 from (

	select proj_id, proj_start, proj_end,

	 lead(proj_start)over(order by proj_id) next_start

	 from V

	where proj_id <= 5

)

	where proj_end = next_start

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

If you believe PROJ_ID 4 should be included, simply add LAG OVER to the query and use an additional filter in the WHERE clause:

	

	select proj_id, proj_start, proj_end

	 from (

	select proj_id, proj_start, proj_end,

	 lead(proj_start)over(order by proj_id) next_start,

	 lag(proj_end)over(order by proj_id) last_end

	 from V

	where proj_id <= 5

)

	where proj_end = next_start

	 or proj_start = last_end

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

Now PROJ_ID 4 is included in the final result set, and only the evil PROJ_ID 5 is excluded. Please consider your exact requirements when applying these recipes to your code.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10-SECT-2]

Recipe 10.2. Finding Differences Between Rows in the Same Group or Partition

[bookmark: idx-CHP-10-0587]

[bookmark: sqlckbk-CHP-10-SECT-2.1]

Problem

You want to return the DEPTNO, ENAME, and SAL of each employee along with the difference in SAL between employees in the same department (i.e., having the same value for DEPTNO). The difference should be between each current employee and the employee hired immediately afterwards (you want to see if there is a correlation between seniority and salary on a "per department" basis). For each employee hired last in his department, return "N/A" for the difference. The result set should look like this:

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ---------- ---------- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 -2550

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982 N/A

	 20 SMITH 800 17-DEC-1980 -2175

	 20 JONES 2975 02-APR-1981 -25

	 20 FORD 3000 03-DEC-1981 0

	 20 SCOTT 3000 09-DEC-1982 1900

	 20 ADAMS 1100 12-JAN-1983 N/A

	 30 ALLEN 1600 20-FEB-1981 350

	 30 WARD 1250 22-FEB-1981 -1600

	 30 BLAKE 2850 01-MAY-1981 1350

	 30 TURNER 1500 08-SEP-1981 250

	 30 MARTIN 1250 28-SEP-1981 300

	 30 JAMES 950 03-DEC-1981 N/A

[bookmark: sqlckbk-CHP-10-SECT-2.2]

Solution

The is another example of where the Oracle window functions LEAD OVER and [bookmark: idx-CHP-10-0588]LAG OVER come in handy. You can easily access next and prior rows without additional joins. For other RDBMSs, you can use scalar subqueries, though not as easily. This particular problem is not at all elegant when having to use scalar subqueries or self joins to solve it.

[bookmark: sqlckbk-CHP-10-SECT-2.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to retrieve the HIREDATE of the employee hired immediately after each employee. Then use another scalar subquery to find the salary of said employee:

	 1 select deptno, ename, hiredate, sal,

	 2 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff

	 3 from (

	 4 select e.deptno,

	 5 e.ename,

	 6 e.hiredate,

	 7 e.sal,

	 8 (select min(sal) from emp d

	 9 where d.deptno=e.deptno

	10 and d.hiredate =

	11 (select min(hiredate) from emp d

	12 where e.deptno=d.deptno

	13 and d.hiredate > e.hiredate)) as next_sal

	14 from emp e

	15) x

[bookmark: sqlckbk-CHP-10-SECT-2.2.2]

Oracle

Use the window function LEAD OVER to access the "next" employee's salary relative to the current row:

	1 select deptno, ename, sal, hiredate,

	2 lpad(nvl(to_char(sal-next_sal), 'N/A'), 10) diff

	3 from (

	4 select deptno, ename, sal, hiredate,

	5 lead(sal)over(partition by deptno

	6 order by hiredate) next_sal

	7 from emp

	8)

[bookmark: sqlckbk-CHP-10-SECT-2.3]

Discussion

[bookmark: sqlckbk-CHP-10-SECT-2.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

The first step is to use a scalar subquery to find the HIREDATE of the employee hired immediately after each employee in the same department. The solution uses MIN(HIREDATE) in the scalar subquery to ensure that only one value is returned even in the event of multiple people being hired on the same date:

	

	select e.deptno,

	 e.ename,

	 e.hiredate,

	 e.sal,

	 (select min(hiredate) from emp d

	 where e.deptno=d.deptno

	 and d.hiredate > e.hiredate) as next_hire

	 from emp e

	 order by 1

	DEPTNO ENAME HIREDATE SAL NEXT_HIRE

	------ ---------- ----------- ---------- -----------

	 10 CLARK 09-JUN-1981 2450 17-NOV-1981

	 10 KING 17-NOV-1981 5000 23-JAN-1982

	 10 MILLER 23-JAN-1982 1300

	 20 SMITH 17-DEC-1980 800 02-APR-1981

	 20 ADAMS 12-JAN-1983 1100

	 20 FORD 03-DEC-1981 3000 09-DEC-1982

	 20 SCOTT 09-DEC-1982 3000 12-JAN-1983

	 20 JONES 02-APR-1981 2975 03-DEC-1981

	 30 ALLEN 20-FEB-1981 1600 22-FEB-1981

	 30 BLAKE 01-MAY-1981 2850 08-SEP-1981

	 30 MARTIN 28-SEP-1981 1250 03-DEC-1981

	 30 JAMES 03-DEC-1981 950

	 30 TURNER 08-SEP-1981 1500 28-SEP-1981

	 30 WARD 22-FEB-1981 1250 01-MAY-1981

The next step is to use another scalar subquery to find the salary of the employee who was hired on the NEXT_HIRE date. Again, the solution uses MIN to ensure that just one value is always returned:

	

	select e.deptno,

	 e.ename,

	 e.hiredate,

	 e.sal,

	 (select min(sal) from emp d

	 where d.deptno=e.deptno

	 and d.hiredate =

	 (select min(hiredate) from emp d

	 where e.deptno=d.deptno

	 and d.hiredate > e.hiredate)) as next_sal

	 from emp e

	order by 1

	DEPTNO ENAME HIREDATE SAL NEXT_SAL

	------ ---------- ----------- ---------- ----------

	 10 CLARK 09-JUN-1981 2450 5000

	 10 KING 17-NOV-1981 5000 1300

	 10 MILLER 23-JAN-1982 1300

	 20 SMITH 17-DEC-1980 800 2975

	 20 ADAMS 12-JAN-1983 1100

	 20 FORD 03-DEC-1981 3000 3000

	 20 SCOTT 09-DEC-1982 3000 1100

	 20 JONES 02-APR-1981 2975 3000

	 30 ALLEN 20-FEB-1981 1600 1250

	 30 BLAKE 01-MAY-1981 2850 1500

	 30 MARTIN 28-SEP-1981 1250 950

	 30 JAMES 03-DEC-1981 950

	 30 TURNER 08-SEP-1981 1500 1250

	 30 WARD 22-FEB-1981 1250 2850

The final step is to find the difference [bookmark: idx-CHP-10-0589]between SAL and NEXT_SAL, and to use the function [bookmark: idx-CHP-10-0590]COALESCE to return "N/A" when applicable. Since the result of the subtraction is a number and can potentially be NULL, you must cast to a string for COALESCE to work:

	

	select deptno, ename, hiredate, sal,

	 coalesce(cast(sal-next_sal as char(10)), 'N/A') as diff

	 from (

	select e.deptno,

	 e.ename,

	 e.hiredate,

	 e.sal,

	 (select min(sal) from emp d

	 where d.deptno=e.deptno

	 and d.hiredate =

	 (select min(hiredate) from emp d

	 where e.deptno=d.deptno

	 and d.hiredate > e.hiredate)) as next_sal

	 from emp e

) x

	order by 1

	DEPTNO ENAME HIREDATE SAL DIFF

	------ ---------- ----------- ---------- ---------

	 10 CLARK 09-JUN-1981 2450 -2550

	 10 KING 17-NOV-1981 5000 3700

	 10 MILLER 23-JAN-1982 1300 N/A

	 20 SMITH 17-DEC-1980 800 -2175

	 20 ADAMS 12-JAN-1983 1100 N/A

	 20 FORD 03-DEC-1981 3000 0

	 20 SCOTT 09-DEC-1982 3000 1900

	 20 JONES 02-APR-1981 2975 -25

	 30 ALLEN 20-FEB-1981 1600 350

	 30 BLAKE 01-MAY-1981 2850 1350

	 30 MARTIN 28-SEP-1981 1250 300

	 30 JAMES 03-DEC-1981 950 N/A

	 30 TURNER 08-SEP-1981 1500 250

	 30 WARD 22-FEB-1981 1250 -1600

						[image:]			

The use of MIN(SAL) in this solution is an example of how, in some ways, you can unintentionally inject [bookmark: idx-CHP-10-0591]business logic into a query while making what appears to be a solely technical decision. If multiple salaries are available for a given date, should you take the least? the highest? the average? In my example, I choose to take the least. In real life, I might well punt that decision back to the business client who requested the report to begin with.

[bookmark: sqlckbk-CHP-10-SECT-2.3.2]

Oracle

The first step is to use the LEAD OVER window function to find the "next" salary for each employee within her department. The employees hired last in each department will have a NULL value for NEXT_SAL:

	

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno order by hiredate) next_sal

	 from emp

	DEPTNO ENAME SAL HIREDATE NEXT_SAL

	------ ---------- ---------- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 5000

	 10 KING 5000 17-NOV-1981 1300

	 10 MILLER 1300 23-JAN-1982

	 20 SMITH 800 17-DEC-1980 2975

	 20 JONES 2975 02-APR-1981 3000

	 20 FORD 3000 03-DEC-1981 3000

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 ADAMS 1100 12-JAN-1983

	 30 ALLEN 1600 20-FEB-1981 1250

	 30 WARD 1250 22-FEB-1981 2850

	 30 BLAKE 2850 01-MAY-1981 1500

	 30 TURNER 1500 08-SEP-1981 1250

	 30 MARTIN 1250 28-SEP-1981 950

	 30 JAMES 950 03-DEC-1981

The next step is to take the difference [bookmark: idx-CHP-10-0592]between each employee's salary and the salary of the employee hired immediately after her in the same department:

	

	select deptno,ename,sal,hiredate, sal-next_sal diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno order by hiredate) next_sal

	 from emp

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ---------- ---------- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 -2550

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982

	 20 SMITH 800 17-DEC-1980 -2175

	 20 JONES 2975 02-APR-1981 -25

	 20 FORD 3000 03-DEC-1981 0

	 20 SCOTT 3000 09-DEC-1982 1900

	 20 ADAMS 1100 12-JAN-1983

	 30 ALLEN 1600 20-FEB-1981 350

	 30 WARD 1250 22-FEB-1981 -1600

	 30 BLAKE 2850 01-MAY-1981 1350

	 30 TURNER 1500 08-SEP-1981 250

	 30 MARTIN 1250 28-SEP-1981 300

	 30 JAMES 950 03-DEC-1981

The next step is to use the function [bookmark: idx-CHP-10-0593]NVL to return "N/A" when DIFF is NULL. To be able to return "N/A" you must cast the value of DIFF to a string, otherwise NVL will fail:

	

	select deptno,ename,sal,hiredate,

	 nvl(to_char(sal-next_sal),'N/A') diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno order by hiredate) next_sal

	 from emp

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ---------- ---------- ----------- ---------------

	 10 CLARK 2450 09-JUN-1981 -2550

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982 N/A

	 20 SMITH 800 17-DEC-1980 -2175

	 20 JONES 2975 02-APR-1981 -25

	 20 FORD 3000 03-DEC-1981 0

	 20 SCOTT 3000 09-DEC-1982 1900

	 20 ADAMS 1100 12-JAN-1983 N/A

	 30 ALLEN 1600 20-FEB-1981 350

	 30 WARD 1250 22-FEB-1981 -1600

	 30 BLAKE 2850 01-MAY-1981 1350

	 30 TURNER 1500 08-SEP-1981 250

	 30 MARTIN 1250 28-SEP-1981 300

	 30 JAMES 950 03-DEC-1981 N/A

The last step is to use the function [bookmark: idx-CHP-10-0594]LPAD to format the values for DIFF. This is because, by default, numbers are right justified while strings are left justified. Using LPAD, you can right justify all the results in the column:

	

	select deptno,ename,sal,hiredate,

	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno order by hiredate) next_sal

	 from emp

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ---------- ---------- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 -2550

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982 N/A

	 20 SMITH 800 17-DEC-1980 -2175

	 20 JONES 2975 02-APR-1981 -25

	 20 FORD 3000 03-DEC-1981 0

	 20 SCOTT 3000 09-DEC-1982 1900

	 20 ADAMS 1100 12-JAN-1983 N/A

	 30 ALLEN 1600 20-FEB-1981 350

	 30 WARD 1250 22-FEB-1981 -1600

	 30 BLAKE 2850 01-MAY-1981 1350

	 30 TURNER 1500 08-SEP-1981 250

	 30 MARTIN 1250 28-SEP-1981 300

	 30 JAMES 950 03-DEC-1981 N/A

While the majority of the solutions provided in this book do not deal with "what if" scenarios (for the sake of readability and the author's sanity), the scenario involving [bookmark: idx-CHP-10-0595]duplicates when using Oracle's LEAD OVER function in this manner must be discussed. In the simple sample data in table EMP, no employees have duplicate HIREDATEs, yet this is a very likely situation. Normally, I would not discuss a "what if" situation such as duplicates (since there aren't any in table EMP), but the workaround involving LEAD (particularly to those of you with non-Oracle backgrounds) may not be immediately obvious. Consider the following query, which returns the difference in SAL [bookmark: idx-CHP-10-0596]between the employees in DEPTNO 10 (the difference is performed in the order in which they were hired):

	

	select deptno,ename,sal,hiredate,

	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno

	 order by hiredate) next_sal

	 from emp

	 where deptno=10 and empno > 10

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ------ ----- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 -2550

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982 N/A

This solution is correct considering the data in table EMP but, if there were duplicate rows, the solution would fail. Consider the example below, showing four more employees hired on the same day as KING:

	

	insert into emp (empno,ename,deptno,sal,hiredate)

	values (1,'ant',10,1000,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)

	values (2,'joe',10,1500,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)

	values (3,'jim',10,1600,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,sal,hiredate)

	values (4,'jon',10,1700,to_date('17-NOV-1981'))

	select deptno,ename,sal,hiredate,

	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno

	 order by hiredate) next_sal

	 from emp

	 where deptno=10

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ------ ----- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 1450

	 10 ant 1000 17-NOV-1981 -500

	 10 joe 1500 17-NOV-1981 -3500

	 10 KING 5000 17-NOV-1981 3400

	 10 jim 1600 17-NOV-1981 -100

	 10 jon 1700 17-NOV-1981 400

	 10 MILLER 1300 23-JAN-1982 N/A

You'll notice that with the exception of employee JON, all employees hired on the same date (November 17) evaluate their salary against another employee hired on the same date! This is incorrect. All employees hired on November 17 should have the difference of salary computed against MILLER's salary, not another employee hired on November 17. Take, for example, employee ANT. The value for DIFF for ANT is500 because ANT's SAL is compared with JOE's SAL and is 500 less than JOE's SAL, hence the value of500. The correct value for DIFF for employee ANT should be300 because ANT makes 300 less than MILLER, who is the next employee hired by HIREDATE. The reason the solution seems to not work is due to the default behavior of Oracle's LEAD OVER function. By default, LEAD OVER only looks ahead one row. So, for employee ANT, the next SAL based on HIREDATE is JOE's SAL, because LEAD OVER simply looks one row ahead and doesn't skip duplicates. Fortunately, Oracle planned for such a situation and allows you to pass an additional parameter to LEAD OVER to determine how far ahead it should look. In the example above, the solution is simply a matter of counting: find the distance from each employee hired on November 17 to January 23 (MILLER's HIREDATE). The solution below shows how to accomplish this:

	

	select deptno,ename,sal,hiredate,

	 lpad(nvl(to_char(sal-next_sal),'N/A'),10) diff

	 from (

	select deptno,ename,sal,hiredate,

	 lead(sal,cnt-rn+1)over(partition by deptno

	 order by hiredate) next_sal

	 from (

	select deptno,ename,sal,hiredate,

	 count(*)over(partition by deptno,hiredate) cnt,

	 row_number()over(partition by deptno,hiredate order by sal) rn

	 from emp

	 where deptno=10

)

)

	DEPTNO ENAME SAL HIREDATE DIFF

	------ ------ ----- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 1450

	 10 ant 1000 17-NOV-1981 -300

	 10 joe 1500 17-NOV-1981 200

	 10 jim 1600 17-NOV-1981 300

	 10 jon 1700 17-NOV-1981 400

	 10 KING 5000 17-NOV-1981 3700

	 10 MILLER 1300 23-JAN-1982 N/A

Now the solution is correct. As you can see, all the employees hired on November 17 now have their salaries compared with MILLER's salary. Inspecting the results, employee ANT now has a value of300 for DIFF, which is what we were hoping for. If it isn't immediately obvious, the expression passed to LEAD OVER; CNT-RN+1 is simply the distance from each employee hired on November 17 to MILLER. Consider the inline view below, which shows the values for CNT and RN:

	

	select deptno,ename,sal,hiredate,

	 count(*)over(partition by deptno,hiredate) cnt,

	 row_number()over(partition by deptno,hiredate order by sal) rn

	 from emp

	 where deptno=10

	DEPTNO ENAME SAL HIREDATE CNT RN

	------ ------ ----- ----------- ---------- ----------

	 10 CLARK 2450 09-JUN-1981 1 1

	 10 ant 1000 17-NOV-1981 5 1

	 10 joe 1500 17-NOV-1981 5 2

	 10 jim 1600 17-NOV-1981 5 3

	 10 jon 1700 17-NOV-1981 5 4

	 10 KING 5000 17-NOV-1981 5 5

	 10 MILLER 1300 23-JAN-1982 1 1

The value for CNT represents, for each employee with a duplicate HIREDATE, how many duplicates there are in total for their HIREDATE. The value for RN represents a ranking for the employees in DEPTNO 10. The rank is partitioned by DEPTNO and HIREDATE so only employees with a HIREDATE that another employee has will have a value greater than one. The ranking is sorted by SAL (this is arbitrary; SAL is convenient, but we could have just as easily chosen EMPNO). Now that you know how many total duplicates there are and you have a ranking of each duplicate, the distance to MILLER is simply the total number of duplicates minus the current rank plus one (CNT-RN+1). The results of the distance calculation and its effect on LEAD OVER are shown below:

	

	select deptno,ename,sal,hiredate,

	 lead(sal)over(partition by deptno

	 order by hiredate) incorrect,

	 cnt-rn+1 distance,

	 lead(sal,cnt-rn+1)over(partition by deptno

	 order by hiredate) correct

	 from (

	select deptno,ename,sal,hiredate,

	 count(*)over(partition by deptno,hiredate) cnt,

	 row_number()over(partition by deptno,hiredate

	 order by sal) rn

	 from emp

	 where deptno=10

)

	DEPTNO ENAME SAL HIREDATE INCORRECT DISTANCE CORRECT

	------ ------ ----- ----------- ---------- ---------- ----------

	 10 CLARK 2450 09-JUN-1981 1000 1 1000

	 10 ant 1000 17-NOV-1981 1500 5 1300

	 10 joe 1500 17-NOV-1981 1600 4 1300

	 10 jim 1600 17-NOV-1981 1700 3 1300

	 10 jon 1700 17-NOV-1981 5000 2 1300

	 10 KING 5000 17-NOV-1981 1300 1 1300

	 10 MILLER 1300 23-JAN-1982 1

Now you can clearly see the effect that you have when you pass the correct distance to LEAD OVER. The rows for INCORRECT represent the values returned by LEAD OVER using a default distance of one. The rows for CORRECT represent the values returned by LEAD OVER using the proper distance for each employee with a duplicate HIREDATE to MILLER. At this point, all that is left is to find the difference [bookmark: idx-CHP-10-0597]between CORRECT and SAL for each row, which has already been shown.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10-SECT-3]

Recipe 10.3. Locating the Beginning and End of a Range of Consecutive Values

[bookmark: sqlckbk-CHP-10-SECT-3.1]

Problem

This recipe is an extension of the prior recipe , and it uses the same view V from the prior recipe. Now that you've located the ranges of consecutive values, you want to find just their start and end points. Unlike the prior recipe, if a row is not part of a set of consecutive values, you still want to return it. Why? Because such a row represents both the beginning and end of its range. Using the data from view V:

	

	select *

	 from V

	PROJ_ID PROJ_START PROJ_END

	------- ----------- -----------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005

	 3 03-JAN-2005 04-JAN-2005

	 4 04-JAN-2005 05-JAN-2005

	 5 06-JAN-2005 07-JAN-2005

	 6 16-JAN-2005 17-JAN-2005

	 7 17-JAN-2005 18-JAN-2005

	 8 18-JAN-2005 19-JAN-2005

	 9 19-JAN-2005 20-JAN-2005

	 10 21-JAN-2005 22-JAN-2005

	 11 26-JAN-2005 27-JAN-2005

	 12 27-JAN-2005 28-JAN-2005

	 13 28-JAN-2005 29-JAN-2005

	 14 29-JAN-2005 30-JAN-2005

you want the final result set to be:

	PROJ_GRP PROJ_START PROJ_END

	-------- ----------- -----------

	 1 01-JAN-2005 05-JAN-2005

	 2 06-JAN-2005 07-JAN-2005

	 3 16-JAN-2005 20-JAN-2005

	 4 21-JAN-2005 22-JAN-2005

	 5 26-JAN-2005 30-JAN-2005

[bookmark: sqlckbk-CHP-10-SECT-3.2]

Solution

This problem is a bit more involved than its predecessor. First, you must identify what the ranges are. A range of rows is defined by the values for PROJ_START and PROJ_END. For a row to be considered "consecutive" or part of a group, its PROJ_ START value must equal the PROJ_END value of the row before it. In the case where a row's PROJ_START value does not equal the prior row's PROJ_END value and its PROJ_END value does not equal the next row's PROJ_START value, this is an instance of a single row group. Once you have identify the ranges, you need to be able to group the rows in these ranges together (into groups) and return only their start and end points.

Examine the first row of the desired result set. The PROJ_START is the PROJ_ START for PROJ_ID 1 from view V and the PROJ_END is the PROJ_END for PROJ_ID 4 from view V. Despite the fact that PROJ_ID 4 does not have a consecutive value following it, it is the last of a range of consecutive values, and thus it is included in the first group.

[bookmark: sqlckbk-CHP-10-SECT-3.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

The solution for these platforms will use use view V2 to help improve readability. View V2 is defined as follows:

	create view v2

	as

	select a.*,

	 case

	 when (

	 select b.proj_id

	 from V b

	 where a.proj_start = b.proj_end

)

	 is not null then 0 else 1

	 end as flag

	from V a

The result set from view V2 is:

	

	select *

	 from V2

	PROJ_ID PROJ_START PROJ_END FLAG

	------- ----------- ----------- ----------

	 1 01-JAN-2005 02-JAN-2005 1

	 2 02-JAN-2005 03-JAN-2005 0

	 3 03-JAN-2005 04-JAN-2005 0

	 4 04-JAN-2005 05-JAN-2005 0

	 5 06-JAN-2005 07-JAN-2005 1

	 6 16-JAN-2005 17-JAN-2005 1

	 7 17-JAN-2005 18-JAN-2005 0

	 8 18-JAN-2005 19-JAN-2005 0

	 9 19-JAN-2005 20-JAN-2005 0

	 10 21-JAN-2005 22-JAN-2005 1

	 11 26-JAN-2005 27-JAN-2005 1

	 12 27-JAN-2005 28-JAN-2005 0

	 13 28-JAN-2005 29-JAN-2005 0

	 14 29-JAN-2005 30-JAN-2005 0

Using V2, the solution is as follows. First, find the rows that are part of a set of consecutive values. Group those rows together. Then use the MIN and MAX functions to find their start and end points:

	 1 select proj_grp,

	 2 min(proj_start) as proj_start,

	 3 max(proj_end) as proj_end

	 4 from (

	 5 select a.proj_id,a.proj_start,a.proj_end,

	 6 (select sum(b.flag)

	 7 from V2 b

	 8 where b.proj_id <= a.proj_id) as proj_grp

	 9 from V2 a

	10) x

	11 group by proj_grp

[bookmark: sqlckbk-CHP-10-SECT-3.2.2]

Oracle

While the solution for the other vendors will work for Oracle, there's no need to introduce additional views when you can take advantage of Oracle's [bookmark: idx-CHP-10-0598]LAG OVER window function. Use LAG OVER to determine whether or not each prior row's PROJ_END equals the current row's PROJ_START to help place the rows into groups. Once they are grouped, use the aggregate functions MIN and MAX to find their start and end points:

	 1 select proj_grp, min(proj_start), max(proj_end)

	 2 from (

	 3 select proj_id,proj_start,proj_end,

	 4 sum(flag)over(order by proj_id) proj_grp

	 5 from (

	 6 select proj_id,proj_start,proj_end,

	 7 case when

	 8 lag(proj_end)over(order by proj_id) = proj_start

	 9 then 0 else 1

	10 end flag

	11 from V

	12)

	13)

	14 group by proj_grp

[bookmark: sqlckbk-CHP-10-SECT-3.3]

Discussion

[bookmark: sqlckbk-CHP-10-SECT-3.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

Using view V2 makes this problem relatively easy to solve. View V2 uses a scalar subquery in a CASE expression to determine whether or not a particular row is part of a set of consecutive values. The CASE expression, aliased FLAG, returns a 0 if the current row is part of a consecutive set or a 1 if it is not (membership in a consecutive set is determined by whether or not there is a record with a PROJ_END value that matches the current row's PROJ_START value). The next step is to examine inline view X (lines 59). Inline view X returns all rows from view V2 along with a running total on FLAG; this running total is what creates our groups and can be seen below:

	

	select a.proj_id,a.proj_start,a.proj_end,

	 (select sum(b.flag)

	 from v2 b

	 where b.proj_id <= a.proj_id) as proj_grp

	 from v2 a

	PROJ_ID PROJ_START PROJ_END PROJ_GRP

	------- ----------- ----------- ----------

	 1 01-JAN-2005 02-JAN-2005 1

	 2 02-JAN-2005 03-JAN-2005 1

	 3 03-JAN-2005 04-JAN-2005 1

	 4 04-JAN-2005 05-JAN-2005 1

	 5 06-JAN-2005 07-JAN-2005 2

	 6 16-JAN-2005 17-JAN-2005 3

	 7 17-JAN-2005 18-JAN-2005 3

	 8 18-JAN-2005 19-JAN-2005 3

	 9 19-JAN-2005 20-JAN-2005 3

	 10 21-JAN-2005 22-JAN-2005 4

	 11 26-JAN-2005 27-JAN-2005 5

	 12 27-JAN-2005 28-JAN-2005 5

	 13 28-JAN-2005 29-JAN-2005 5

	 14 29-JAN-2005 30-JAN-2005 5

Now that the ranges have been grouped, find the start and end point for each by simply using the aggregate functions MIN and MAX on PROJ_START and PROJ_END respectively, and group by the values created by the running total.

[bookmark: sqlckbk-CHP-10-SECT-3.3.2]

Oracle

The window function [bookmark: idx-CHP-10-0599]LAG OVER is extremely useful in this situation. You can examine each prior row's PROJ_END value without a self join, without a scalar sub-query, and without a view. The results of the LAG OVER function without the CASE expression are as follows:

	

	select proj_id,proj_start,proj_end,

	 lag(proj_end)over(order by proj_id) prior_proj_end

	 from V

	PROJ_ID PROJ_START PROJ_END PRIOR_PROJ_END

	------- ----------- ----------- --------------

	 1 01-JAN-2005 02-JAN-2005

	 2 02-JAN-2005 03-JAN-2005 02-JAN-2005

	 3 03-JAN-2005 04-JAN-2005 03-JAN-2005

	 4 04-JAN-2005 05-JAN-2005 04-JAN-2005

	 5 06-JAN-2005 07-JAN-2005 05-JAN-2005

	 6 16-JAN-2005 17-JAN-2005 07-JAN-2005

	 7 17-JAN-2005 18-JAN-2005 17-JAN-2005

	 8 18-JAN-2005 19-JAN-2005 18-JAN-2005

	 9 19-JAN-2005 20-JAN-2005 19-JAN-2005

	 10 21-JAN-2005 22-JAN-2005 20-JAN-2005

	 11 26-JAN-2005 27-JAN-2005 22-JAN-2005

	 12 27-JAN-2005 28-JAN-2005 27-JAN-2005

	 13 28-JAN-2005 29-JAN-2005 28-JAN-2005

	 14 29-JAN-2005 30-JAN-2005 29-JAN-2005

The CASE expression in the complete solution simply compares the value returned by LAG OVER to the current row's PROJ_START value; if they are the same, return 0, else return 1. The next step is to create a running total on the 0's and 1's returned by the CASE expression to put each row into a group. The results of the running total can be seen below:

	

	select proj_id,proj_start,proj_end,

	 sum(flag)over(order by proj_id) proj_grp

	 from (

	select proj_id,proj_start,proj_end,

	 case when

	 lag(proj_end)over(order by proj_id) = proj_start

	 then 0 else 1

	 end flag

	 from V

)

	PROJ_ID PROJ_START PROJ_END PROJ_GRP

	------- ----------- ----------- ----------

	 1 01-JAN-2005 02-JAN-2005 1

	 2 02-JAN-2005 03-JAN-2005 1

	 3 03-JAN-2005 04-JAN-2005 1

	 4 04-JAN-2005 05-JAN-2005 1

	 5 06-JAN-2005 07-JAN-2005 2

	 6 16-JAN-2005 17-JAN-2005 3

	 7 17-JAN-2005 18-JAN-2005 3

	 8 18-JAN-2005 19-JAN-2005 3

	 9 19-JAN-2005 20-JAN-2005 3

	 10 21-JAN-2005 22-JAN-2005 4

	 11 26-JAN-2005 27-JAN-2005 5

	 12 27-JAN-2005 28-JAN-2005 5

	 13 28-JAN-2005 29-JAN-2005 5

	 14 29-JAN-2005 30-JAN-2005 5

Now that each row has been placed into a group, simply use the aggregate functions MIN and MAX on PROJ_START and PROJ_END respectively, and group by the values created in the PROJ_GRP running total column.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10-SECT-4]

Recipe 10.4. Filling in Missing Values in a Range of Values

[bookmark: idx-CHP-10-0600]

[bookmark: sqlckbk-CHP-10-SECT-4.1]

Problem

You want to return the number of employees hired each [bookmark: idx-CHP-10-0601]year for the entire decade of the 1980s, but there are some years in which no employees were hired. You would like to return the following result set:

	YR CNT

	---- ----------

	1980 1

	1981 10

	1982 2

	1983 1

	1984 0

	1985 0

	1986 0

	1987 0

	1988 0

	1989 0

[bookmark: sqlckbk-CHP-10-SECT-4.2]

Solution

The trick to this solution is returning zeros for years that saw no employees hired. If no employee was hired in a given year, then no rows for that year will exist in table EMP. If the year does not exist in the table, how can you return a count, any count, even zero? The solution requires you to outer join. You must supply a result set that returns all the years you want to see, and then perform a count against table EMP to see if there were any employees hired in each of those years.

[bookmark: sqlckbk-CHP-10-SECT-4.2.1]

DB2

Use table EMP as a pivot table (because it has 14 rows) and the built-in function YEAR to generate one row for each year in the decade of 1980. Outer join to table EMP and count how many employees were hired each year:

	 1 select x.yr, coalesce(y.cnt,0) cnt

	 2 from (

	 3 select year(min(hiredate)over()) -

	 4 mod(year(min(hiredate)over()),10) +

	 5 row_number()over()-1 yr

	 6 from emp fetch first 10 rows only

	 7) x

	 8 left join

	 9 (

	10 select year(hiredate) yr1, count(*) cnt

	11 from emp

	12 group by year(hiredate)

	13) y

	14 on (x.yr = y.yr1)

[bookmark: sqlckbk-CHP-10-SECT-4.2.2]

Oracle

[bookmark: idx-CHP-10-0602]

Use table EMP as a pivot table (because it has 14 rows) and the built-in functions [bookmark: idx-CHP-10-0603]TO_NUMBER and TO_CHAR to generate one row for each year in the decade of 1980. Outer join to table EMP and count how many employees were hired each year:

	 1 select x.yr, coalesce(cnt,0) cnt

	 2 from (

	 3 select extract(year from min(hiredate)over()) -

	 4 mod(extract(year from min(hiredate)over()),10) +

	 5 rownum-1 yr

	 6 from emp

	 7 where rownum <= 10

	 8) x,

	 9 (

	10 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt

	11 from emp

	12 group by to_number(to_char(hiredate,'YYYY'))

	13) y

	14 where x.yr = y.yr(+)

If you're using Oracle9 i Database or later, you can implement the solution using the newly supported [bookmark: idx-CHP-10-0604]JOIN clause:

	 1 select x.yr, coalesce(cnt,0) cnt

	 2 from (

	 3 select extract(year from min(hiredate)over()) -

	 4 mod(extract(year from min(hiredate)over()),10) +

	 5 rownum-1 yr

	 6 from emp

	 7 where rownum <= 10

	 8) x

	 9 left join

	10 (

	11 select to_number(to_char(hiredate,'YYYY')) yr, count(*) cnt

	12 from emp

	13 group by to_number(to_char(hiredate,'YYYY'))

	14) y

	15 on (x.yr = y.yr)

[bookmark: sqlckbk-CHP-10-SECT-4.2.3]

PostgreSQL and MySQL

Use table T10 as a pivot table (because it has 10 rows) and the built-in function [bookmark: idx-CHP-10-0605]EXTRACT to generate one row for each [bookmark: idx-CHP-10-0606]year in the decade of 1980. Outer join to table EMP and count how many employees were hired each year:

	 1 select y.yr, coalesce(x.cnt,0) as cnt

	 2 from (

	 3 select [bookmark: idx-CHP-10-0607]min_year-mod(cast(min_year as int),10)+rn as yr

	 4 from (

	 5 select (select min(extract(year from hiredate))

	 6 from emp) as min_year,

	 7 id-1 as rn

	 8 from t10

	 9) a

	10) y

	11 left join

	12 (

	13 select extract(year from hiredate) as yr, count(*) as cnt

	14 from emp

	15 group by extract(year from hiredate)

	16) x

	17 on (y.yr = x.yr)

[bookmark: sqlckbk-CHP-10-SECT-4.2.4]

SQL Server

Use table EMP as a pivot table (because it has 14 rows) and the built-in function YEAR to generate one row for each year in the decade of 1980. Outer join to table EMP and count how many employees were hired each year:

	 1 select x.yr, coalesce(y.cnt,0) cnt

	 2 from (

	 3 select top (10)

	 4 (year(min(hiredate)over()) -

	 5 year(min(hiredate)over())%10)+

	 6 row_number()over(order by hiredate)-1 yr

	 7 from emp

	 8) x

	 9 left join

	10 (

	11 select year(hiredate) yr, count(*) cnt

	12 from emp

	13 group by year(hiredate)

	14) y

	15 on (x.yr = y.yr)

[bookmark: sqlckbk-CHP-10-SECT-4.3]

Discussion

Despite the difference in syntax, the approach is the same for all solutions. Inline view X returns each year in the decade of the '80s by first finding the year of the earliest HIREDATE. The next step is to add RN1 to the difference between the earliest year and the earliest year modulus ten. To see how this works, simply execute inline view X and return each of the [bookmark: idx-CHP-10-0608]values involved separately. Listed below is the result set for inline view X using the window function MIN OVER (DB2, Oracle, SQL Server) and a scalar subquery (MySQL, PostgreSQL):

	

	select year(min(hiredate)over()) -

	 mod(year(min(hiredate)over()),10) +

	 row_number()over()-1 yr,

	 year(min(hiredate)over()) min_year,

	 mod(year(min(hiredate)over()),10) mod_yr,

	 row_number()over()-1 rn

	 from emp fetch first 10 rows only

	 YR MIN_YEAR MOD_YR RN

	---- ---------- ---------- ----------

	1980 1980 0 0

	1981 1980 0 1

	1982 1980 0 2

	1983 1980 0 3

	1984 1980 0 4

	1985 1980 0 5

	1986 1980 0 6

	1987 1980 0 7

	1988 1980 0 8

	1989 1980 0 9

	

	select min_year-mod(min_year,10)+rn as yr,

	 min_year,

	 mod(min_year,10) as mod_yr

	 rn

	 from (

	select (select min(extract(year from hiredate))

	 from emp) as min_year,

	 id-1 as rn

	 from t10

) x

	 YR MIN_YEAR MOD_YR RN

	---- ---------- ---------- ----------

	1980 1980 0 0

	1981 1980 0 1

	1982 1980 0 2

	1983 1980 0 3

	1984 1980 0 4

	1985 1980 0 5

	1986 1980 0 6

	1987 1980 0 7

	1988 1980 0 8

	1989 1980 0 9

Inline view Y returns the year for each HIREDATE and the number of employees hired during that year:

	

	select year(hiredate) yr, count(*) cnt

	 from emp

	 group by year(hiredate)

	 YR CNT

	----- ----------

	 1980 1

	 1981 10

	 1982 2

	 1983 1

For the final solution, outer join inline view Y to inline view X so that every year is returned even if there are no employees hired.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10-SECT-5]

Recipe 10.5. Generating Consecutive Numeric Values

[bookmark: idx-CHP-10-0609]

[bookmark: sqlckbk-CHP-10-SECT-5.1]

 Problem

You would like to have a "[bookmark: idx-CHP-10-0610]row source generator" available to you in your queries. Row source generators are useful for queries that require pivoting. For example, you want to return a result set such as the following, up to any number of rows that you specify:

	ID

	 1

	 2

	 3

	 4

	 5

	 6

	 7

	 8

	 9

	 10

	…

If your RDBMS provides built-in functions for returning rows dynamically, you do not need to create a pivot table in advance with a fixed number of rows. That's why a dynamic row generator can be so handy. Otherwise, you must use a traditional pivot table with a fixed number of rows (that may not always be enough) to generate rows when needed.

[bookmark: sqlckbk-CHP-10-SECT-5.2]

Solution

This solution shows how to return 10 rows of increasing numbers starting from 1. You can easily adapt the solution to return any number of rows.

The ability to return increasing [bookmark: idx-CHP-10-0611]values from 1 opens the door to many other solutions. For example, you can generate numbers to add to dates in order to generate sequences of days. You can also use such numbers to parse through strings.

[bookmark: sqlckbk-CHP-10-SECT-5.2.1]

DB2 and SQL Server

Use the recursive [bookmark: idx-CHP-10-0612]WITH clause to generate a sequence of rows with incrementing values. Use a one-row table such as T1 to kick off the row generation; the WITH clause does the rest:

	 1 with x (id)

	 2 as (

	 3 select 1

	 4 from t1

	 5 union all

	 6 select id+1

	 7 from x

	 8 where id+1 <= 10

	 9)

	10 select * from x

Following is a second, alternative solution for DB2 only. Its advantage is that it does not require table T1:

	1 with x (id)

	2 as (

	3 values (1)

	4 union all

	5 select id+1

	6 from x

	7 where id+1 <= 10

	8)

	9 select * from x

[bookmark: sqlckbk-CHP-10-SECT-5.2.2]

Oracle

Use the recursive [bookmark: idx-CHP-10-0613]CONNECT BY clause (Oracle9 i Database or later). In Oracle 9 i Database, you must either wrap the CONNECT BY solution in an [bookmark: idx-CHP-10-0614]inline view or place it in the WITH clause:

	1 with x

	2 as (

	3 select level id

	4 from dual

	5 connect by level <= 10

	6)

	7 select * from x

In Oracle Database 10 g or later, you can generate rows using the MODEL clause:

	1 select array id

	2 from dual

	3 model

	4 dimension by (0 idx)

	5 measures(1 array)

	6 rules iterate (10) (

	7 array[iteration_number] = iteration_number+1

	8)

[bookmark: sqlckbk-CHP-10-SECT-5.2.3]

PostgreSQL

Use the very handy function GENERATE_SERIES, which is designed for the express purpose of generating rows:

	1 select id

	2 from generate_series (1, 10) x(id)

[bookmark: sqlckbk-CHP-10-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-10-SECT-5.3.1]

DB2 and SQL Server

The recursive WITH clause increments ID (which starts at 1) until the WHERE clause is satisfied. To kick things off you must generate one row having the value 1. You can do this by selecting 1 from a one-row table or, in the case of DB2, by using the VALUES clause to create a one-row result set.

[bookmark: sqlckbk-CHP-10-SECT-5.3.2]

Oracle

The solution places the CONNECT BY subquery into the WITH clause. Rows will continue to be returned unless short-circuited by the WHERE clause. Oracle will increment the pseudo-column LEVEL automatically, so there's no need for you to do so.

In the MODEL clause solution, there is an explicit [bookmark: idx-CHP-10-0615]ITERATE command that allows you to generate multiple rows. Without the ITERATE clause, only one row will be returned, since DUAL has only one row. For example:

	

	select array id

	 from dual

	model

	 dimension by (0 idx)

	 measures(1 array)

	 rules ()

	 ID

	 --

	 1

The MODEL clause not only allows you array access to rows, it allows you to easily "create" or return rows that are not in the table you are selecting against. In this solution, IDX is the array index (location of a specific value in the array) and ARRAY (aliased ID) is the "array" of rows. The first row defaults to 1 and can be referenced with ARRAY[0]. Oracle provides the function [bookmark: idx-CHP-10-0616]ITERATION_NUMBER so you can track the number of times you've iterated. The solution iterates 10 times, causing ITERATION_NUMBER to go from 0 to 9. Adding 1 to each of those values yields the results 1 through 10.

It may be easier to visualize what's happening with the model clause if you execute the following query:

	

	select 'array['||idx||'] = '||array as output

	 from dual

	 model

	 dimension by (0 idx)

	 measures(1 array)

	 rules iterate (10) (

	 array[iteration_number] = iteration_number+1

)

	OUTPUT

	array[0] = 1

	array[1] = 2

	array[2] = 3

	array[3] = 4

	array[4] = 5

	array[5] = 6

	array[6] = 7

	array[7] = 8

	array[8] = 9

	array[9] = 10

[bookmark: sqlckbk-CHP-10-SECT-5.3.3]

PostgreSQL

All the work is done by the function GENERATE_SERIES. The function accepts three parameters, all numeric values. The first parameter is the start value, the second parameter is the ending value, and the third parameter is an optional "step" value (how much each value is incremented by). If you do not pass a third parameter, the increment defaults to 1.

The GENERATE_SERIES function is flexible enough so that you do not have to hardcode parameters. For example, if you wanted to return five rows starting from value 10 and ending with value 30, incrementing by 5 such that the result set is the following:

	 ID

	 10

	 15

	 20

	 25

	 30

you can be creative and do something like this:

	select id

	 from generate_series(

	 (select min(deptno) from emp),

	 (select max(deptno) from emp),

	 5

) x(id)

Notice here that the actual values passed to GENERATE_SERIES are not known when the query is written. Instead, they are generated by subqueries when the main query executes.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-10]

Chapter 10. Working with Ranges

This chapter is about "everyday" queries that involve ranges. Ranges are common in everyday life. For example, projects that we work on range over [bookmark: idx-CHP-10-0579]consecutive periods of time. In SQL, it's often necessary to search for ranges, or to generate ranges, or to otherwise manipulate range-based data. The queries you'll read about here are slightly more involved than the queries found in the preceding chapters, but they are just as common, and they'll begin to give you a sense of what SQL can really do for you when you learn to take full advantage of it.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-1]

Recipe 11.1. Paginating Through a Result Set

[bookmark: sqlckbk-CHP-11-SECT-1.1]

Problem

You want to paginate or "scroll through" a result set. For example, you want to return the first five salaries from table EMP, then the next five, and so forth. Your goal is to allow a user to view five records at a time, scrolling forward with each click of a "Next" button.

[bookmark: sqlckbk-CHP-11-SECT-1.2]

Solution

Because there is no concept of first, last, or next in SQL, you must impose order on the rows you are working with. Only by imposing order can you accurately return ranges of records.

[bookmark: sqlckbk-CHP-11-SECT-1.2.1]

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to impose order, and specify the window of records that you want returned in your WHERE clause. For example, to return rows 1 through 5:

	select sal

	 from (

	select row_number() over (order by sal) as rn,

	 sal

	 from emp

) x

	 where rn between 1 and 5

	 SAL

	 800

	 950

	1100

	1250

	1250

Then to return rows 6 through 10:

	

	select sal

	 from (

	select row_number() over (order by sal) as rn,

	 sal

	 from emp

) x

	 where rn between 6 and 10

	 SAL

	 1300

	 1500

	 1600

	 2450

	 2850

You can return any range of rows that you wish simply by changing the WHERE clause of your query.

[bookmark: sqlckbk-CHP-11-SECT-1.2.2]

MySQL and PostgreSQL

Scrolling through a result set is particularly easy due to the [bookmark: idx-CHP-11-0619]LIMIT and [bookmark: idx-CHP-11-0620]OFFSET clauses that these products support. Use LIMIT to specify the number of rows to return, and use OFFSET to specify the number of rows to skip. For example, to return the first five rows in order of salary:

	select sal

	 from emp

	 order by sal limit 5 offset 0

	 SAL

	 800

	 950

	 1100

	 1250

	 1250

To return the next group of five rows:

	

	select sal

	 from emp

	 order by sal limit 5 offset 5

	 SAL

	 1300

	 1500

	 1600

	 2450

	 2850

LIMIT and OFFSET not only make the MySQL and PostgreSQL solutions easy to write, but they are quite readable, too.

[bookmark: sqlckbk-CHP-11-SECT-1.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-1.3.1]

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER in inline view X will assign a unique number to each salary (in increasing order starting from 1). Listed below is the result set for inline view X:

	

	select row_number() over (order by sal) as rn,

	 sal

	 from emp

	RN SAL

	-- ----------

	 1 800

	 2 950

	 3 1100

	 4 1250

	 5 1250

	 6 1300

	 7 1500

	 8 1600

	 9 2450

	10 2850

	11 2975

	12 3000

	13 3000

	14 5000

Once a number has been assigned to a salary, simply pick the range you want to return by specifying values for RN.

For Oracle users, an alternative: you can use [bookmark: idx-CHP-11-0621]ROWNUM instead of ROW NUMBER OVER to generate sequence numbers for the rows:

	

	select sal

	 from (

	select sal, rownum rn

	 from (

	select sal

	 from emp

	 order by sal

)

)

	 where rn between 6 and 10

	 SAL

	 1300

	 1500

	 1600

	 2450

	 2850

Using ROWNUM forces you into writing an extra level of subquery. The innermost subquery sorts rows by salary. The next outermost subquery applies row numbers to those rows, and, finally, the very outermost SELECT returns the data you are after.

[bookmark: sqlckbk-CHP-11-SECT-1.3.2]

MySQL and PostgreSQL

The [bookmark: idx-CHP-11-0622]OFFSET clause added to the SELECT clause makes scrolling through [bookmark: idx-CHP-11-0623]results intuitive and easy. Specifying OFFSET 0 will start you at the first row, OFFSET 5 at the sixth row, and OFFSET 10 at the eleventh row. The [bookmark: idx-CHP-11-0624]LIMIT clause restricts the number of rows returned. By combining the two clauses you can easily specify where in a result set to start returning rows and how many to return.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-10]

Recipe 11.10. Suppressing Duplicates

[bookmark: idx-CHP-11-0667]

[bookmark: idx-CHP-11-0668]

[bookmark: sqlckbk-CHP-11-SECT-10.1]

Problem

You want to find the different job types in table EMP but do not want to see duplicates. The result set should be:

	JOB

	ANALYST

	CLERK

	MANAGER

	PRESIDENT

	SALESMAN

[bookmark: sqlckbk-CHP-11-SECT-10.2]

Solution

All of the RDBMSs support the keyword DISTINCT, and it arguably is the easiest mechanism for [bookmark: idx-CHP-11-0669]suppressing [bookmark: idx-CHP-11-0670]duplicates from the result set. However, this recipe will also cover two additional methods for suppressing duplicates.

[bookmark: sqlckbk-CHP-11-SECT-10.2.1]

DB2, Oracle, and SQL Server

The traditional method of using DISTINCT and sometimes GROUP BY (as seen next in the MySQL/PostgreSQL solution) certainly works for these RDBMSs. The solution below is an alternative that makes use of the window function ROW_NUMBER OVER:

	1 select job

	2 from (

	3 select job,

	4 row_number()over(partition by job order by job) rn

	5 from emp

	6) x

	7 where rn = 1

[bookmark: sqlckbk-CHP-11-SECT-10.2.2]

MySQL and PostgreSQL

Use the DISTINCT keyword [bookmark: idx-CHP-11-0671]to suppress duplicates from the result set:

	select distinct job

	 from emp

Additionally, it is also possible to use GROUP BY to suppress duplicates:

	select job

	 from emp

	 group by job

[bookmark: sqlckbk-CHP-11-SECT-10.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-10.3.1]

DB2, Oracle, and SQL Server

This solution depends on some outside-the-box thinking about partitioned window functions. By using PARTITION BY in the OVER clause of ROW_NUMBER, you can reset the value returned by ROW_NUMBER to 1 whenever a new job is encountered. The results below are from inline view X:

	

	select job,

	 row_number()over(partition by job order by job) rn

	 from emp

	JOB RN

	--------- ----------

	ANALYST 1

	ANALYST 2

	CLERK 1

	CLERK 2

	CLERK 3

	CLERK 4

	MANAGER 1

	MANAGER 2

	MANAGER 3

	PRESIDENT 1

	SALESMAN 1

	SALESMAN 2

	SALESMAN 3

	SALESMAN 4

Each row is given an increasing, sequential number, and that number is reset to 1 whenever the job changes. To filter out the [bookmark: idx-CHP-11-0672]duplicates, all you must do is keep the rows where RN is 1.

An [bookmark: idx-CHP-11-0673]ORDER BY clause is mandatory when using ROW_NUMBER OVER (except in DB2) but doesn't affect the result. Which job is returned is irrelevant so long as you return one of each job.

[bookmark: sqlckbk-CHP-11-SECT-10.3.2]

MySQL and PostgreSQL

The first solution shows how to use the keyword DISTINCT to suppress duplicates from a result set. Keep in mind that DISTINCT is applied to the whole [bookmark: idx-CHP-11-0674]SELECT list; additional columns can and will change the result set. Consider the difference between the two queries below:

	select distinct job select distinct job, deptno

	 from emp from emp

	JOB JOB DEPTNO

	--------- --------- ----------

	ANALYST ANALYST 20

	CLERK CLERK 10

	MANAGER CLERK 20

	PRESIDENT CLERK 30

	SALESMAN MANAGER 10

	 MANAGER 20

	 MANAGER 30

	 PRESIDENT 10

	 SALESMAN 30

By adding DEPTNO to the SELECT list, what you return is each DISTINCT pair of JOB/DEPTNO values from table EMP.

The second solution uses [bookmark: idx-CHP-11-0675]GROUP BY to suppress duplicates. While using GROUP BY this way is not uncommon, keep in mind that GROUP BY and DISTINCT are two very different clauses that are not interchangeable. I've included GROUP BY in this solution for completeness, as you will no doubt come across it at some point.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-11]

Recipe 11.11. Finding Knight Values

[bookmark: idx-CHP-11-0676]

[bookmark: sqlckbk-CHP-11-SECT-11.1]

Problem

You want return a result set that contains each employee's name, the department they work in, their salary, the date they were hired, and the salary of the last employee hired, in each department. You want to return the following result set:

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ ---------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 1300

	 10 KING 5000 17-NOV-1981 1300

	 10 CLARK 2450 09-JUN-1981 1300

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 FORD 3000 03-DEC-1981 1100

	 20 JONES 2975 02-APR-1981 1100

	 20 SMITH 800 17-DEC-1980 1100

	 30 JAMES 950 03-DEC-1981 950

	 30 MARTIN 1250 28-SEP-1981 950

	 30 TURNER 1500 08-SEP-1981 950

	 30 BLAKE 2850 01-MAY-1981 950

	 30 WARD 1250 22-FEB-1981 950

	 30 ALLEN 1600 20-FEB-1981 950

The values in LATEST_SAL are the "[bookmark: idx-CHP-11-0677]Knight values" because the path to find them is analogous to a knight's path in the game of chess. You determine the result the way a knight determines a new location: by jumping to a row then turning and jumping to a different column (see Figure 11-1). To find the correct values for LATEST_SAL, you must first locate (jump to) the row with the latest HIREDATE in each DEPTNO, and then you select (jump to) the SAL column of that row.

[bookmark: sqlckbk-CHP-11-FIG-1]

Figure 11-1. A knight value comes from "up and over"

[image:]

						[image:]			

The term "[bookmark: idx-CHP-11-0678]Knight value" was coined by a very clever coworker of mine, Kay [bookmark: idx-CHP-11-0679]Young. After having him review the recipes for correctness I admitted to him that I was stumped and could not come up with a good title. Because you need to initially evaluate one row then "jump" and take a value from another, he came up with the term "Knight value."

[bookmark: sqlckbk-CHP-11-SECT-11.2]

Solution

[bookmark: sqlckbk-CHP-11-SECT-11.2.1]

DB2 and SQL Server

Use a CASE expression in a subquery to return the SAL of the last employee hired in each DEPTNO; for all other salaries, return zero. Use the window function MAX OVER in the outer query to return the non-zero SAL for each employee's department:

	 1 select deptno,

	 2 ename,

	 3 sal,

	 4 hiredate,

	 5 max(latest_sal)over(partition by deptno) latest_sal

	 6 from (

	 7 select deptno,

	 8 ename,

	 9 sal,

	10 hiredate,

	11 case

	12 when hiredate = max(hiredate)over(partition by deptno)

	13 then sal else 0

	14 end latest_sal

	15 from emp

	16) x

	17 order by 1, 4 desc

[bookmark: sqlckbk-CHP-11-SECT-11.2.2]

MySQL and PostgreSQL

Use a scalar subquery nested two levels deep. First, find the HIREDATE of the last employee in each DEPTO. Then use the aggregate function MAX (in case there are duplicates) to find the SAL of the last employee hired in each DEPTNO:

	 1 select e.deptno,

	 2 e.ename,

	 3 e.sal,

	 4 e.hiredate,

	 5 (select max(d.sal)

	 6 from emp d

	 7 where d.deptno = e.deptno

	 8 and d.hiredate =

	 9 (select max(f.hiredate)

	10 from emp f

	11 where f.deptno = e.deptno)) as latest_sal

	12 from emp e

	13 order by 1, 4 desc

[bookmark: sqlckbk-CHP-11-SECT-11.2.3]

Oracle

Use the window function MAX OVER to return the highest SAL for each DEPTNO. Use the functions [bookmark: idx-CHP-11-0680]DENSE_RANK and [bookmark: idx-CHP-11-0681]LAST, while ordering by HIREDATE, in the KEEP clause to return the highest SAL for the latest HIREDATE in a given DEPTNO:

	1 select deptno,

	2 ename,

	3 sal,

	4 hiredate,

	5 max(sal)

	6 keep(dense_rank last order by hiredate)

	7 over(partition by deptno) latest_sal

	8 from emp

	9 order by 1, 4 desc

[bookmark: sqlckbk-CHP-11-SECT-11.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-11.3.1]

DB2 and SQL Server

The first step is to use the window function MAX OVER in a CASE expression to find the employee hired last, or most recently, in each DEPTNO. If an employee's HIREDATE matches the value returned by MAX OVER, then use a CASE expression to return that employee's SAL; otherwise return 0. The results of this are shown below:

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 case

	 when hiredate = max(hiredate)over(partition by deptno)

	 then sal else 0

	 end latest_sal

	 from emp

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ --------- ----------- ----------- ----------

	 10 CLARK 2450 09-JUN-1981 0

	 10 KING 5000 17-NOV-1981 0

	 10 MILLER 1300 23-JAN-1982 1300

	 20 SMITH 800 17-DEC-1980 0

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 FORD 3000 03-DEC-1981 0

	 20 SCOTT 3000 09-DEC-1982 0

	 20 JONES 2975 02-APR-1981 0

	 30 ALLEN 1600 20-FEB-1981 0

	 30 BLAKE 2850 01-MAY-1981 0

	 30 MARTIN 1250 28-SEP-1981 0

	 30 JAMES 950 03-DEC-1981 950

	 30 TURNER 1500 08-SEP-1981 0

	 30 WARD 1250 22-FEB-1981 0

Because the value for LATEST_SAL will be either 0 or the SAL of the employee(s) hired most recently, you can wrap the above query in an inline view and use MAX OVER again, but this time to return the greatest non-zero LATEST_SAL for each DEPTNO:

	

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 max(latest_sal)over(partition by deptno) latest_sal

	 from (

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 case

	 when hiredate = max(hiredate)over(partition by deptno)

	 then sal else 0

	 end latest_sal

	 from emp

) x

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------- --------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 1300

	 10 KING 5000 17-NOV-1981 1300

	 10 CLARK 2450 09-JUN-1981 1300

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 FORD 3000 03-DEC-1981 1100

	 20 JONES 2975 02-APR-1981 1100

	 20 SMITH 800 17-DEC-1980 1100

	 30 JAMES 950 03-DEC-1981 950

	 30 MARTIN 1250 28-SEP-1981 950

	 30 TURNER 1500 08-SEP-1981 950

	 30 BLAKE 2850 01-MAY-1981 950

	 30 WARD 1250 22-FEB-1981 950

	 30 ALLEN 1600 20-FEB-1981 950

[bookmark: sqlckbk-CHP-11-SECT-11.3.2]

MySQL and PostgreSQL

The first step is to use a scalar subquery to find the HIREDATE of the last employee hired in each DEPTNO:

	

	select e.deptno,

	 e.ename,

	 e.sal,

	 e.hiredate,

	 (select max(f.hiredate)

	 from emp f

	 where f.deptno = e.deptno) as last_hire

	 from emp e

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LAST_HIRE

	------ ---------- ---------- ----------- -----------

	 10 MILLER 1300 23-JAN-1982 23-JAN-1982

	 10 KING 5000 17-NOV-1981 23-JAN-1982

	 10 CLARK 2450 09-JUN-1981 23-JAN-1982

	 20 ADAMS 1100 12-JAN-1983 12-JAN-1983

	 20 SCOTT 3000 09-DEC-1982 12-JAN-1983

	 20 FORD 3000 03-DEC-1981 12-JAN-1983

	 20 JONES 2975 02-APR-1981 12-JAN-1983

	 20 SMITH 800 17-DEC-1980 12-JAN-1983

	 30 JAMES 950 03-DEC-1981 03-DEC-1981

	 30 MARTIN 1250 28-SEP-1981 03-DEC-1981

	 30 TURNER 1500 08-SEP-1981 03-DEC-1981

	 30 BLAKE 2850 01-MAY-1981 03-DEC-1981

	 30 WARD 1250 22-FEB-1981 03-DEC-1981

	 30 ALLEN 1600 20-FEB-1981 03-DEC-1981

The next step is to find the SAL for the employee(s) in each DEPTNO hired on LAST_HIRE. Use the aggregate function MAX to keep the highest (if there are multiple employees hired on the same day):

	

	select e.deptno,

	 e.ename,

	 e.sal,

	 e.hiredate,

	 (select max(d.sal)

	 from emp d

	 where d.deptno = e.deptno

	 and d.hiredate =

	 (select max(f.hiredate)

	 from emp f

	 where f.deptno = e.deptno)) as latest_sal

	 from emp e

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ ---------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 1300

	 10 KING 5000 17-NOV-1981 1300

	 10 CLARK 2450 09-JUN-1981 1300

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 FORD 3000 03-DEC-1981 1100

	 20 JONES 2975 02-APR-1981 1100

	 20 SMITH 800 17-DEC-1980 1100

	 30 JAMES 950 03-DEC-1981 950

	 30 MARTIN 1250 28-SEP-1981 950

	 30 TURNER 1500 08-SEP-1981 950

	 30 BLAKE 2850 01-MAY-1981 950

	 30 WARD 1250 22-FEB-1981 950

	 30 ALLEN 1600 20-FEB-1981 950

[bookmark: sqlckbk-CHP-11-SECT-11.3.3]

Oracle

Users on Oracle8i Database can use the DB2 solution. For users on Oracle9i Database and later, you can use the solution presented below. The key to the Oracle solution is to take advantage of the [bookmark: idx-CHP-11-0682]KEEP clause. The [bookmark: idx-CHP-11-0683]KEEP clause allows you to rank the rows returned by a group/partition and work with the first or [bookmark: idx-CHP-11-0684]last row in the group. Consider what the solution looks like without KEEP:

	

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 max(sal) over(partition by deptno) latest_sal

	 from emp

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ ---------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 5000

	 10 KING 5000 17-NOV-1981 5000

	 10 CLARK 2450 09-JUN-1981 5000

	 20 ADAMS 1100 12-JAN-1983 3000

	 20 SCOTT 3000 09-DEC-1982 3000

	 20 FORD 3000 03-DEC-1981 3000

	 20 JONES 2975 02-APR-1981 3000

	 20 SMITH 800 17-DEC-1980 3000

	 30 JAMES 950 03-DEC-1981 2850

	 30 MARTIN 1250 28-SEP-1981 2850

	 30 TURNER 1500 08-SEP-1981 2850

	 30 BLAKE 2850 01-MAY-1981 2850

	 30 WARD 1250 22-FEB-1981 2850

	 30 ALLEN 1600 20-FEB-1981 2850

Rather than returning the SAL of the latest employee hired, MAX OVER without KEEP simply returns the highest salary in each DEPTNO. KEEP, in this recipe, allows you to order the salaries by HIREDATE in each DEPTNO by specifying ORDER BY HIREDATE. Then, the function [bookmark: idx-CHP-11-0685]DENSE_RANK assigns a rank to each HIREDATE in ascending order. Finally, the function LAST determines which row to apply the aggregate function to: the "last" row based on the ranking of DENSE_ RANK. In this case, the aggregate function MAX is applied to the SAL column for the row with the "last" HIREDATE. In essence, keep the SAL of the HIREDATE ranked last in each DEPTNO.

You are ranking the rows in each DEPTNO based on one column (HIREDATE), but then applying the aggregation (MAX) on another column (SAL). This ability to rank in one dimension and aggregate over another is convenient as it allows you to avoid extra joins and inline views as are used in the other solutions. Finally, by adding the OVER clause after the KEEP clause you can return the SAL "kept" by KEEP for each row in the partition.

Alternatively, you can order by HIREDATE in descending order and "keep" the first SAL. Compare the two queries below, which return the same result set:

	

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 max(sal)

	 keep(dense_rank last order by hiredate)

	 over(partition by deptno) latest_sal

	 from emp

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ ---------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 1300

	 10 KING 5000 17-NOV-1981 1300

	 10 CLARK 2450 09-JUN-1981 1300

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 FORD 3000 03-DEC-1981 1100

	 20 JONES 2975 02-APR-1981 1100

	 20 SMITH 800 17-DEC-1980 1100

	 30 JAMES 950 03-DEC-1981 950

	 30 MARTIN 1250 28-SEP-1981 950

	 30 TURNER 1500 08-SEP-1981 950

	 30 BLAKE 2850 01-MAY-1981 950

	 30 WARD 1250 22-FEB-1981 950

	 30 ALLEN 1600 20-FEB-1981 950

	

	select deptno,

	 ename,

	 sal,

	 hiredate,

	 max(sal)

	 keep(dense_rank first order by hiredate desc)

	 over(partition by deptno) latest_sal

	 from emp

	 order by 1, 4 desc

	DEPTNO ENAME SAL HIREDATE LATEST_SAL

	------ ---------- ---------- ----------- ----------

	 10 MILLER 1300 23-JAN-1982 1300

	 10 KING 5000 17-NOV-1981 1300

	 10 CLARK 2450 09-JUN-1981 1300

	 20 ADAMS 1100 12-JAN-1983 1100

	 20 SCOTT 3000 09-DEC-1982 1100

	 20 FORD 3000 03-DEC-1981 1100

	 20 JONES 2975 02-APR-1981 1100

	 20 SMITH 800 17-DEC-1980 1100

	 30 JAMES 950 03-DEC-1981 950

	 30 MARTIN 1250 28-SEP-1981 950

	 30 TURNER 1500 08-SEP-1981 950

	 30 BLAKE 2850 01-MAY-1981 950

	 30 WARD 1250 22-FEB-1981 950

	 30 ALLEN 1600 20-FEB-1981 950

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-12]

Recipe 11.12. Generating Simple Forecasts

[bookmark: idx-CHP-11-0686]

[bookmark: sqlckbk-CHP-11-SECT-12.1]

Problem

Based on current data, you want to return addition [bookmark: idx-CHP-11-0687]rows and columns representing future actions. For example, consider the following result set:

	ID ORDER_DATE PROCESS_DATE

	-- ----------- ------------

	 1 25-SEP-2005 27-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

You want to return three rows per row returned in your result set (each row plus two additional rows for each order). Along with the extra rows you would like to return two additional columns providing dates for expected order processing.

From the result set above you can see that an order takes two days to process. For the purposes of this example, let's say the next step after processing is verification, and the last step is shipment. Verification occurs one day after processing and shipment occurs one day after verification. You want to return a result set expressing the whole procedure. Ultimately you want to transform the result set above to the following result set:

	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED

	-- ----------- ------------ ----------- -----------

	 1 25-SEP-2005 27-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

[bookmark: sqlckbk-CHP-11-SECT-12.2]

Solution

The key is to use a Cartesian product to generate two additional rows for each order then simply use CASE expressions to create the required column [bookmark: idx-CHP-11-0688]values.

[bookmark: sqlckbk-CHP-11-SECT-12.2.1]

DB2 and SQL Server

Use the recursive WITH clause to generate rows needed for your Cartesian product. The DB2 and SQL Server solutions are identical except for the [bookmark: idx-CHP-11-0689]function used to retrieve the current date. DB2 uses [bookmark: idx-CHP-11-0690]CURRENT_DATE and SQL Server uses GET-DATE. The SQL Server solution is shown below:

	 1 with [bookmark: idx-CHP-11-0691]nrows(n) as (

	 2 select 1 from t1 union all

	 3 select n+1 from nrows where n+1 <= 3

	 4)

	 5 select id,

	 6 order_date,

	 7 process_date,

	 8 case when nrows.n >= 2

	 9 then process_date+1

	10 else null

	11 end as verified,

	12 case when nrows.n = 3

	13 then process_date+2

	14 else null

	15 end as shipped

	16 from (

	17 select nrows.n id,

	18 getdate()+nrows.n as order_date,

	19 getdate()+nrows.n+2 as process_date

	20 from nrows

	21) orders, nrows

	22 order by 1

[bookmark: sqlckbk-CHP-11-SECT-12.2.2]

Oracle

Use the hierarchical CONNECT BY clause to generate the three rows needed for the Cartesian product. Use the [bookmark: idx-CHP-11-0692]WITH clause to allow you to reuse the results returned by CONNECT BY without having to call it again:

	 1 with nrows as (

	 2 select level n

	 3 from dual

	 4 connect by level <= 3

	 5)

	 6 select id,

	 7 order_date,

	 8 process_date,

	 9 case when nrows.n >= 2

	10 then process_date+1

	11 else null

	12 end as verified,

	13 case when nrows.n = 3

	14 then process_date+2

	15 else null

	16 end as shipped

	17 from (

	18 select nrows.n id,

	19 sysdate+nrows.n as order_date,

	20 sysdate+nrows.n+2 as process_date

	21 from nrows

	22) orders, nrows

[bookmark: sqlckbk-CHP-11-SECT-12.2.3]

PostgreSQL

You can create a Cartesian product many different ways; this solution uses the PostgreSQL function GENERATE_SERIES:

	 1 select id,

	 2 order_date,

	 3 process_date,

	 4 case when gs.n >= 2

	 5 then process_date+1

	 6 else null

	 7 end as verified,

	 8 case when gs.n = 3

	 9 then process_date+2

	10 else null

	11 end as shipped

	12 from (

	13 select gs.id,

	14 current_date+gs.id as order_date,

	15 current_date+gs.id+2 as process_date

	16 from generate_series(1,3) gs (id)

	17) orders,

	18 generate_series(1,3)gs(n)

[bookmark: sqlckbk-CHP-11-SECT-12.2.4]

MySQL

MySQL does not support a function for automatic [bookmark: idx-CHP-11-0693]row generation.

[bookmark: sqlckbk-CHP-11-SECT-12.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-12.3.1]

DB2 and SQL Server

The result set presented in the problem section is returned via inline view ORDERS and is shown below:

	with nrows(n) as (

	select 1 from t1 union all

	select n+1 from nrows where n+1 <= 3

)

	select nrows.n id,

	 [bookmark: idx-CHP-11-0694]getdate()+nrows.n as order_date,

	 getdate()+nrows.n+2 as process_date

	 from nrows

	ID ORDER_DATE PROCESS_DATE

	-- ----------- ------------

	 1 25-SEP-2005 27-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

The query above simply uses the WITH clause to make up three rows representing the orders you must process. NROWS returns the values 1, 2, and 3, and those numbers are added to GETDATE (CURRENT_DATE for DB2) to represent the dates of the orders. Because the problem section states that processing time takes two days, the query above also adds two days to the ORDER_DATE (adds the value returned by [bookmark: idx-CHP-11-0695]NROWS to GETDATE, then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product because the requirement is to return three rows for each order. Use NROWS to create a Cartesian product to return three rows for each order:

	with nrows(n) as (

	select 1 from t1 union all

	select n+1 from nrows where n+1 <= 3

)

	select nrows.n,

	 orders.*

	 from (

	select nrows.n id,

	 getdate()+nrows.n as order_date,

	 getdate()+nrows.n+2 as process_date

	 from nrows

) orders, nrows

	 order by 2,1

	 N ID ORDER_DATE PROCESS_DATE

	--- --- ----------- ------------

	 1 1 25-SEP-2005 27-SEP-2005

	 2 1 25-SEP-2005 27-SEP-2005

	 3 1 25-SEP-2005 27-SEP-2005

	 1 2 26-SEP-2005 28-SEP-2005

	 2 2 26-SEP-2005 28-SEP-2005

	 3 2 26-SEP-2005 28-SEP-2005

	 1 3 27-SEP-2005 29-SEP-2005

	 2 3 27-SEP-2005 29-SEP-2005

	 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row for each order should have a NULL value for SHIPPED. The third row for each order should have non-NULL values for each column. The final result set is shown below:

	with nrows(n) as (

	select 1 from t1 union all

	select n+1 from nrows where n+1 <= 3

)

	select id,

	 order_date,

	 process_date,

	 case when nrows.n >= 2

	 then process_date+1

	 else null

	 end as verified,

	 case when nrows.n = 3

	 then process_date+2

	 else null

	 end as shipped

	 from (

	select nrows.n id,

	 getdate()+nrows.n as order_date,

	 getdate()+nrows.n+2 as process_date

	 from nrows

) orders, nrows

	 order by 1

	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED

	-- ----------- ------------ ----------- -----------

	 1 25-SEP-2005 27-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the day it should be shipped.

[bookmark: sqlckbk-CHP-11-SECT-12.3.2]

Oracle

The result set presented in the problem section is returned via inline view ORDERS and is shown below:

	with nrows as (

	select level n

	 from dual

	connect by level <= 3

)

	select nrows.n id,

	 sysdate+nrows.n order_date,

	 sysdate+nrows.n+2 process_date

	 from nrows

	ID ORDER_DATE PROCESS_DATE

	-- ----------- ------------

	 1 25-SEP-2005 27-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

The query above simply uses CONNECT BY to make up three rows representing the orders you must process. Use the WITH clause to refer to the rows returned by CONNECT BY as NROWS.N. CONNECT BY returns the values 1, 2, and 3, and those numbers are added to SYSDATE to represent the dates of the orders. Since the problem section states that processing time takes two days, the query above also adds two days to the ORDER_DATE (adds the value returned by GENERATE_ SERIES to SYSDATE, then adds two more days).

Now that you have your base result set, the next step is to create a Cartesian product because the requirement is to return three rows for each order. Use NROWS to create a Cartesian product to return three rows for each order:

	with nrows as (

	select level n

	 from dual

	connect by level <= 3

)

	select nrows.n,

	 orders.*

	 from (

	select nrows.n id,

	 sysdate+nrows.n order_date,

	 sysdate+nrows.n+2 process_date

	 from nrows

) orders, nrows

	 N ID ORDER_DATE PROCESS_DATE

	--- --- ----------- ------------

	 1 1 25-SEP-2005 27-SEP-2005

	 2 1 25-SEP-2005 27-SEP-2005

	 3 1 25-SEP-2005 27-SEP-2005

	 1 2 26-SEP-2005 28-SEP-2005

	 2 2 26-SEP-2005 28-SEP-2005

	 3 2 26-SEP-2005 28-SEP-2005

	 1 3 27-SEP-2005 29-SEP-2005

	 2 3 27-SEP-2005 29-SEP-2005

	 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row for each order should have a NULL value for SHIPPED. The third row for each order should have non-NULL values for each column. The final result set is shown below:

	with nrows as (

	select level n

	 from dual

	connect by level <= 3

)

	select id,

	 order_date,

	 process_date,

	 case when nrows.n >= 2

	 then process_date+1

	 else null

	 end as verified,

	 case when nrows.n = 3

	 then process_date+2

	 else null

	 end as shipped

	 from (

	select nrows.n id,

	 sysdate+nrows.n order_date,

	 sysdate+nrows.n+2 process_date

	 from nrows

) orders, nrows

	 ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED

	 -- ----------- ------------ ----------- -----------

	 1 25-SEP-2005 27-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the day it should be shipped.

[bookmark: sqlckbk-CHP-11-SECT-12.3.3]

PostgreSQL

The result set presented in the problem section is returned via inline view ORDERS and is shown below:

	select gs.id,

	 current_date+gs.id as order_date,

	 current_date+gs.id+2 as process_date

	 from generate_series(1,3) gs (id)

	ID ORDER_DATE PROCESS_DATE

	-- ----------- ------------

	 1 25-SEP-2005 27-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

The query above simply uses the GENERATE_SERIES function to make up three rows representing the orders you must process. GENERATE_SERIES returns the values 1, 2, and 3, and those numbers are added to CURRENT_DATE to represent the dates of the orders. Since the problem section states that processing time takes two days, the query above also adds two days to the ORDER_DATE (adds the value returned by GENERATE_SERIES to CURRENT_DATE, then adds two more days). Now that you have your base result set, the next step is to create a Cartesian product because the requirement is to return three rows for each order. Use the GENERATE_ SERIES function to create a Cartesian product to return three rows for each order:

	select gs.n,

	 orders.*

	 from (

	select gs.id,

	 current_date+gs.id as order_date,

	 current_date+gs.id+2 as process_date

	 from generate_series(1,3) gs (id)

) orders,

	 generate_series(1,3)gs(n)

	 N ID ORDER_DATE PROCESS_DATE

	--- --- ----------- ------------

	 1 1 25-SEP-2005 27-SEP-2005

	 2 1 25-SEP-2005 27-SEP-2005

	 3 1 25-SEP-2005 27-SEP-2005

	 1 2 26-SEP-2005 28-SEP-2005

	 2 2 26-SEP-2005 28-SEP-2005

	 3 2 26-SEP-2005 28-SEP-2005

	 1 3 27-SEP-2005 29-SEP-2005

	 2 3 27-SEP-2005 29-SEP-2005

	 3 3 27-SEP-2005 29-SEP-2005

Now that you have three rows for each order, simply use a CASE expression to create the addition column values to represent the status of verification and shipment.

The first row for each order should have a NULL value for VERIFIED and SHIPPED. The second row for each order should have a NULL value for SHIPPED. The third row for each order should have non-NULL values for each column. The final result set is shown below:

	select id,

	 order_date,

	 process_date,

	 case when gs.n >= 2

	 then process_date+1

	 else null

	 end as verified,

	 case when gs.n = 3

	 then process_date+2

	 else null

	 end as shipped

	 from (

	select gs.id,

	 current_date+gs.id as order_date,

	 current_date+gs.id+2 as process_date

	 from generate_series(1,3) gs(id)

) orders,

	 generate_series(1,3)gs(n)

	ID ORDER_DATE PROCESS_DATE VERIFIED SHIPPED

	-- ----------- ------------ ----------- -----------

	 1 25-SEP-2005 27-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005

	 1 25-SEP-2005 27-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005

	 2 26-SEP-2005 28-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005

	 3 27-SEP-2005 29-SEP-2005 30-SEP-2005 01-OCT-2005

The final result set expresses the complete order process from the day the order was received to the day it should be shipped.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-2]

Recipe 11.2. Skipping n Rows from a Table

[bookmark: idx-CHP-11-0625]

[bookmark: sqlckbk-CHP-11-SECT-2.1]

Problem

You want a query to return every other employee in table EMP; you want the first employee, third employee, and so forth. For example, from the following result set:

	ENAME

	ADAMS

	ALLEN

	BLAKE

	CLARK

	FORD

	JAMES

	JONES

	KING

	MARTIN

	MILLER

	SCOTT

	SMITH

	TURNER

	WARD

you want to return:

	ENAME

	ADAMS

	BLAKE

	FORD

	JONES

	MARTIN

	SCOTT

	TURNER

[bookmark: sqlckbk-CHP-11-SECT-2.2]

Solution

To skip the second or fourth or n th row from a result set, you must impose order on the result set, otherwise there is no concept of first or next, second, or fourth.

[bookmark: sqlckbk-CHP-11-SECT-2.2.1]

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to assign a number to each row, which you can then use in conjunction with the modulo function to skip unwanted [bookmark: idx-CHP-11-0626]rows. The modulo function is MOD for DB2 and Oracle. In SQL Server, use the percent (%) operator. The following example uses MOD to skip even-numbered rows:

	1 select ename

	2 from (

	3 select row_number() over (order by ename) rn,

	4 ename

	5 from emp

	6) x

	7 where mod(rn,2) = 1

[bookmark: sqlckbk-CHP-11-SECT-2.2.2]

MySQL and PostgreSQL

Because there are no built-in functions for ranking or numbering rows, you need to use a scalar subquery to rank the rows (by name in this example). Then use modulus to skip rows:

	1 select x.ename

	2 from (

	3 select a.ename,

	4 (select count(*)

	5 from emp b

	6 where b.ename <= a.ename) as rn

	7 from emp a

	8) x

	9 where mod(x.rn,2) = 1

[bookmark: sqlckbk-CHP-11-SECT-2.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-2.3.1]

DB2, Oracle, and SQL Server

The call to the window function ROW_NUMBER OVER in inline view X will assign a rank to each row (no ties, even with duplicate names). The results are shown below:

	select row_number() over (order by ename) rn, ename

	 from emp

	RN ENAME

	-- --------

	 1 ADAMS

	 2 ALLEN

	 3 BLAKE

	 4 CLARK

	 5 FORD

	 6 JAMES

	 7 JONES

	 8 KING

	 9 MARTIN

	10 MILLER

	11 SCOTT

	12 SMITH

	13 TURNER

	14 WARD

The last step is to simply use modulus to skip every other row.

[bookmark: sqlckbk-CHP-11-SECT-2.3.2]

MySQL and PostgreSQL

With a function to rank or number [bookmark: idx-CHP-11-0627]rows, you can use a scalar subquery to first rank the employee names. Inline view X ranks each name and is shown below:

	select a.ename,

	 (select count(*)

	 from emp b

	 where b.ename <= a.ename) as rn

	 from emp a

	ENAME RN

	---------- ----------

	ADAMS 1

	ALLEN 2

	BLAKE 3

	CLARK 4

	FORD 5

	JAMES 6

	JONES 7

	KING 8

	MARTIN 9

	MILLER 10

	SCOTT 11

	SMITH 12

	TURNER 13

	WARD 14

The final step is to use the modulo function on the generated rank to skip [bookmark: idx-CHP-11-0628]rows.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-3]

Recipe 11.3. Incorporating OR Logic when Using Outer Joins

[bookmark: idx-CHP-11-0629]

[bookmark: idx-CHP-11-0630]

[bookmark: sqlckbk-CHP-11-SECT-3.1]

Problem

You want to return the name and department information for all employees in departments 10 and 20 along with department information for departments 30 and 40 (but no employee information). Your first attempt looks like this:

	select e.ename, d.deptno, d.dname, d.loc

	 from dept d, emp e

	 where d.deptno = e.deptno

	 and (e.deptno = 10 or e.deptno = 20)

	 order by 2

	ENAME DEPTNO DNAME LOC

	------- ---------- -------------- -----------

	CLARK 10 ACCOUNTING NEW YORK

	KING 10 ACCOUNTING NEW YORK

	MILLER 10 ACCOUNTING NEW YORK

	SMITH 20 RESEARCH DALLAS

	ADAMS 20 RESEARCH DALLAS

	FORD 20 RESEARCH DALLAS

	SCOTT 20 RESEARCH DALLAS

	JONES 20 RESEARCH DALLAS

Because the join in this query is an [bookmark: idx-CHP-11-0631]inner join, the result set does not include department information for DEPTNOs 30 and 40.

You attempt to outer join EMP to DEPT with the following query, but you still do not get the correct results:

	select e.ename, d.deptno, d.dname, d.loc

	 from dept d left join emp e

	 on (d.deptno = e.deptno)

	 where e.deptno = 10

	 or e.deptno = 20

	 order by 2

	ENAME DEPTNO DNAME LOC

	------- ---------- ------------ -----------

	CLARK 10 ACCOUNTING NEW YORK

	KING 10 ACCOUNTING NEW YORK

	MILLER 10 ACCOUNTING NEW YORK

	SMITH 20 RESEARCH DALLAS

	ADAMS 20 RESEARCH DALLAS

	[bookmark: idx-CHP-11-0632]FORD 20 RESEARCH DALLAS

	SCOTT 20 RESEARCH DALLAS

	JONES 20 RESEARCH DALLAS

Ultimately, you would like the result set to be:

	ENAME DEPTNO DNAME LOC

	------- ---------- ------------ ---------

	CLARK 10 ACCOUNTING NEW YORK

	KING 10 ACCOUNTING NEW YORK

	MILLER 10 ACCOUNTING NEW YORK

	SMITH 20 RESEARCH DALLAS

	JONES 20 RESEARCH DALLAS

	SCOTT 20 RESEARCH DALLAS

	ADAMS 20 RESEARCH DALLAS

	FORD 20 RESEARCH DALLAS

	 30 SALES CHICAGO

	 40 OPERATIONS BOSTON

[bookmark: sqlckbk-CHP-11-SECT-3.2]

Solution

[bookmark: sqlckbk-CHP-11-SECT-3.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

Move the OR condition into the [bookmark: idx-CHP-11-0633]JOIN clause:

	1 select e.ename, d.deptno, d.dname, d.loc

	2 from dept d left join emp e

	3 on (d.deptno = e.deptno

	4 and (e.deptno=10 or e.deptno=20))

	5 order by 2

Alternatively, you can filter on EMP.DEPTNO first in an inline view and then outer join:

	1 select e.ename, d.deptno, d.dname, d.loc

	2 from dept d

	3 left join

	4 (select ename, deptno

	5 from emp

	6 where deptno in (10, 20)

	7) e on (e.deptno = d.deptno)

	8 order by 2

[bookmark: sqlckbk-CHP-11-SECT-3.2.2]

Oracle

If you are on Oracle9i Database or later, you can use either of the solutions for the other products. Otherwise, you need to use CASE or DECODE in a workaround. Following is a solution using CASE:

	select e.ename, d.deptno, d.dname, d.loc

	 from dept d, emp e

	 where d.deptno = e.deptno (+)

	 and d.deptno = case when e.deptno(+) = 10 then e.deptno(+)

	 when e.deptno(+) = 20 then e.deptno(+)

	 end

	 [bookmark: idx-CHP-11-0634]

	 order by 2

And next is the same solution, but this time using DECODE:

	select e.ename, d.deptno, d.dname, d.loc

	 from dept d, emp e

	 where d.deptno = e.deptno (+)

	 and d.deptno = decode(e.deptno(+),10,e.deptno(+),

	 20,e.deptno(+))

	 order by 2

When using the proprietary [bookmark: idx-CHP-11-0635]Oracle outer join syntax (+) along with an IN or OR predicate on an outer joined column, the query will return an error. The solution is to move the IN or OR predicate to an inline view:

	select e.ename, d.deptno, d.dname, d.loc

	 from dept d,

	 (select ename, deptno

	 from emp

	 where deptno in (10, 20)

) e

	 where d.deptno = e.deptno (+)

	 order by 2

[bookmark: sqlckbk-CHP-11-SECT-3.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-3.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

Two solutions are given for these products. The first moves the OR condition into the JOIN clause, making it part of the join condition. By doing that, you can filter the rows returned from EMP without losing DEPTNOs 30 and 40 from DEPT.

The second solution moves the filtering into an inline view. Inline view E filters on EMP.DEPTNO and returns EMP rows of interest. These are then outer joined to DEPT. Because DEPT is the anchor table in the outer join, all departments, including 30 and 40, are returned.

[bookmark: sqlckbk-CHP-11-SECT-3.3.2]

Oracle

Use the CASE and [bookmark: idx-CHP-11-0636]DECODE functions as a workaround for what seems to be a bug in the older outer-join syntax. The solution using inline view E works by first finding the rows of interest in table EMP, and then outer joining to DEPT.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-4]

Recipe 11.4. Determining Which Rows Are Reciprocals

[bookmark: idx-CHP-11-0637]

[bookmark: sqlckbk-CHP-11-SECT-4.1]

Problem

You have a table containing the results of two tests, and you want to determine which pair of scores are reciprocals. Consider the result set below from view V:

	select *

	 from V

	TEST1 TEST2

	----- ----------

	 20 20

	 50 25

	 20 20

	 60 30

	 70 90

	 80 130

	 90 70

	 100 50

	 110 55

	 120 60

	 130 80

	 140 70

Examining these results, you see that a test score for TEST1 of 70 and TEST2 of 90 is a reciprocal (there exists a score of 90 for TEST1 and a score of 70 for TEST2). Likewise, the scores of 80 for TEST1 and 130 for TEST2 are reciprocals of 130 for TEST1 and 80 for TEST2. Additionally, the scores of 20 for TEST1 and 20 for TEST2 are reciprocals of 20 for TEST2 and 20 for TEST1. You want to identify only one set of reciprocals. You want your result set to be this:

	TEST1 TEST2

	----- ---------

	 20 20

	 70 90

	 80 130

not this:

	TEST1 TEST2

	----- ---------

	 20 20

	 20 20

	 70 90

	 80 130

	 90 70

	 130 80

[bookmark: sqlckbk-CHP-11-SECT-4.2]

Solution

Use a self join to identify rows where TEST1 equals TEST2 and vice versa:

	select distinct v1.*

	 from V v1, V v2

	 where v1.test1 = v2.test2

	 and v1.test2 = v2.test1

	 and v1.test1 <= v1.test2

[bookmark: sqlckbk-CHP-11-SECT-4.3]

Discussion

The self-join results in a Cartesian product in which every TEST1 score can be compared against every TEST2 score and vice versa. The query below will identify the [bookmark: idx-CHP-11-0638]reciprocals:

	select v1.*

	 from V v1, V v2

	 where v1.test1 = v2.test2

	 and v1.test2 = v2.test1

	TEST1 TEST2

	----- ----------

	 20 20

	 20 20

	 20 20

	 20 20

	 90 70

	 130 80

	 70 90

	 80 130

The use of DISTINCT ensures that duplicate rows are removed from the final result set. The final filter in the WHERE clause (and V1.TEST1 <= V1.TEST2) will ensure that only one pair of reciprocals (where TEST1 is the smaller or equal value) is returned.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-5]

Recipe 11.5. Selecting the Top n Records

[bookmark: idx-CHP-11-0639]

[bookmark: sqlckbk-CHP-11-SECT-5.1]

Problem

You want to limit a result set to a specific number of records based on a ranking of some sort. [bookmark: idx-CHP-11-0640]For example, you want to return the names and salaries of the employees with the top five salaries.

[bookmark: sqlckbk-CHP-11-SECT-5.2]

Solution

The key to this solution is to make two passes: first rank the rows on whatever value you want to rank on; then limit the result set to the number of rows you are interested in.

[bookmark: sqlckbk-CHP-11-SECT-5.2.1]

DB2, Oracle, and SQL Server

[bookmark: idx-CHP-11-0641]

The solution to this problem depends on the use [bookmark: idx-CHP-11-0642]of a window function. Which window function you will use depends on how you want to deal with ties. The following solution uses [bookmark: idx-CHP-11-0643]DENSE_RANK, so that each tie in salary will count as only one against the total:

	1 select ename,sal

	2 from (

	3 select ename, sal,

	4 dense_rank() over (order by sal desc) dr

	5 from emp

	6) x

	7 where dr <= 5

The total number of rows returned may exceed five, but there will be only five distinct salaries. Use ROW_NUMBER OVER if you wish to return five rows regardless of ties (as no ties are allowed with this function).

[bookmark: sqlckbk-CHP-11-SECT-5.2.2]

MySQL and PostgreSQL

Use a scalar subquery to create a rank for each salary. Then restrict the results of that subquery by rank:

	 1 select ename,sal

	 2 from (

	 3 select (select count(distinct b.sal)

	 4 from emp b

	 5 where a.sal <= b.sal) as rnk,

	 6 a.sal,

	 7 a.ename

	 8 from emp a

	 9)

	10 where rnk <= 5

[bookmark: sqlckbk-CHP-11-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-5.3.1]

DB2, Oracle, and SQL Server

The window function [bookmark: idx-CHP-11-0644]DENSE_RANK OVER in inline view X does all the work. The following example shows the entire table after applying that function:

	select ename, sal,

	 dense_rank() over (order by sal desc) dr

	 from emp

	ENAME SAL DR

	------- ------ ----------

	KING 5000 1

	SCOTT 3000 2

	FORD 3000 2

	JONES 2975 3

	BLAKE 2850 4

	CLARK 2450 5

	[bookmark: idx-CHP-11-0645]ALLEN 1600 6

	TURNER 1500 7

	MILLER 1300 8

	WARD 1250 9

	MARTIN 1250 9

	ADAMS 1100 10

	JAMES 950 11

	SMITH 800 12

Now it's just a matter of returning rows where DR is less than or equal to five.

[bookmark: sqlckbk-CHP-11-SECT-5.3.2]

MySQL and PostgreSQL

The scalar subquery in inline view X ranks the salaries as follows:

	

	select (select count(distinct b.sal)

	 from emp b

	 where a.sal <= b.sal) as rnk,

	 a.sal,

	 a.ename

	 from emp a

	RNK SAL ENAME

	--- ------ -------

	 1 5000 KING

	 2 3000 SCOTT

	 2 3000 FORD

	 3 2975 JONES

	 4 2850 BLAKE

	 5 2450 CLARK

	 6 1600 ALLEN

	 7 1500 TURNER

	 8 1300 MILLER

	 9 1250 WARD

	 9 1250 MARTIN

	 10 1100 ADAMS

	 11 950 JAMES

	 12 800 SMITH

The final step is to return only rows where RNK is less than or equal to five.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-6]

Recipe 11.6. Finding Records with the Highest and Lowest Values

[bookmark: idx-CHP-11-0646]

[bookmark: sqlckbk-CHP-11-SECT-6.1]

Problem

You want to find "[bookmark: idx-CHP-11-0647]extreme" values in your table. For example, you want to find the employees with the highest and lowest salaries in table EMP.

[bookmark: sqlckbk-CHP-11-SECT-6.2]

Solution

[bookmark: sqlckbk-CHP-11-SECT-6.2.1]

DB2, Oracle, and SQL Server

Use the window functions [bookmark: idx-CHP-11-0648]MIN OVER and [bookmark: idx-CHP-11-0649]MAX OVER to find the lowest and highest salaries, respectively:

	1 select ename

	2 from (

	3 select ename, sal,

	4 min(sal)over() min_sal,

	5 max(sal)over() max_sal

	6 from emp

	7) x

	8 where sal in (min_sal,max_sal)

[bookmark: sqlckbk-CHP-11-SECT-6.2.2]

MySQL and PostgreSQL

Write two subqueries, one each to return the MIN and MAX [bookmark: idx-CHP-11-0650]values of SAL:

	1 select ename

	2 from emp

	3 where sal in ((select min(sal) from emp),

	4 (select max(sal) from emp))

[bookmark: sqlckbk-CHP-11-SECT-6.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-6.3.1]

DB2, Oracle, and SQL Server

The window functions MIN OVER and MAX OVER allow each row to have access to the lowest and highest salaries. The result set from inline view X is as follows:

	

	select ename, sal,

	 min(sal)over() min_sal,

	 max(sal)over() max_sal

	 from emp

	ENAME SAL MIN_SAL MAX_SAL

	------- ------ ---------- ----------

	SMITH 800 800 5000

	ALLEN 1600 800 5000

	WARD 1250 800 5000

	JONES 2975 800 5000

	MARTIN 1250 800 5000

	BLAKE 2850 800 5000

	CLARK 2450 800 5000

	SCOTT 3000 800 5000

	KING 5000 800 5000

	TURNER 1500 800 5000

	ADAMS 1100 800 5000

	JAMES 950 800 5000

	FORD 3000 800 5000

	MILLER 1300 800 5000

Given this result set, all that's left is to return [bookmark: idx-CHP-11-0651]rows where SAL equals MIN_SAL or MAX_SAL.

[bookmark: sqlckbk-CHP-11-SECT-6.3.2]

MySQL and PostgreSQL

This solution uses two subqueries in one IN list to find the lowest and highest salaries from EMP. The rows returned by the outer query are the ones having salaries that match the values returned by either subquery.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-7]

Recipe 11.7. Investigating Future Rows

[bookmark: sqlckbk-CHP-11-SECT-7.1]

Problem

You want to find any employees who earn less than the employee hired immediately after them. Based on the following result set:

	ENAME SAL HIREDATE

	---------- ---------- ---------

	SMITH 800 17-DEC-80

	ALLEN 1600 20-FEB-81

	WARD 1250 22-FEB-81

	JONES 2975 02-APR-81

	BLAKE 2850 01-MAY-81

	CLARK 2450 09-JUN-81

	TURNER 1500 08-SEP-81

	MARTIN 1250 28-SEP-81

	KING 5000 17-NOV-81

	JAMES 950 03-DEC-81

	FORD 3000 03-DEC-81

	MILLER 1300 23-JAN-82

	SCOTT 3000 09-DEC-82

	ADAMS 1100 12-JAN-83

SMITH, WARD, MARTIN, JAMES, and MILLER earn less than the person hired immediately after they were hired, so those are the employees you wish to find with a query.

[bookmark: sqlckbk-CHP-11-SECT-7.2]

Solution

The first step is to define what "future" means. You must impose order on your result set to be able to define a row as having a value that is "later" than another.

[bookmark: sqlckbk-CHP-11-SECT-7.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

Use subqueries to determine the following for each employee:

			The date of the first person subsequently hired with a greater salary

			The date of the next person to be hired

When the two dates match, you have what you are looking for:

	 1 select ename, sal, hiredate

	 2 from (

	 3 select a.ename, a.sal, a.hiredate,

	 4 (select min(hiredate) from emp b

	 5 where b.hiredate > a.hiredate

	 6 and b.sal > a.sal) as next_sal_grtr,

	 7 (select min(hiredate) from emp b

	 8 where b.hiredate > a.hiredate) as next_hire

	 9 from emp a

	10) x

	11 where next_sal_grtr = next_hire

[bookmark: sqlckbk-CHP-11-SECT-7.2.2]

Oracle

You can use the LEAD OVER window function to access the salary of the next employee that was hired. It's then a simple matter to check whether that salary is larger:

	1 select ename, sal, hiredate

	2 from (

	3 select ename, sal, hiredate,

	4 lead(sal)over(order by hiredate) next_sal

	5 from emp

	6)

	7 where sal < next_sal

[bookmark: sqlckbk-CHP-11-SECT-7.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-7.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

The scalar subqueries return, for each employee, the HIREDATE of the very next employee hired and the HIREDATE of the first, subsequently hired employee who earns more than the current employee. Here's a look at the raw data:

	

	select a.ename, a.sal, a.hiredate,

	 (select min(hiredate) from emp b

	 where b.hiredate > a.hiredate

	 and b.sal > a.sal) as next_sal_grtr,

	 (select min(hiredate) from emp b

	 where b.hiredate > a.hiredate) as next_hire

	 from emp a

	ENAME SAL HIREDATE NEXT_SAL_GRTR NEXT_HIRE

	------- ------ --------- ------------- ---------

	SMITH 800 17-DEC-80 20-FEB-81 20-FEB-81

	ALLEN 1600 20-FEB-81 02-APR-81 22-FEB-81

	WARD 1250 22-FEB-81 02-APR-81 02-APR-81

	JONES 2975 02-APR-81 17-NOV-81 01-MAY-81

	MARTIN 1250 28-SEP-81 17-NOV-81 17-NOV-81

	BLAKE 2850 01-MAY-81 17-NOV-81 09-JUN-81

	CLARK 2450 09-JUN-81 17-NOV-81 08-SEP-81

	SCOTT 3000 09-DEC-82 12-JAN-83

	KING 5000 17-NOV-81 03-DEC-81

	TURNER 1500 08-SEP-81 17-NOV-81 28-SEP-81

	ADAMS 1100 12-JAN-83

	JAMES 950 03-DEC-81 23-JAN-82 23-JAN-82

	FORD 3000 03-DEC-81 23-JAN-82

	MILLER 1300 23-JAN-82 09-DEC-82 09-DEC-82

Someone hired subsequently may or may not have been hired immediately after the current employee was hired. The next (and last) step then is to return only [bookmark: idx-CHP-11-0652]rows where NEXT_SAL_GRTR (the earliest HIREDATE of an employee who earns more than the current employee) equals NEXT_HIRE (the HIREDATE of the very next employee relative to the current employee's HIREDATE).

[bookmark: sqlckbk-CHP-11-SECT-7.3.2]

Oracle

The window function LEAD OVER is perfect for a problem such as this one. It not only makes for a more readable query than the solution for the other products, LEAD OVER also leads to a more flexible solution because an argument can be passed to it that will determine how many rows ahead it should look (by default 1). Being able to leap ahead more than one row is important in the case of duplicates in the column you are ordering by.

The following example shows how easy it is to use LEAD OVER to look at the salary of the "next" employee hired:

	

	select ename, sal, hiredate,

	 lead(sal)over(order by hiredate) next_sal

	 from emp

	ENAME SAL HIREDATE NEXT_SAL

	------- ------ --------- ----------

	SMITH 800 17-DEC-80 1600

	ALLEN 1600 20-FEB-81 1250

	WARD 1250 22-FEB-81 2975

	JONES 2975 02-APR-81 2850

	BLAKE 2850 01-MAY-81 2450

	CLARK 2450 09-JUN-81 1500

	TURNER 1500 08-SEP-81 1250

	MARTIN 1250 28-SEP-81 5000

	KING 5000 17-NOV-81 950

	JAMES 950 03-DEC-81 3000

	FORD 3000 03-DEC-81 1300

	MILLER 1300 23-JAN-82 3000

	SCOTT 3000 09-DEC-82 1100

	ADAMS 1100 12-JAN-83

The final step is to return only rows where SAL is less than NEXT_SAL. Because of LEAD OVER's default range of one row, if there had been duplicates in table EMP, in particular, multiple employees hired on the same date, their SAL would be compared. This may or may not have been what you intended. If your goal is to compare the SAL of each employee with SAL of the next employee hired, excluding other employees hired on the same day, you can use the following solution as an alternative:

	select ename, sal, hiredate

	 from (

	select ename, sal, hiredate,

	 lead(sal,cnt-rn+1)over(order by hiredate) next_sal

	 from (

	select ename,sal,hiredate,

	 count(*)over(partition by hiredate) cnt,

	 row_number()over(partition by hiredate order by empno) rn

	 from emp

)

)

	 where sal < next_sal

The idea behind this solution is to find the distance from the current row to the row it should be compared with. For example, if there are five duplicates, the first of the five needs to leap five [bookmark: idx-CHP-11-0653]rows to get to its correct LEAD OVER row. The value for CNT represents, for each employee with a duplicate HIREDATE, how many duplicates there are in total for their HIREDATE. The value for RN represents a ranking for the employees in DEPTNO 10. The rank is partitioned by HIREDATE so only employees with a HIREDATE that another employee has will have a value greater than one. The ranking is sorted by EMPNO (this is arbitrary). Now that you now how many total duplicates there are and you have a ranking of each duplicate, the distance to the next HIREDATE is simply the total number of duplicates minus the current rank plus one (CNT-RN+1).

[bookmark: sqlckbk-CHP-11-SECT-7.4]

See Also

For additional examples of using LEAD OVER in the presence of duplicates (and a more thorough discussion of the technique above): Chapter 8, the section on "Determining the Date Difference Between the Current Record and the Next Record" and Chapter 10, the section on "Finding Differences Between Rows in the Same Group or Partition."

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-8]

Recipe 11.8. Shifting Row Values

[bookmark: idx-CHP-11-0654]

[bookmark: sqlckbk-CHP-11-SECT-8.1]

Problem

You want to return each employee's name and salary along with the next highest and lowest salaries. If there are no higher or lower salaries, you want the results to wrap (first SAL shows last SAL and vice versa). You want to return the following result set:

	ENAME SAL FORWARD REWIND

	---------- ---------- ---------- ----------

	SMITH 800 950 5000

	JAMES 950 1100 800

	ADAMS 1100 1250 950

	WARD 1250 1250 1100

	MARTIN 1250 1300 1250

	MILLER 1300 1500 1250

	TURNER 1500 1600 1300

	ALLEN 1600 2450 1500

	CLARK 2450 2850 1600

	BLAKE 2850 2975 2450

	JONES 2975 3000 2850

	SCOTT 3000 3000 2975

	FORD 3000 5000 3000

	KING 5000 800 3000

[bookmark: sqlckbk-CHP-11-SECT-8.2]

Solution

For Oracle users, the window functions LEAD OVER and [bookmark: idx-CHP-11-0655]LAG OVER make this problem easy to solve and the resulting queries very readable. With other RDBMSs you can use scalar subqueries, though ties will present a problem. Because of the problem with ties, the RDBMSs without support for window functions enable only an approximate solution to this problem.

[bookmark: sqlckbk-CHP-11-SECT-8.2.1]

DB2, SQL Server, MySQL, and PostgreSQL

Use a scalar subquery to find next and prior salaries relative to each salary:

	 1 select e.ename, e.sal,

	 2 coalesce(

	 3 (select min(sal) from emp d where d.sal > e.sal),

	 4 (select min(sal) from emp)

	 5) as forward,

	 6 coalesce(

	 7 (select max(sal) from emp d where d.sal < e.sal),

	 8 (select max(sal) from emp)

	 9) as rewind

	10 from emp e

	11 order by 2

[bookmark: sqlckbk-CHP-11-SECT-8.2.2]

Oracle

Use the window functions LAG OVER and LEAD OVER to access prior and next [bookmark: idx-CHP-11-0656]rows relative to the current row:

	1 select ename,sal,

	2 nvl(lead(sal)over(order by sal),min(sal)over()) forward,

	3 nvl(lag(sal)over(order by sal),max(sal)over()) rewind

	4 from emp

[bookmark: sqlckbk-CHP-11-SECT-8.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-8.3.1]

DB2, SQL Server, MySQL, and PostgreSQL

The scalar subquery solution is not a true solution to the problem. It's an approximation that will fail in the event any two records contain the same value for SAL. It's the best you can do without having window functions available.

[bookmark: sqlckbk-CHP-11-SECT-8.3.2]

Oracle

The window functions [bookmark: idx-CHP-11-0657]LAG OVER and LEAD OVER will (by default and unless otherwise specified) return [bookmark: idx-CHP-11-0658]values from the [bookmark: idx-CHP-11-0659]row before and after the current row, respectively. You define what "before" or "after" means in the ORDER BY portion of the OVER clause. If you examine the solution, the first step is to return the next and prior rows relative to the current row, ordered by SAL:

	

	select ename,sal,

	 lead(sal)over(order by sal) forward,

	 lag(sal)over(order by sal) rewind

	 from emp

	ENAME SAL FORWARD REWIND

	---------- ---------- ---------- ----------

	SMITH 800 950

	JAMES 950 1100 800

	ADAMS 1100 1250 950

	WARD 1250 1250 1100

	MARTIN 1250 1300 1250

	MILLER 1300 1500 1250

	TURNER 1500 1600 1300

	ALLEN 1600 2450 1500

	CLARK 2450 2850 1600

	BLAKE 2850 2975 2450

	JONES 2975 3000 2850

	SCOTT 3000 3000 2975

	FORD 3000 5000 3000

	KING 5000 3000

Notice that REWIND is NULL for employee SMITH and FORWARD is NULL for employee KING; that is because those two employees have the lowest and highest salaries, respectively. The requirement in the problem section should NULL values exist in FORWARD or REWIND is to "wrap" the results meaning that, for the highest SAL, FORWARD should be the value of the lowest SAL in the table, and for the lowest SAL, REWIND should be the value of the highest SAL in the table. The window functions [bookmark: idx-CHP-11-0660]MIN OVER and [bookmark: idx-CHP-11-0661]MAX OVER with no partition or window specified (i.e., an empty parenthesis after the OVER clause) will return the lowest and highest salaries in the table, respectively. The results are shown below:

	select ename,sal,

	 nvl(lead(sal)over(order by sal),min(sal)over()) forward,

	 nvl(lag(sal)over(order by sal),max(sal)over()) rewind

	 from emp

	ENAME SAL FORWARD REWIND

	---------- ---------- ---------- ----------

	SMITH 800 950 5000

	JAMES 950 1100 800

	ADAMS 1100 1250 950

	WARD 1250 1250 1100

	MARTIN 1250 1300 1250

	MILLER 1300 1500 1250

	TURNER 1500 1600 1300

	ALLEN 1600 2450 1500

	CLARK 2450 2850 1600

	BLAKE 2850 2975 2450

	JONES 2975 3000 2850

	SCOTT 3000 3000 2975

	FORD 3000 5000 3000

	KING 5000 800 3000

Another useful feature of [bookmark: idx-CHP-11-0662]LAG OVER and LEAD OVER is the ability to define how far forward or back you would like to go. In the example for this recipe, you go only one [bookmark: idx-CHP-11-0663]row forward or back. If want to move three rows forward and five rows back, doing so is simple. Just specify the values 3 and 5 as shown below:

	select ename,sal,

	 lead(sal,3)over(order by sal) forward,

	 lag(sal,5)over(order by sal) rewind

	 from emp

	ENAME SAL FORWARD REWIND

	---------- ---------- ---------- ----------

	SMITH 800 1250

	JAMES 950 1250

	ADAMS 1100 1300

	WARD 1250 1500

	MARTIN 1250 1600

	MILLER 1300 2450 800

	TURNER 1500 2850 950

	ALLEN 1600 2975 1100

	CLARK 2450 3000 1250

	BLAKE 2850 3000 1250

	JONES 2975 5000 1300

	SCOTT 3000 1500

	FORD 3000 1600

	KING 5000 2450

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11-SECT-9]

Recipe 11.9. Ranking Results

[bookmark: idx-CHP-11-0664]

[bookmark: sqlckbk-CHP-11-SECT-9.1]

Problem

You want to rank the salaries in table EMP while allowing for ties. You want to return the following result set:

	RNK SAL

	--- -------

	 1 800

	 2 950

	 3 1100

	 4 1250

	 4 1250

	 5 1300

	 6 1500

	 7 1600

	 8 2450

	 9 2850

	 10 2975

	 11 3000

	 11 3000

	 12 5000

[bookmark: sqlckbk-CHP-11-SECT-9.2]

Solution

Window functions make ranking queries extremely simple. Three window functions are particularly useful for ranking: [bookmark: idx-CHP-11-0665]DENSE_RANK OVER, ROW_NUMBER OVER, and RANK OVER.

[bookmark: sqlckbk-CHP-11-SECT-9.2.1]

DB2, Oracle, and SQL Server

Because you want to allow for ties, use the window function DENSE_RANK OVER:

	1 select dense_rank() over(order by sal) rnk, sal

	2 from emp

[bookmark: sqlckbk-CHP-11-SECT-9.2.2]

MySQL and PostgreSQL

Until window functions are introduced, use a scalar subquery to rank the salaries:

	1 select (select count(distinct b.sal)

	2 from emp b

	3 where b.sal <= a.sal) as rnk,

	4 a.sal

	5 from emp a

[bookmark: sqlckbk-CHP-11-SECT-9.3]

Discussion

[bookmark: sqlckbk-CHP-11-SECT-9.3.1]

DB2, Oracle, and SQL Server

The window function DENSE_RANK OVER does all the legwork here. In parentheses following the OVER keyword you place an ORDER BY clause to specify the order in which rows are ranked. The solution [bookmark: idx-CHP-11-0666]uses ORDER BY SAL, so rows from EMP are ranked in ascending order of salary.

[bookmark: sqlckbk-CHP-11-SECT-9.3.2]

MySQL and PostgreSQL

The output from the scalar subquery solution is similar to that of DENSE_RANK because the driving predicate in the scalar subquery is on SAL.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-11]

Chapter 11. Advanced Searching

[bookmark: idx-CHP-11-0617]

In a very real sense, this entire book so far has been about searching. You've seen all sorts of queries that use joins and WHERE clauses and grouping techniques to search out and return the [bookmark: idx-CHP-11-0618]results that you need. Some types of searching operations, though, stand apart from others in that they represent a different way of thinking about searching. Perhaps you're displaying a result set one page at a time. Half of that problem is to identify (search for) the entire set of records that you want to display. The other half of that problem is to repeatedly search for the next page to display as a user cycles through the records on a display. Your first thought may not be to think of pagination as a searching problem, but it can be thought of that way, and it can be solved that way; that is the type of searching solution this chapter is all about.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-1]

Recipe 12.1. Pivoting a Result Set into One Row

[bookmark: idx-CHP-12-0696]

[bookmark: sqlckbk-CHP-12-SECT-1.1]

Problem

You wish to take values from groups of rows and turn those values into columns in a single row per group. For example, you have a result set displaying the number of employees in each department:

	DEPTNO CNT

	------ ----------

	 10 3

	 20 5

	 30 6

You would like to reformat the output such the result set looks as follows:

	DEPTNO_10 DEPTNO_20 DEPTNO_30

	--------- ---------- ----------

	 3 5 6

[bookmark: sqlckbk-CHP-12-SECT-1.2]

Solution

Transpose the result set using a CASE expression and the aggregate function SUM:

	1 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	2 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	3 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	4 from emp

[bookmark: sqlckbk-CHP-12-SECT-1.3]

Discussion

This example is an excellent introduction to pivoting. The concept is simple: for each row returned by the unpivoted query, use a CASE expression to separate the rows into columns. Then, because this particular problem is to count the number of employees per department, use the aggregate function SUM to count the occurrence of each DEPTNO. If you're having trouble understanding how this works exactly, execute the query with the aggregate function SUM and include DEPTNO for readability:

	

	select deptno,

	 case when deptno=10 then 1 else 0 end as deptno_10,

	 case when deptno=20 then 1 else 0 end as deptno_20,

	 case when deptno=30 then 1 else 0 end as deptno_30

	 from emp

	 order by 1

	 DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30

	 ------ ---------- ---------- ----------

	 10 1 0 0

	 10 1 0 0

	 10 1 0 0

	 20 0 1 0

	 20 0 1 0

	 20 0 1 0

	 20 0 1 0

	 30 0 0 1

	 30 0 0 1

	 30 0 0 1

	 30 0 0 1

	 30 0 0 1

	 30 0 0 1

You can think of each CASE expression as a flag to determine which DEPTNO a row belongs to. At this point, the "rows to columns" transformation is already done; the next step is to simply sum the values returned by DEPTNO_10, DEPTNO_20, and DEPTNO_30, and then to group by DEPTNO. Following are the results:

	

	select deptno,

	 sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	 from emp

	 group by deptno

	DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30

	------ ---------- ---------- ----------

	 10 3 0 0

	 20 0 5 0

	 30 0 0 6

If you eyeball this result set, you see that logically the output makes sense; for example, DEPTNO 10 has 3 employees in DEPTNO_10 and zero in the other departments. Since the goal is to return one row, the last step is to lose the DEPTNO and GROUP BY, and simply sum the CASE expressions:

	

	select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	 from emp

	 DEPTNO_10 DEPTNO_20 DEPTNO_30

	 --------- ---------- ----------

	 3 5 6

Following is another approach that you may sometimes see applied to this same sort of problem:

	select max(case when deptno=10 then empcount else null end) as deptno_10

	 max(case when deptno=20 then empcount else null end) as deptno_20,

	 max(case when deptno=10 then empcount else null end) as deptno_30

	 from (

	select deptno, count(*) as empcount

	 from emp

	 group by deptno

) x

This approach uses an inline view to generate the employee counts per department. CASE expressions in the main query translate rows to columns, getting you to the following results:

	DEPTNO_10 DEPTNO_20 DEPTNO_30

	--------- ---------- ----------

	 3 NULL NULL

	 NULL 5 NULL

	 NULL NULL 6

Then the MAX functions collapses the columns into one row:

	DEPTNO_10 DEPTNO_20 DEPTNO_30

	--------- ---------- ----------

	 3 5 6

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-10]

Recipe 12.10. Creating Vertical Histograms

[bookmark: idx-CHP-12-0726]

[bookmark: idx-CHP-12-0727]

[bookmark: sqlckbk-CHP-12-SECT-10.1]

Problem

You want to generate a histogram that grows from the bottom up. For example, you want to display the number of employees in each department as a vertical histogram with each employee represented by an instance of "*". You want to return the following result set:

	D10 D20 D30

	--- --- ---

	 *

	 * *

	 * *

	* * *

	* * *

	* * *

[bookmark: sqlckbk-CHP-12-SECT-10.2]

Solution

The technique used to solve this problem is built upon that used as the second recipe in this chapter: .

[bookmark: sqlckbk-CHP-12-SECT-10.2.1]

DB2, Oracle, and SQL Server

Use the ROW_NUMBER OVER function to uniquely identify each instance of "*" for each DEPTNO. Use the aggregate function MAX to pivot the result set and group by the values returned by ROW_NUMBER OVER (SQL Server users should not use DESC in the ORDER BY clause):

	 1 select max(deptno_10) d10,

	 2 max(deptno_20) d20,

	 3 max(deptno_30) d30

	 4 from (

	 5 select row_number()over(partition by deptno order by empno) rn,

	 6 case when deptno=10 then '*' else null end deptno_10,

	 7 case when deptno=20 then '*' else null end deptno_20,

	 8 case when deptno=30 then '*' else null end deptno_30

	 9 from emp

	10) x

	11 group by rn

	12 order by 1 desc, 2 desc, 3 desc

[bookmark: sqlckbk-CHP-12-SECT-10.2.2]

PostgreSQL and MySQL

Use a scalar subquery to uniquely identify each instance of "*" for each DEPTNO. Use the aggregate function MAX on the values returned by inline view X, while also grouping by RNK to pivot the result set. MySQL users should not use DESC in the ORDER BY clause:

	 1 select max(deptno_10) as d10,

	 2 max(deptno_20) as d20,

	 3 max(deptno_30) as d30

	 4 from (

	 5 select case when e.deptno=10 then '*' else null end deptno_10,

	 6 case when e.deptno=20 then '*' else null end deptno_20,

	 7 case when e.deptno=30 then '*' else null end deptno_30,

	 8 (select count(*) from emp d

	 9 where e.deptno=d.deptno and e.empno < d.empno) as rnk

	10 from emp e

	11) x

	12 group by rnk

	13 order by 1 desc, 2 desc, 3 desc

[bookmark: sqlckbk-CHP-12-SECT-10.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-10.3.1]

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER to uniquely identify each instance of "*" in each department. Use a CASE expression to return a "*" for each employee in each department:

	

	select row_number()over(partition by deptno order by empno) rn,

	 case when deptno=10 then '*' else null end deptno_10,

	 case when deptno=20 then '*' else null end deptno_20,

	 case when deptno=30 then '*' else null end deptno_30

	 from emp

	RN DEPTNO_10 DEPTNO_20 DEPTNO_30

	-- ---------- ---------- ---------

	 1 *

	 2 *

	 3 *

	 1 *

	 2 *

	 3 *

	 4 *

	 5 *

	 1 *

	 2 *

	 3 *

	 4 *

	 5 *

	 6 *

The next and last step is to use the aggregate function MAX on each CASE expression, grouping by RN to remove the NULLs from the result set. Order the results ASC or DESC depending on how your RDBMS sorts NULLs:

	

	select max(deptno_10) d10,

	 max(deptno_20) d20,

	 max(deptno_30) d30

	 from (

	Select row_number()over(partition by deptno order by empno) rn,

	 case when deptno=10 then '*' else null end deptno_10,

	 case when deptno=20 then '*' else null end deptno_20,

	 case when deptno=30 then '*' else null end deptno_30

	 from emp

) x

	 group by rn

	 order by 1 desc, 2 desc, 3 desc

	D10 D20 D30

	--- --- ---

	 *

	 * *

	 * *

	* * *

	* * *

	* * *

[bookmark: sqlckbk-CHP-12-SECT-10.3.2]

PostgreSQL and MySQL

The first step is to use a scalar subquery to uniquely identify each instance of "*" in each department. The scalar subquery ranks the employees by EMPNO in each DEPTNO, so there can be no duplicates. Use a CASE expression to generate a "*" for each employee in each department:

	

	select case when e.deptno=10 then '*' else null end deptno_10,

	 case when e.deptno=20 then '*' else null end deptno_20,

	 case when e.deptno=30 then '*' else null end deptno_30,

	 (select count(*) from emp d

	 where e.deptno=d.deptno and e.empno < d.empno) as rnk

	 from emp e

	DEPTNO_10 DEPTNO_20 DEPTNO_30 RNK

	---------- ---------- ---------- ----------

	 * 4

	 * 5

	 * 4

	 * 3

	 * 3

	 * 2

	* 2

	 * 2

	* 1

	 * 1

	 * 1

	 * 0

	 * 0

	 * 0

Then use the aggregate function MAX on each CASE expression, being sure to [bookmark: idx-CHP-12-0728]group by RNK to remove the NULLs from the result set. Order the results ASC or DESC depending on how your RDBMS sorts NULLs:

	

	select max(deptno_10) as d10,

	 max(deptno_20) as d20,

	 max(deptno_30) as d30

	 from (

	Select case when e.deptno=10 then '*' else null end deptno_10,

	 case when e.deptno=20 then '*' else null end deptno_20,

	 case when e.deptno=30 then '*' else null end deptno_30,

	 (select count(*) from emp d

	 where e.deptno=d.deptno and e.empno < d.empno) as rnk

	 from emp e

) x

	 group by rnk

	 order by 1 desc, 2 desc, 3 desc

	D10 D20 D30

	--- --- ---

	 *

	 * *

	 * *

	* * *

	* * *

	* * *

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-11]

Recipe 12.11. Returning Non-GROUP BY Columns

[bookmark: idx-CHP-12-0729]

[bookmark: sqlckbk-CHP-12-SECT-11.1]

Problem

You are executing a GROUP BY query, and you wish to return columns in your select list that are not also listed in your GROUP BY clause. This is not normally possible, as such ungrouped columns would not represent a single value per row.

Say that you want to find the employees who earn the highest and lowest salaries in each department, as well as the employees who earn the highest and lowest salaries in each job. You want to see each employee's name, the department he works in, his job title, and his salary. You want to return the following result set:

	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS

	------ ------ --------- ----- --------------- --------------

	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB

	 10 CLARK MANAGER 2450 LOW SAL IN JOB

	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB

	 20 JONES MANAGER 2975 TOP SAL IN JOB

	 30 JAMES CLERK 950 LOW SAL IN DEPT

	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB

	 30 WARD SALESMAN 1250 LOW SAL IN JOB

	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB

	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

Unfortunately, including all these columns in the SELECT clause will ruin the grouping. Consider the following example. Employee "KING" earns the highest salary. You want to verify this with the following query:

	Select ename,max(sal)

	 from emp

	 [bookmark: idx-CHP-12-0730]group by ename

Instead of seeing "KING" and KING's salary, the above query will return all 14 rows from table EMP. The reason is because of the grouping: the MAX(SAL) is applied to each ENAME. So, it would seem the above query can be stated as "find the employee with the highest salary" but in fact what it is doing is "find the highest salary for each ENAME in table EMP." This recipe explains a technique for including ENAME without the need to GROUP [bookmark: idx-CHP-12-0731]BY that column.

[bookmark: sqlckbk-CHP-12-SECT-11.2]

Solution

Use an inline view to find the high and low salaries by DEPTNO and JOB. Then keep only the employees who make those salaries.

[bookmark: sqlckbk-CHP-12-SECT-11.2.1]

DB2, Oracle, and SQL Server

Use the window functions MAX OVER and MIN OVER to find the highest and lowest salaries by DEPTNO and JOB. Then keep the rows where the salaries are those that are highest or lowest by DEPTNO or JOB:

	 1 select deptno,ename,job,sal,

	 2 case when sal = max_by_dept

	 3 then 'TOP SAL IN DEPT'

	 4 when sal = min_by_dept

	 5 then 'LOW SAL IN DEPT'

	 6 end dept_status,

	 7 case when sal = max_by_job

	 8 then 'TOP SAL IN JOB'

	 9 when sal = min_by_job

	10 then 'LOW SAL IN JOB'

	11 end job_status

	12 from (

	13 select deptno,ename,job,sal,

	14 max(sal)over(partition by deptno) max_by_dept,

	15 max(sal)over(partition by job) max_by_job,

	16 min(sal)over(partition by deptno) min_by_dept,

	17 min(sal)over(partition by job) min_by_job

	18 from emp

	19) emp_sals

	20 where sal in (max_[bookmark: idx-CHP-12-0732]by_dept,max_[bookmark: idx-CHP-12-0733]by_job,

	21 min_by_dept,min_by_job)

[bookmark: sqlckbk-CHP-12-SECT-11.2.2]

PostgreSQL and MySQL

Use scalar subqueries to find the highest and lowest salaries by DEPTNO and JOB. Then keep only those employees who match those salaries:

	 1 select deptno,ename,job,sal,

	 2 case when sal = max_by_dept

	 3 then 'TOP SAL IN DEPT'

	 4 when sal = min_by_dept

	 5 then 'LOW SAL IN DEPT'

	 6 end as dept_status,

	 7 case when sal = max_by_job

	 8 then 'TOP SAL IN JOB'

	 9 when sal = min_by_job

	10 then 'LOW SAL IN JOB'

	11 end as job_status

	12 from (

	13 select e.deptno,e.ename,e.job,e.sal,

	14 (select max(sal) from emp d

	15 where d.deptno = e.deptno) as max_by_dept,

	16 (select max(sal) from emp d

	17 where d.job = e.job) as max_by_job,

	18 (select min(sal) from emp d

	19 where d.deptno = e.deptno) as min_by_dept,

	20 (select min(sal) from emp d

	21 where d.job = e.job) as min_by_job

	22 from emp e

	23) x

	24 where sal in (max_by_dept,max_by_job,

	25 min_by_dept,min_by_job)

[bookmark: sqlckbk-CHP-12-SECT-11.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-11.3.1]

DB2, Oracle, and SQL Server

The first step is to use the window functions MAX OVER and MIN OVER to find the highest and lowest salaries by DEPTNO and JOB:

	

	select deptno,ename,job,sal,

	 max(sal)over(partition by deptno) maxDEPT,

	 max(sal)over(partition by job) maxJOB,

	 min(sal)over(partition by deptno) minDEPT,

	 min(sal)over(partition by job) minJOB

	 from emp

	DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB

	------ ------ --------- ----- ------- ------ ------- ------

	 10 MILLER CLERK 1300 5000 1300 1300 800

	 10 CLARK MANAGER 2450 5000 2975 1300 2450

	 10 KING PRESIDENT 5000 5000 5000 1300 5000

	 20 SCOTT ANALYST 3000 3000 3000 800 3000

	 20 FORD ANALYST 3000 3000 3000 800 3000

	 20 SMITH CLERK 800 3000 1300 800 800

	 20 JONES MANAGER 2975 3000 2975 800 2450

	 20 ADAMS CLERK 1100 3000 1300 800 800

	 30 JAMES CLERK 950 2850 1300 950 800

	 30 MARTIN SALESMAN 1250 2850 1600 950 1250

	 30 TURNER SALESMAN 1500 2850 1600 950 1250

	 30 WARD SALESMAN 1250 2850 1600 950 1250

	 30 ALLEN SALESMAN 1600 2850 1600 950 1250

	 30 BLAKE MANAGER 2850 2850 2975 950 2450

At this point, every salary can be compared with the highest and lowest salaries [bookmark: idx-CHP-12-0734]by DEPTNO and JOB. Notice that the [bookmark: idx-CHP-12-0735]grouping (the inclusion of multiple columns in the SELECT clause) does not affect the values returned by MIN OVER and MAX OVER. This is the beauty of window functions: the aggregate is computed over a defined "group" or partition and returns multiple rows for each group. The last step is to simply wrap the window functions in an inline view and keep only those rows that match the values returned by the window functions. Use a simple CASE expression to display the "status" of each employee in the final result set:

	

	select deptno,ename,job,sal,

	 case when sal = max_by_dept

	 then 'TOP SAL IN DEPT'

	 when sal = min_by_dept

	 then 'LOW SAL IN DEPT'

	 end dept_status,

	 case when sal = max_by_job

	 then 'TOP SAL IN JOB'

	 when sal = min_by_job

	 then 'LOW SAL IN JOB'

	 end job_status

	 from (

	select deptno,ename,job,sal,

	 max(sal)over(partition by deptno) max_by_dept,

	 max(sal)over(partition by job) max_by_job,

	 min(sal)over(partition by deptno) min_by_dept,

	 min(sal)over(partition by job) min_by_job

	 from emp

) x

	 where sal in (max_by_dept,max_by_job,

	 min_by_dept,min_by_job)

	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS

	------ ------ --------- ----- --------------- --------------

	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB

	 10 CLARK MANAGER 2450 LOW SAL IN JOB

	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB

	 20 JONES MANAGER 2975 TOP SAL IN JOB

	 30 JAMES CLERK 950 LOW SAL IN DEPT

	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB

	 30 WARD SALESMAN 1250 LOW SAL IN JOB

	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB

	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

[bookmark: sqlckbk-CHP-12-SECT-11.3.2]

PostgreSQL and MySQL

The first step is to use scalar subqueries to find the highest and lowest salaries [bookmark: idx-CHP-12-0736]by DEPTNO and JOB:

	

	select e.deptno,e.ename,e.job,e.sal,

	 (select max(sal) from emp d

	 where d.deptno = e.deptno) as maxDEPT,

	 (select max(sal) from emp d

	 where d.job = e.job) as maxJOB,

	 (select min(sal) from emp d

	 where d.deptno = e.deptno) as minDEPT,

	 (select min(sal) from emp d

	 where d.job = e.job) as minJOB

	 from emp e

	DEPTNO ENAME JOB SAL MAXDEPT MAXJOB MINDEPT MINJOB

	------ ------ --------- ----- ------- ------ ------- ------

	 20 SMITH CLERK 800 3000 1300 800 800

	 30 ALLEN SALESMAN 1600 2850 1600 950 1250

	 30 WARD SALESMAN 1250 2850 1600 950 1250

	 20 JONES MANAGER 2975 3000 2975 800 2450

	 30 MARTIN SALESMAN 1250 2850 1600 950 1250

	 30 BLAKE MANAGER 2850 2850 2975 950 2450

	 10 CLARK MANAGER 2450 5000 2975 1300 2450

	 20 SCOTT ANALYST 3000 3000 3000 800 3000

	 10 KING PRESIDENT 5000 5000 5000 1300 5000

	 30 TURNER SALESMAN 1500 2850 1600 950 1250

	 20 ADAMS CLERK 1100 3000 1300 800 800

	 30 JAMES CLERK 950 2850 1300 950 800

	 20 FORD ANALYST 3000 3000 3000 800 3000

	 10 MILLER CLERK 1300 5000 1300 1300 800

The highest and lowest salaries [bookmark: idx-CHP-12-0737]by DEPTNO and JOB can now be compared with all other salaries in table EMP. The final step is to wrap the scalar subqueries in an inline view and simply keep the employees whose salaries match one of the scalar subqueries. Use a CASE expression to display each employee's status in the final result set:

	

	select deptno,ename,job,sal,

	 case when sal = max_by_dept

	 then 'TOP SAL IN DEPT'

	 when sal = min_by_dept

	 then 'LOW SAL IN DEPT'

	 end as dept_status,

	 case when sal = max_by_job

	 then 'TOP SAL IN JOB'

	 when sal = min_by_job

	 then 'LOW SAL IN JOB'

	 end as job_status

	 from (

	select e.deptno,e.ename,e.job,e.sal,

	 (select max(sal) from emp d

	 where d.deptno = e.deptno) as max_[bookmark: idx-CHP-12-0738]by_dept,

	 (select max(sal) from emp d

	 where d.job = e.job) as max_[bookmark: idx-CHP-12-0739]by_job,

	 (select min(sal) from emp d

	 where d.deptno = e.deptno) as min_by_dept,

	 (select min(sal) from emp d

	 where d.job = e.job) as min_by_job

	 from emp e

) x

	 where sal in (max_by_dept,max_by_job,

	 min_by_dept,min_by_job)

	DEPTNO ENAME JOB SAL DEPT_STATUS JOB_STATUS

	------ ------ --------- ----- --------------- --------------

	 10 CLARK MANAGER 2450 LOW SAL IN JOB

	 10 KING PRESIDENT 5000 TOP SAL IN DEPT TOP SAL IN JOB

	 10 MILLER CLERK 1300 LOW SAL IN DEPT TOP SAL IN JOB

	 20 SMITH CLERK 800 LOW SAL IN DEPT LOW SAL IN JOB

	 20 FORD ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 SCOTT ANALYST 3000 TOP SAL IN DEPT TOP SAL IN JOB

	 20 JONES MANAGER 2975 TOP SAL IN JOB

	 30 ALLEN SALESMAN 1600 TOP SAL IN JOB

	 30 BLAKE MANAGER 2850 TOP SAL IN DEPT

	 30 MARTIN SALESMAN 1250 LOW SAL IN JOB

	 30 JAMES CLERK 950 LOW SAL IN DEPT

	 30 WARD SALESMAN 1250 LOW SAL IN JOB

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-12]

Recipe 12.12. Calculating Simple Subtotals

[bookmark: idx-CHP-12-0740]

[bookmark: idx-CHP-12-0741]

[bookmark: sqlckbk-CHP-12-SECT-12.1]

Problem

For the purposes of this recipe, a "simple subtotal" is defined as a result set that contains values from the aggregation of one column along with a grand total value for the table. An example would be a result set that sums the salaries in table EMP by JOB, and that also includes the sum of all salaries in table EMP. The summed salaries by JOB are the [bookmark: idx-CHP-12-0742]subtotals, and the sum of all salaries in table EMP is the grand total. Such a result set should look as follows:

	JOB SAL

	--------- ----------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	TOTAL 29025

[bookmark: sqlckbk-CHP-12-SECT-12.2]

Solution

The ROLLUP extension to the GROUP BY clause solves this problem perfectly. If ROLLUP is not available for your RDBMS, you can solve the problem, albeit with more difficulty, using a scalar subquery or a UNION query.

[bookmark: sqlckbk-CHP-12-SECT-12.2.1]

DB2 and Oracle

Use the aggregate function SUM to sum the salaries, and use the [bookmark: idx-CHP-12-0743]ROLLUP extension of GROUP BY to organize the results into [bookmark: idx-CHP-12-0744]subtotals (by JOB) and a grand total (for the whole table):

	1 select case grouping(job)

	2 when 0 then job

	3 else 'TOTAL'

	4 end job,

	5 sum(sal) sal

	6 from emp

	7 group by rollup(job)

[bookmark: sqlckbk-CHP-12-SECT-12.2.2]

SQL Server and MySQL

Use the aggregate function SUM to sum the salaries, and use [bookmark: idx-CHP-12-0745]WITH ROLLUP to organize the results into [bookmark: idx-CHP-12-0746]subtotals (by JOB) and a grand total (for the whole table). Then use COALESCE to supply the label 'TOTAL' for the grand total row (which will otherwise have a NULL in the job column):

	1 select coalesce(job,'TOTAL') job,

	2 sum(sal) sal

	3 from emp

	4 group by job with rollup

With SQL Server, you also have the option to use the [bookmark: idx-CHP-12-0747]GROUPING function shown in the Oracle/DB2 recipe rather than COALESCE to determine the level of aggregation.

[bookmark: sqlckbk-CHP-12-SECT-12.2.3]

PostgreSQL

Use the aggregate function SUM to sum the salaries by DEPTNO. Then UNION ALL with a query generating the sum of all the salaries in the table:

	1 select job, sum(sal) as sal

	2 from emp

	3 group by job

	4 union all

	5 select 'TOTAL', sum(sal)

	6 from emp

[bookmark: sqlckbk-CHP-12-SECT-12.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-12.3.1]

DB2 and Oracle

The first step is to use the aggregate function SUM, grouping by JOB in order to sum the salaries by JOB:

	

	select job, sum(sal) sal

	 from emp

	 group by job

	JOB SAL

	--------- -----

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

The next step is to use the ROLLUP extension to GROUP BY to produce a grand total for all salaries along with the [bookmark: idx-CHP-12-0748]subtotals for each JOB:

	

	select job, sum(sal) sal

	 from emp

	 group by rollup(job)

	JOB SAL

	--------- -------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	 29025

The last step is to use the [bookmark: idx-CHP-12-0749]GROUPING function in the JOB column to display a label for the grand total. If the value of JOB is NULL, the GROUPING function will return 1, which signifies that the value for SAL is the grand total created by ROLLUP. If the value of JOB is not NULL, the GROUPING function will return 0, which signifies the value for SAL is the result of the GROUP BY, not the ROLLUP. Wrap the call to GROUPING(JOB) in a CASE expression that returns either the job name or the label 'TOTAL', as appropriate:

	

	select case grouping(job)

	 when 0 then job

	 else 'TOTAL'

	 end job,

	 sum(sal) sal

	 from emp

	 group by rollup(job)

	JOB SAL

	--------- ----------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	TOTAL 29025

[bookmark: sqlckbk-CHP-12-SECT-12.3.2]

SQL Server and MySQL

The first step is to use the aggregate function SUM, grouping the results by JOB to generate salary sums by JOB:

	

	select job, sum(sal) sal

	 from emp

	 group by job

	JOB SAL

	--------- -----

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

The next step is to use GROUP BY's ROLLUP extension to produce a grand total for all salaries along with the [bookmark: idx-CHP-12-0750]subtotals for each JOB:

	

	select job, sum(sal) sal

	 from emp

	 group by job with rollup

	JOB SAL

	--------- -------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	 29025

The last step is to use the COEALESCE function against the JOB column. If the value of JOB is NULL, the value for SAL is the grand total created by ROLLUP. If the value of JOB is not NULL, the value for SAL is the result of the "regular" GROUP BY, not the ROLLUP:

	

	select coalesce(job,'TOTAL') job,

	 sum(sal) sal

	 from emp

	 group by job with rollup

	JOB SAL

	--------- ----------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	TOTAL 29025

[bookmark: sqlckbk-CHP-12-SECT-12.3.3]

PostgreSQL

The first step is to group the results by job, using the aggregate function SUM to return salary totals by JOB:

	

	select job, sum(sal) sal

	 from emp

	 group by job

	

	JOB SAL

	--------- -----

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	

The last step is to use a UNION ALL to supply the grand total to the above query:

	

	select job, sum(sal) as sal

	 from emp

	 group by job

	 union all

	select 'TOTAL', sum(sal)

	 from emp

	

	JOB SAL

	--------- -------

	ANALYST 6000

	CLERK 4150

	MANAGER 8275

	PRESIDENT 5000

	SALESMAN 5600

	TOTAL 29025

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-13]

Recipe 12.13. Calculating Subtotals for All Possible Expression Combinations

[bookmark: idx-CHP-12-0751]

[bookmark: idx-CHP-12-0752]

[bookmark: sqlckbk-CHP-12-SECT-13.1]

Problem

You want to find the sum of all salaries by DEPTNO, and by JOB, for every JOB/ DEPTNO combination. You also want a grand total for all salaries in table EMP. You want to return the following result set:

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 CLERK TOTAL BY JOB 4150

	 ANALYST TOTAL BY JOB 6000

	 MANAGER TOTAL BY JOB 8275

	 PRESIDENT TOTAL BY JOB 5000

	 SALESMAN TOTAL BY JOB 5600

	 10 TOTAL BY DEPT 8750

	 30 TOTAL BY DEPT 9400

	 20 TOTAL BY DEPT 10875

	 GRAND TOTAL FOR TABLE 29025

[bookmark: sqlckbk-CHP-12-SECT-13.2]

Solution

Extensions added to GROUP BY in recent years make this a fairly easy problem to solve. If your platform does not supply such extensions for computing various levels of [bookmark: idx-CHP-12-0753]subtotals, then you must compute them manually (via self joins or scalar subqueries).

[bookmark: sqlckbk-CHP-12-SECT-13.2.1]

DB2

For DB2, you will need to CAST the results from GROUPING to the CHAR(1) data type:

	 1 select deptno,

	 2 job,

	 3 case cast(grouping(deptno) as char(1))||

	 4 cast(grouping(job) as char(1))

	 5 when '00' then 'TOTAL BY DEPT AND JOB'

	 6 when '10' then 'TOTAL BY JOB'

	 7 when '01' then 'TOTAL BY DEPT'

	 8 when '11' then 'TOTAL FOR TABLE'

	 9 end category,

	10 sum(sal)

	11 from emp

	12 group by cube(deptno,job)

	13 order by grouping(job),grouping(deptno)

[bookmark: sqlckbk-CHP-12-SECT-13.2.2]

Oracle

Use the [bookmark: idx-CHP-12-0754]CUBE extension to the GROUP BY clause with the concatenation operator ||:

	 1 select deptno,

	 2 job,

	 3 case grouping(deptno)||grouping(job)

	 4 when '00' then 'TOTAL BY DEPT AND JOB'

	 5 when '10' then 'TOTAL BY JOB'

	 6 when '01' then 'TOTAL BY DEPT'

	 7 when '11' then 'GRAND TOTAL [bookmark: idx-CHP-12-0755]FOR TABLE'

	 8 end category,

	 9 sum(sal) sal

	10 from emp

	11 group by cube(deptno,job)

	12 order by grouping(job),grouping(deptno)

[bookmark: sqlckbk-CHP-12-SECT-13.2.3]

SQL Server

Use the [bookmark: idx-CHP-12-0756]CUBE extension to the GROUP BY clause. For SQL Server, you will need to CAST the results from GROUPING to CHAR(1), and you will need to use the + operator for concatenation (as opposed to Oracle's || operator):

	 1 select deptno,

	 2 job,

	 3 case cast(grouping(deptno)as char(1))+

	 4 cast(grouping(job)as char(1))

	 5 when '00' then 'TOTAL BY DEPT AND JOB'

	 6 when '10' then 'TOTAL BY JOB'

	 7 when '01' then 'TOTAL BY DEPT'

	 8 when '11' then 'GRAND TOTAL FOR TABLE'

	 9 end category,

	10 sum(sal) sal

	11 from emp

	12 group by deptno,job with cube

	13 order by grouping(job),grouping(deptno)

[bookmark: sqlckbk-CHP-12-SECT-13.2.4]

PostgreSQL and MySQL

Use multiple UNION ALLs, creating different sums for each:

	 1 select deptno, job,

	 2 'TOTAL BY DEPT AND JOB' as category,

	 3 sum(sal) as sal

	 4 from emp

	 5 group by deptno, job

	 6 union all

	 7 select null, job, 'TOTAL BY JOB', sum(sal)

	 8 from emp

	 9 group by job

	10 union all

	11 select deptno, null, 'TOTAL BY DEPT', sum(sal)

	12 from emp

	13 group by deptno

	14 union all

	15 select null,null,'GRAND TOTAL FOR TABLE', sum(sal)

	16 from emp

[bookmark: sqlckbk-CHP-12-SECT-13.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-13.3.1]

Oracle, DB2, and SQL Server

The solutions for all three are essentially the same. The first step is to use the aggregate function SUM and group by both DEPTNO and JOB to find the total salaries for each JOB and DEPTNO combination:

	

	select deptno, job, sum(sal) sal

	 from emp

	 group by deptno, job

	

	DEPTNO JOB SAL

	------ --------- -------

	 10 CLERK 1300

	 10 MANAGER 2450

	 10 PRESIDENT 5000

	 20 CLERK 1900

	 20 ANALYST 6000

	 20 MANAGER 2975

	 30 CLERK 950

	 30 MANAGER 2850

	 30 SALESMAN 5600

The next step is to create [bookmark: idx-CHP-12-0757]subtotals by JOB and DEPTNO along with the grand total for the whole table. Use the CUBE extension to the GROUP BY clause to perform aggregations on SAL by DEPTNO, JOB, and for the whole table:

	

	select deptno,

	 job,

	 sum(sal) sal

	 from emp

	 group by cube(deptno,job)

	DEPTNO JOB SAL

	------ --------- -------

	 29025

	 CLERK 4150

	 ANALYST 6000

	 MANAGER 8275

	 SALESMAN 5600

	 PRESIDENT 5000

	 10 8750

	 10 CLERK 1300

	 10 MANAGER 2450

	 10 PRESIDENT 5000

	 20 10875

	 20 CLERK 1900

	 20 ANALYST 6000

	 20 MANAGER 2975

	 30 9400

	 30 CLERK 950

	 30 MANAGER 2850

	 30 SALESMAN 5600

Next, use the GROUPING function in conjunction with CASE to [bookmark: idx-CHP-12-0758]format the results into more meaningful output. The value from GROUPING(JOB) will be 1 or 0 depending on whether or not the values for SAL are due to the GROUP BY or the CUBE. If the results are due to the CUBE, the value will be 1, otherwise it will be 0. The same goes for GROUPING(DEPTNO). Looking at the first step of the solution, you should see that grouping is done by DEPTNO and JOB. Thus, the expected values from the calls to GROUPING when a row represents a combination of both DEPTNO and JOB is 0. The query below confirms this:

	

	select deptno,

	 job,

	 grouping(deptno) is_deptno_subtotal,

	 grouping(job) is_job_subtotal,

	 sum(sal) sal

	 from emp

	 group by cube(deptno,job)

	 order by 3,4

	DEPTNO JOB IS_DEPTNO_SUBTOTAL IS_JOB_SUBTOTAL SAL

	------ --------- ------------------ --------------- -------

	 10 CLERK 0 0 1300

	 10 MANAGER 0 0 2450

	 10 PRESIDENT 0 0 5000

	 20 CLERK 0 0 1900

	 30 CLERK 0 0 950

	 30 SALESMAN 0 0 5600

	 30 MANAGER 0 0 2850

	 20 MANAGER 0 0 2975

	 20 ANALYST 0 0 6000

	 10 0 1 8750

	 20 0 1 10875

	 30 0 1 9400

	 CLERK 1 0 4150

	 ANALYST 1 0 6000

	 MANAGER 1 0 8275

	 PRESIDENT 1 0 5000

	 SALESMAN 1 0 5600

	 1 1 29025

The final step is to use a CASE expression to determine which category each row belongs to based on the values returned by GROUPING(JOB) and GROUPING(DEPTNO) concatenated:

	

	select deptno,

	 job,

	 case grouping(deptno)||grouping(job)

	 when '00' then 'TOTAL BY DEPT AND JOB'

	 when '10' then 'TOTAL BY JOB'

	 when '01' then 'TOTAL BY DEPT'

	 when '11' then 'GRAND TOTAL FOR TABLE'

	 end category,

	 sum(sal) sal

	 from emp

	 group by cube(deptno,job)

	 order by grouping(job),grouping(deptno)

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 CLERK TOTAL BY JOB 4150

	 ANALYST TOTAL BY JOB 6000

	 MANAGER TOTAL BY JOB 8275

	 PRESIDENT TOTAL BY JOB 5000

	 SALESMAN TOTAL BY JOB 5600

	 10 TOTAL BY DEPT 8750

	 30 TOTAL BY DEPT 9400

	 20 TOTAL BY DEPT 10875

	 GRAND TOTAL [bookmark: idx-CHP-12-0759]FOR TABLE 29025

This Oracle solution implicitly converts the results from the GROUPING functions to a character type in preparation for concatenating the two values. DB2 and SQL Server users will need to explicitly CAST the results of the GROUPING functions to CHAR(1) as shown in the solution. In addition, SQL Server users must use the + operator, and not the || operator, to concatenate the results from the two GROUPING calls into one string.

For Oracle and DB2 users, there is an additional extension to GROUP BY called [bookmark: idx-CHP-12-0760]GROUPING SETS; this extension is extremely useful. For example, you can use GROUPING SETS to mimic the output created by CUBE as is done below (DB2 and SQL Server users will need to add explicit CASTS to the values returned by the GROUPING function just as in the CUBE solution):

	

	select deptno,

	 job,

	 case grouping(deptno)||grouping(job)

	 when '00' then 'TOTAL BY DEPT AND JOB'

	 when '10' then 'TOTAL BY JOB'

	 when '01' then 'TOTAL BY DEPT'

	 when '11' then 'GRAND TOTAL FOR TABLE'

	 end category,

	 sum(sal) sal

	 from emp

	 group by grouping sets ((deptno),(job),(deptno,job),())

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 CLERK TOTAL BY JOB 4150

	 ANALYST TOTAL BY JOB 6000

	 MANAGER TOTAL BY JOB 8275

	 SALESMAN TOTAL BY JOB 5600

	 PRESIDENT TOTAL BY JOB 5000

	 10 TOTAL BY DEPT 8750

	 20 TOTAL BY DEPT 10875

	 30 TOTAL BY DEPT 9400

	 GRAND TOTAL [bookmark: idx-CHP-12-0761]FOR TABLE 29025

What's great about [bookmark: idx-CHP-12-0762]GROUPING SETS is that it allows you to define the groups. The GROUPING SETS clause in the preceding query causes groups to be created by DEPTNO, by JOB, by the combination of DEPTNO and JOB, and finally the empty parenthesis requests a grand total. GROUPING SETS gives you enormous flexibility for creating reports with different levels of aggregation; for example, if you wanted to modify the preceding example to exclude the GRAND TOTAL, simply modify the GROUPING SETS clause by excluding the empty parentheses:

	/* no grand total */

	

	select deptno,

	 job,

	 case grouping(deptno)||grouping(job)

	 when '00' then 'TOTAL BY DEPT AND JOB'

	 when '10' then 'TOTAL BY JOB'

	 when '01' then 'TOTAL BY DEPT'

	 when '11' then 'GRAND TOTAL FOR TABLE'

	 end category,

	 sum(sal) sal

	 from emp

	 group by grouping sets ((deptno),(job),(deptno,job))

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- ----------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 CLERK TOTAL BY JOB 4150

	 ANALYST TOTAL BY JOB 6000

	 ANAGER TOTAL BY JOB 8275

	 SALESMAN TOTAL BY JOB 5600

	 PRESIDENT TOTAL BY JOB 5000

	 10 TOTAL BY DEPT 8750

	 20 TOTAL BY DEPT 10875

	 30 TOTAL BY DEPT 9400

You can also eliminate a subtotal, such as the one on DEPTNO, simply by omitting (DEPTNO) from the [bookmark: idx-CHP-12-0763]GROUPING SETS clause:

	/* no [bookmark: idx-CHP-12-0764]subtotals by DEPTNO */

	

	

	select deptno,

	 job,

	 case grouping(deptno)||grouping(job)

	 when '00' then 'TOTAL BY DEPT AND JOB'

	 when '10' then 'TOTAL BY JOB'

	 when '01' then 'TOTAL BY DEPT'

	 when '11' then 'GRAND TOTAL FOR TABLE'

	 end category,

	 sum(sal) sal

	 from emp

	 group by grouping sets ((job),(deptno,job),())

	 order by 3

	

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- ----------

	 GRAND TOTAL FOR TABLE 29025

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 CLERK TOTAL BY JOB 4150

	 SALESMAN TOTAL BY JOB 5600

	 PRESIDENT TOTAL BY JOB 5000

	 MANAGER TOTAL BY JOB 8275

	 ANALYST TOTAL BY JOB 6000

As you can see, GROUPING SETS makes it very easy indeed to play around with totals and subtotals in order to look at your data from different angles.

[bookmark: sqlckbk-CHP-12-SECT-13.3.2]

PostgreSQL and MySQL

The first step is to use the aggregate function SUM and group by both DEPTNO and JOB:

	

	select deptno, job,

	 'TOTAL BY DEPT AND JOB' as category,

	 sum(sal) as sal

	 from emp

	 group by deptno, job

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

The next step is to UNION ALL the sum of all the salaries by JOB:

	

	select deptno, job,

	 'TOTAL BY DEPT AND JOB' as category,

	 sum(sal) as sal

	 from emp

	 group by deptno, job

	 union all

	select null, job, 'TOTAL BY JOB', sum(sal)

	 from emp

	 group by job

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 ANALYST TOTAL BY JOB 6000

	 CLERK TOTAL BY JOB 4150

	 MANAGER TOTAL BY JOB 8275

	 PRESIDENT TOTAL BY JOB 5000

	 SALESMAN TOTAL BY JOB 5600

The next step is to UNION ALL the sum of all the salaries by DEPTNO:

	

	select deptno, job,

	 'TOTAL BY DEPT AND JOB' as category,

	 sum(sal) as sal

	 from emp

	 group by deptno, job

	 union all

	select null, job, 'TOTAL BY JOB', sum(sal)

	 from emp

	 group by job

	 union all

	select deptno, null, 'TOTAL BY DEPT', sum(sal)

	 from emp

 	 group by deptno

	

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 ANALYST TOTAL BY JOB 6000

	 CLERK TOTAL BY JOB 4150

	 MANAGER TOTAL BY JOB 8275

	 PRESIDENT TOTAL BY JOB 5000

	 SALESMAN TOTAL BY JOB 5600

	 10 TOTAL BY DEPT 8750

	 20 TOTAL BY DEPT 10875

	 30 TOTAL BY DEPT 9400

The final step is to UNION ALL the sum of all salaries in table EMP:

	

	select deptno, job,

	 'TOTAL BY DEPT AND JOB' as category,

	 sum(sal) as sal

	 from emp

	 group by deptno, job

	 union all

	select null, job, 'TOTAL BY JOB', sum(sal)

	 from emp

	 group by job

	 union all

	select deptno, null, 'TOTAL BY DEPT', sum(sal)

	 from emp

	 group by deptno

	 union all

	select null,null, 'GRAND TOTAL [bookmark: idx-CHP-12-0765]FOR TABLE', sum(sal)

	 from emp

	

	DEPTNO JOB CATEGORY SAL

	------ --------- --------------------- -------

	 10 CLERK TOTAL BY DEPT AND JOB 1300

	 10 MANAGER TOTAL BY DEPT AND JOB 2450

	 10 PRESIDENT TOTAL BY DEPT AND JOB 5000

	 20 CLERK TOTAL BY DEPT AND JOB 1900

	 20 ANALYST TOTAL BY DEPT AND JOB 6000

	 20 MANAGER TOTAL BY DEPT AND JOB 2975

	 30 CLERK TOTAL BY DEPT AND JOB 950

	 30 MANAGER TOTAL BY DEPT AND JOB 2850

	 30 SALESMAN TOTAL BY DEPT AND JOB 5600

	 ANALYST TOTAL BY JOB 6000

	 CLERK TOTAL BY JOB 4150

	 MANAGER TOTAL BY JOB 8275

	 PRESIDENT TOTAL BY JOB 5000

	 SALESMAN TOTAL BY JOB 5600

	 10 TOTAL BY DEPT 8750

	 20 TOTAL BY DEPT 10875

	 30 TOTAL BY DEPT 9400

	 GRAND TOTAL FOR TABLE 29025

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-14]

Recipe 12.14. Identifying Rows That Are Not Subtotals

[bookmark: idx-CHP-12-0766]

[bookmark: idx-CHP-12-0767]

[bookmark: sqlckbk-CHP-12-SECT-14.1]

Problem

You've used the CUBE extension of the GROUP BY clause to create a report, and you need a way to differentiate between rows that would be generated by a normal GROUP BY clause and those rows that have been generated as a result of using CUBE or ROLLUP.

Following is the result set from a query using the CUBE extension to GROUP BY to create a breakdown of the salaries in table EMP:

	DEPTNO JOB SAL

	------ --------- -------

	 29025

	 CLERK 4150

	 ANALYST 6000

	 MANAGER 8275

	 SALESMAN 5600

	 PRESIDENT 5000

	 10 8750

	 10 CLERK 1300

	 10 MANAGER 2450

	 10 PRESIDENT 5000

	 20 10875

	 20 CLERK 1900

	 20 ANALYST 6000

	 20 MANAGER 2975

	 30 9400

	 30 CLERK 950

	 30 MANAGER 2850

	 30 SALESMAN 5600

This report includes the sum of all salaries by DEPTNO and JOB (for each JOB per DEPTNO), the sum of all salaries by DEPTNO, the sum of all salaries by JOB, and finally a grand total (the sum of all salaries in table EMP). You want to clearly identify the different levels of aggregation. You want to be able to identify which category an aggregated value belongs to (i.e., does a given value in the SAL column represent a total by DEPTNO? By JOB? The grand total?). You would like to return the following result set:

	DEPTNO JOB SAL DEPTNO_SUBTOTALS JOB_SUBTOTALS

	------ --------- ------- ---------------- -------------

	 29025 1 1

	 CLERK 4150 1 0

	 ANALYST 6000 1 0

	 MANAGER 8275 1 0

	 SALESMAN 5600 1 0

	 PRESIDENT 5000 1 0

	 10 8750 0 1

	 10 CLERK 1300 0 0

	 10 MANAGER 2450 0 0

	 10 PRESIDENT 5000 0 0

	 20 10875 0 1

	 20 CLERK 1900 0 0

	 20 ANALYST 6000 0 0

	 20 MANAGER 2975 0 0

	 30 9400 0 1

	 30 CLERK 950 0 0

	 30 MANAGER 2850 0 0

	 30 SALESMAN 5600 0 0

[bookmark: sqlckbk-CHP-12-SECT-14.2]

Solution

Use the [bookmark: idx-CHP-12-0768]GROUPING function to identify which values exist due to [bookmark: idx-CHP-12-0769]CUBE's or [bookmark: idx-CHP-12-0770]ROLLUP's creation of subtotals, or superaggregate values. The following is an example for DB2 and Oracle:

	 1 select deptno, job, sum(sal) sal,

	 2 grouping(deptno) deptno_subtotals,

	 3 grouping(job) job_subtotals

	 4 from emp

	 5 group by cube(deptno,job)

The only difference between the SQL Server solution and that for DB2 and Oracle lies in how the CUBE/ROLLUP clauses are written:

	 1 select deptno, job, sum(sal) sal,

	 2 grouping(deptno) deptno_subtotals,

	 3 grouping(job) job_subtotals

	 4 from emp

	 5 group by deptno,job with cube

This recipe is meant to highlight the use of CUBE and GROUPING when working with subtotals. As of the time of this writing, PostgreSQL and MySQL support neither CUBE nor GROUPING.

[bookmark: sqlckbk-CHP-12-SECT-14.3]

Discussion

If DEPTNO_SUBTOTALS is 1, then the value in SAL represents a subtotal by DEPTNO created by CUBE. If JOB_SUBTOTALS is 1, then the value in SAL represents a subtotal by JOB created by CUBE. If both JOB_SUBTOTALS and DEPTNO_ SUBTOTALS are 1, then the value in SAL represents a grand total of all salaries created by CUBE. Rows with 0 for both DEPTNO_SUBTOTALS and JOB_SUBTOTALS represent [bookmark: idx-CHP-12-0771]rows created by regular aggregation (the sum of SAL for each DEPTNO/JOB combination).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-15]

Recipe 12.15. Using Case Expressions to Flag Rows

[bookmark: sqlckbk-CHP-12-SECT-15.1]

Problem

You want to map the values in a column, say, the EMP table's JOB column, into a series of "Boolean" flags. For example, you wish to return the following result set:

	ENAME IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ

	------ -------- -------- ------ ---------- -------

	KING 0 0 0 0 1

	SCOTT 0 0 0 1 0

	FORD 0 0 0 1 0

	JONES 0 0 1 0 0

	BLAKE 0 0 1 0 0

	CLARK 0 0 1 0 0

	ALLEN 0 1 0 0 0

	WARD 0 1 0 0 0

	MARTIN 0 1 0 0 0

	TURNER 0 1 0 0 0

	SMITH 1 0 0 0 0

	MILLER 1 0 0 0 0

	ADAMS 1 0 0 0 0

	JAMES 1 0 0 0 0

Such a result set can be useful for debugging and to provide yourself a view of the data different from what you'd see in a more typical result set.

[bookmark: sqlckbk-CHP-12-SECT-15.2]

Solution

Use a CASE expression to evaluate each employee's JOB, and return a 1 or 0 to signify her JOB. You'll need to write one CASE expression, and thus create one column for each possible job:

	 1 select ename,

	 2 case when job = 'CLERK'

	 3 then 1 else 0

	 4 end as is_clerk,

	 5 case when job = 'SALESMAN'

	 6 then 1 else 0

	 7 end as is_sales,

	 8 case when job = 'MANAGER'

	 9 then 1 else 0

	10 end as is_mgr,

	11 case when job = 'ANALYST'

	12 then 1 else 0

	13 end as is_analyst,

	14 case when job = 'PRESIDENT'

	15 then 1 else 0

	16 end as is_prez

	17 from emp

	18 order by 2,3,4,5,6

[bookmark: sqlckbk-CHP-12-SECT-15.3]

Discussion

The solution code is pretty much self-explanatory. If you are having trouble understanding it, simply add JOB to the SELECT clause:

	

	select ename,

	 job,

	 case when job = 'CLERK'

	 then 1 else 0

	 end as is_clerk,

	 case when job = 'SALESMAN'

	 then 1 else 0

	 end as is_sales,

	 case when job = 'MANAGER'

	 then 1 else 0

	 end as is_mgr,

	 case when job = 'ANALYST'

	 then 1 else 0

	 end as is_analyst,

	 case when job = 'PRESIDENT'

	 then 1 else 0

	 end as is_prez

	 from emp

	 order by 2

	

	ENAME JOB IS_CLERK IS_SALES IS_MGR IS_ANALYST IS_PREZ

	------ --------- -------- -------- ------ ---------- -------

	SCOTT ANALYST 0 0 0 1 0

	FORD ANALYST 0 0 0 1 0

	SMITH CLERK 1 0 0 0 0

	ADAMS CLERK 1 0 0 0 0

	MILLER CLERK 1 0 0 0 0

	JAMES CLERK 1 0 0 0 0

	JONES MANAGER 0 0 1 0 0

	CLARK MANAGER 0 0 1 0 0

	BLAKE MANAGER 0 0 1 0 0

	KING PRESIDENT 0 0 0 0 1

	ALLEN SALESMAN 0 1 0 0 0

	MARTIN SALESMAN 0 1 0 0 0

	TURNER SALESMAN 0 1 0 0 0

	WARD SALESMAN 0 1 0 0 0

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-16]

Recipe 12.16. Creating a Sparse Matrix

[bookmark: idx-CHP-12-0772]

[bookmark: sqlckbk-CHP-12-SECT-16.1]

Problem

You want to create a sparse matrix, such as the following one transposing the DEPTNO and JOB columns of table EMP:

	D10 D20 D30 CLERKS MGRS PREZ ANALS SALES

	---------- ---------- ---------- ------ ----- ---- ----- ------

	 SMITH SMITH

	 ALLEN ALLEN

	 WARD WARD

	 JONES JONES

	 MARTIN MARTIN

	 BLAKE BLAKE

	CLARK CLARK

	 SCOTT SCOTT

	KING KING

	 TURNER TURNER

	 ADAMS ADAMS

	 JAMES JAMES

	 FORD FORD

	MILLER MILLER

[bookmark: sqlckbk-CHP-12-SECT-16.2]

Solution

Use CASE expressions to create a sparse row-to-column transformation:

	 1 select case deptno when 10 then ename end as d10,

	 2 case deptno when 20 then ename end as d20,

	 3 case deptno when 30 then ename end as d30,

	 4 case job when 'CLERK' then ename end as clerks,

	 5 case job when 'MANAGER' then ename end as mgrs,

	 6 case job when 'PRESIDENT' then ename end as prez,

	 7 case job when 'ANALYST' then ename end as anals,

	 8 case job when 'SALESMAN' then ename end as sales

	 9 from emp

[bookmark: sqlckbk-CHP-12-SECT-16.3]

Discussion

To transform the DEPTNO and JOB rows to columns, simply use a CASE expression to evaluate the possible values returned by those rows. That's all there is to it. As an aside, if you want to "densify" the report and get rid of some of those NULL rows, you would need to find something to group by. For example, use the window function ROW_NUMBER OVER to assign a ranking for each employee per DEPTNO, and then use the aggregate function MAX to rub out some of the NULLs:

	

	select max(case deptno when 10 then ename end) d10,

	 max(case deptno when 20 then ename end) d20,

	 max(case deptno when 30 then ename end) d30,

	 max(case job when 'CLERK' then ename end) clerks,

	 max(case job when 'MANAGER' then ename end) mgrs,

	 max(case job when 'PRESIDENT' then ename end) prez,

	 max(case job when 'ANALYST' then ename end) anals,

	 max(case job when 'SALESMAN' then ename end) sales

	 from (

	select deptno, job, ename,

	 row_number()over(partition [bookmark: idx-CHP-12-0773]by deptno order by empno) rn

	 from emp

) x

	 group by rn

	D10 D20 D30 CLERKS MGRS PREZ ANALS SALES

	---------- ---------- ---------- ------ ----- ---- ----- ------

	CLARK SMITH ALLEN SMITH CLARK ALLEN

	KING JONES WARD JONES KING WARD

	MILLER SCOTT MARTIN MILLER SCOTT MARTIN

	 ADAMS BLAKE ADAMS BLAKE

	 FORD TURNER FORD TURNER

	 JAMES JAMES

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-17]

Recipe 12.17. Grouping Rows by Units of Time

[bookmark: idx-CHP-12-0774]

[bookmark: sqlckbk-CHP-12-SECT-17.1]

Problem

You want to summarize data by some interval of time. For example, you have a transaction log and want to summarize transactions by 5-second intervals. The rows in table TRX_LOG are shown below:

	

	select trx_id,

	 trx_date,

	 trx_cnt

	 from trx_log

	TRX_ID TRX_DATE TRX_CNT

	------ -------------------- ----------

	 1 28-JUL-2005 19:03:07 44

	 2 28-JUL-2005 19:03:08 18

	 3 28-JUL-2005 19:03:09 23

	 4 28-JUL-2005 19:03:10 29

	 5 28-JUL-2005 19:03:11 27

	 6 28-JUL-2005 19:03:12 45

	 7 28-JUL-2005 19:03:13 45

	 8 28-JUL-2005 19:03:14 32

	 9 28-JUL-2005 19:03:15 41

	 10 28-JUL-2005 19:03:16 15

	 11 28-JUL-2005 19:03:17 24

	 12 28-JUL-2005 19:03:18 47

	 13 28-JUL-2005 19:03:19 37

	 14 28-JUL-2005 19:03:20 48

	 15 28-JUL-2005 19:03:21 46

	 16 28-JUL-2005 19:03:22 44

	 17 28-JUL-2005 19:03:23 36

	 18 28-JUL-2005 19:03:24 41

	 19 28-JUL-2005 19:03:25 33

	 20 28-JUL-2005 19:03:26 19

You want to return the following result set:

	GRP TRX_START TRX_END TOTAL

	--- -------------------- -------------------- ----------

	 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141

	 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178

	 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202

	 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173

[bookmark: sqlckbk-CHP-12-SECT-17.2]

Solution

Group the entries into five row buckets. There are several ways to accomplish that logical [bookmark: idx-CHP-12-0775]grouping; this recipe does so [bookmark: idx-CHP-12-0776]by dividing the TRX_ID values by 5, using a technique shown earlier in "Creating Buckets of Data, of a Fixed Size."

Once you've created the "groups," use the aggregate functions MIN, MAX, and SUM to find the start time, end time, and total number of transactions for each "group" (SQL Server users should use [bookmark: idx-CHP-12-0777]CEILING instead of CEIL):

	 1 select ceil(trx_id/5.0) as grp,

	 2 min(trx_date) as trx_start,

	 3 max(trx_date) as trx_end,

	 4 sum(trx_cnt) as total

	 5 from trx_log

	 6 group by ceil(trx_id/5.0)

[bookmark: sqlckbk-CHP-12-SECT-17.3]

Discussion

The first step, and the key to the whole solution, is to logically group the rows together. By dividing by 5 and taking the smallest whole number greater than the quotient, you can create logical groups. For example:

	

	select trx_id,

	 trx_date,

	 trx_cnt,

	 trx_id/5.0 as val,

	 ceil(trx_id/5.0) as grp

	 from trx_log

	TRX_ID TRX_DATE TRX_CNT VAL GRP

	------ -------------------- ------- ------ ---

	 1 28-JUL-2005 19:03:07 44 .20 1

	 2 28-JUL-2005 19:03:08 18 .40 1

	 3 28-JUL-2005 19:03:09 23 .60 1

	 4 28-JUL-2005 19:03:10 29 .80 1

	 5 28-JUL-2005 19:03:11 27 1.00 1

	 6 28-JUL-2005 19:03:12 45 1.20 2

	 7 28-JUL-2005 19:03:13 45 1.40 2

	 8 28-JUL-2005 19:03:14 32 1.60 2

	 9 28-JUL-2005 19:03:15 41 1.80 2

	 10 28-JUL-2005 19:03:16 15 2.00 2

	 11 28-JUL-2005 19:03:17 24 2.20 3

	 12 28-JUL-2005 19:03:18 47 2.40 3

	 13 28-JUL-2005 19:03:19 37 2.60 3

	 14 28-JUL-2005 19:03:20 48 2.80 3

	 15 28-JUL-2005 19:03:21 46 3.00 3

	 16 28-JUL-2005 19:03:22 44 3.20 4

	 17 28-JUL-2005 19:03:23 36 3.40 4

	 18 28-JUL-2005 19:03:24 41 3.60 4

	 19 28-JUL-2005 19:03:25 33 3.80 4

	 20 28-JUL-2005 19:03:26 19 4.00 4

The last step is to apply the appropriate aggregate functions to find the total number of transactions per 5 seconds along with the start and end times for each transaction:

	

	select ceil(trx_id/5.0) as grp,

	 min(trx_date) as trx_start,

	 max(trx_date) as trx_end,

	 sum(trx_cnt) as total

	 from trx_log

	 group [bookmark: idx-CHP-12-0778]by ceil(trx_id/5.0)

	GRP TRX_START TRX_END TOTAL

	--- -------------------- -------------------- ----------

	 1 28-JUL-2005 19:03:07 28-JUL-2005 19:03:11 141

	 2 28-JUL-2005 19:03:12 28-JUL-2005 19:03:16 178

	 3 28-JUL-2005 19:03:17 28-JUL-2005 19:03:21 202

	 4 28-JUL-2005 19:03:22 28-JUL-2005 19:03:26 173

If your data is slightly different (perhaps you don't have an ID for each row), you can always "group" by dividing the seconds of each TRX_DATE row by 5 to create a similar [bookmark: idx-CHP-12-0779]grouping. Then you can include the hour for each TRX_DATE and group by the actual hour and logical "grouping," GRP. Following is an example of this technique (using Oracle's TO_CHAR and TO_NUMBER functions, you would use the appropriate date and character formatting functions for your platform):

	

	select trx_date,trx_cnt,

	 to_number(to_char(trx_date,'hh24')) hr,

	 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp

	 from trx_log

	TRX_DATE TRX_CNT HR GRP

	-------------------- ---------- ---------- ----------

	28-JUL-2005 19:03:07 44 19 62

	28-JUL-2005 19:03:08 18 19 62

	28-JUL-2005 19:03:09 23 19 62

	28-JUL-2005 19:03:10 29 19 62

	28-JUL-2005 19:03:11 27 19 62

	28-JUL-2005 19:03:12 45 19 63

	28-JUL-2005 19:03:13 45 19 63

	28-JUL-2005 19:03:14 32 19 63

	28-JUL-2005 19:03:15 41 19 63

	28-JUL-2005 19:03:16 15 19 63

	28-JUL-2005 19:03:17 24 19 64

	28-JUL-2005 19:03:18 47 19 64

	28-JUL-2005 19:03:19 37 19 64

	28-JUL-2005 19:03:20 48 19 64

	28-JUL-2005 19:03:21 46 19 64

	28-JUL-2005 19:03:22 44 19 65

	28-JUL-2005 19:03:23 36 19 65

	28-JUL-2005 19:03:24 41 19 65

	28-JUL-2005 19:03:25 33 19 65

	28-JUL-2005 19:03:26 19 19 65

Regardless of the actual values for GRP, the key here is that you are [bookmark: idx-CHP-12-0780]grouping for every 5 seconds. From there you can apply the aggregate functions in the same way as in the original solution:

	

	select hr,grp,sum(trx_cnt) total

	 from (

	select trx_date,trx_cnt,

	 to_number(to_char(trx_date,'hh24')) hr,

	 ceil(to_number(to_char(trx_date-1/24/60/60,'miss'))/5.0) grp

	 from trx_log

) x

	 group [bookmark: idx-CHP-12-0781]by hr,grp

	HR GRP TOTAL

	-- ---------- ----------

	19 62 141

	19 63 178

	19 64 202

	19 65 173

Including the hour in the grouping is useful if your transaction log spans hours. In DB2 and Oracle, you can also use the window function SUM OVER to produce the same result. The following query returns all rows from TRX_LOG along with a running total for TRX_CNT by logical "group," and the TOTAL for TRX_CNT for each row in the "group":

	

	select trx_id, trx_date, trx_cnt,

	 sum(trx_cnt)over(partition by ceil(trx_id/5.0)

	 order by trx_date

	 range between unbounded preceding

	 and current row) runing_total,

	 sum(trx_cnt)over(partition by ceil(trx_id/5.0)) total,

	 case when mod(trx_id,5.0) = 0 then 'X' end grp_end

	 from trx_log

	TRX_ID TRX_DATE TRX_CNT RUNING_TOTAL TOTAL GRP_END

	------ -------------------- ---------- ------------ ---------- -------

	 1 28-JUL-2005 19:03:07 44 44 141

	 2 28-JUL-2005 19:03:08 18 62 141

	 3 28-JUL-2005 19:03:09 23 85 141

	 4 28-JUL-2005 19:03:10 29 114 141

	 5 28-JUL-2005 19:03:11 27 141 141 X

	 6 28-JUL-2005 19:03:12 45 45 178

	 7 28-JUL-2005 19:03:13 45 90 178

	 8 28-JUL-2005 19:03:14 32 122 178

	 9 28-JUL-2005 19:03:15 41 163 178

	 10 28-JUL-2005 19:03:16 15 178 178 X

	 11 28-JUL-2005 19:03:17 24 24 202

	 12 28-JUL-2005 19:03:18 47 71 202

	 13 28-JUL-2005 19:03:19 37 108 202

	 14 28-JUL-2005 19:03:20 48 156 202

	 15 28-JUL-2005 19:03:21 46 202 202 X

	 16 28-JUL-2005 19:03:22 44 44 173

	 17 28-JUL-2005 19:03:23 36 80 173

	 18 28-JUL-2005 19:03:24 41 121 173

	 19 28-JUL-2005 19:03:25 33 154 173

	 20 28-JUL-2005 19:03:26 19 173 173 X

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-18]

Recipe 12.18. Performing Aggregations over Different Groups/Partitions Simultaneously

[bookmark: idx-CHP-12-0782]

[bookmark: sqlckbk-CHP-12-SECT-18.1]

Problem

You want to aggregate over different dimensions at the same [bookmark: idx-CHP-12-0783]time. For example, you want to return a result set that lists each employee's name, his department, the number of employees in his department (himself included), the number of employees that have the same job as he does (himself included in this count as well), and the total number of employees in the EMP table. The result set should look like the following:

	ENAME DEPTNO DEPTNO_CNT JOB JOB_CNT TOTAL

	------ ------ ---------- --------- -------- ------

	MILLER 10 3 CLERK 4 14

	CLARK 10 3 MANAGER 3 14

	KING 10 3 PRESIDENT 1 14

	SCOTT 20 5 ANALYST 2 14

	FORD 20 5 ANALYST 2 14

	SMITH 20 5 CLERK 4 14

	JONES 20 5 MANAGER 3 14

	ADAMS 20 5 CLERK 4 14

	JAMES 30 6 CLERK 4 14

	MARTIN 30 6 SALESMAN 4 14

	TURNER 30 6 SALESMAN 4 14

	WARD 30 6 SALESMAN 4 14

	ALLEN 30 6 SALESMAN 4 14

	BLAKE 30 6 MANAGER 3 14

[bookmark: sqlckbk-CHP-12-SECT-18.2]

Solution

Window functions make this problem quite easy to solve. If you do not have window functions available to you, you can use scalar subqueries.

[bookmark: sqlckbk-CHP-12-SECT-18.2.1]

DB2, Oracle, and SQL Server

Use the [bookmark: idx-CHP-12-0784]COUNT OVER window function while specifying different partitions, or groups of data on which to perform aggregation:

	select ename,

	 deptno,

	 count(*)over(partition by deptno) deptno_cnt,

	 job,

	 count(*)over(partition by job) job_cnt,

	 count(*)over() total

	 from emp

[bookmark: sqlckbk-CHP-12-SECT-18.2.2]

PostgreSQL and MySQL

Use scalar subqueries in your SELECT list to perform the aggregate count operations on different groups of rows:

	 1 select e.ename,

	 2 e.deptno,

	 3 (select count(*) from emp d

	 4 where d.deptno = e.deptno) as deptno_cnt,

	 5 job,

	 6 (select count(*) from emp d

	 7 where d.job = e.job) as job_cnt,

	 8 (select count(*) from emp) as total

	 9 from emp e

[bookmark: sqlckbk-CHP-12-SECT-18.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-18.3.1]

DB2, Oracle, and SQL Server

This example really shows off the power and convenience of window functions. By simply specifying different partitions or groups of data to aggregate, you can create immensely detailed reports without having to self join over and over, and without having to write cumbersome and perhaps poorly performing subqueries in your SELECT list. All the work is done by the window function COUNT OVER. To understand the output, focus on the OVER clause for a moment for each COUNT operation:

	count(*)over(partition by deptno)

	count(*)over(partition by job)

	count(*)over()

Remember the main parts of the OVER clause: the partition, specified by PARTITION BY: and the frame or window, specified by ORDER BY. Look at the first COUNT, which partitions by DEPTNO. The rows in table EMP will be grouped by DEPTNO and the COUNT operation will be performed on all the rows in each group. Since there is no frame or window clause specified (no ORDER BY), all the rows in the group are counted. The PARTITION BY clause finds all the unique DEPTNO values, and then the COUNT function counts the number [bookmark: idx-CHP-12-0785]of rows having each value. In the specific example of COUNT(*)[bookmark: idx-CHP-12-0786]OVER(PARTITION BY DEPTNO), The PARTITION BY clause identifies the partitions or groups to be values 10, 20, and 30.

The same processing is applied to the second COUNT, which partitions by JOB. The last count does not partition by anything, and simply has an empty parenthesis. An empty parenthesis implies "the whole table." So, whereas the two prior COUNTs aggregate values based on the defined groups or partitions, the final COUNT counts all rows in table EMP.

						[image:]			

Keep in mind that window functions are applied after the WHERE clause. If you were to filter the result set in some way, for example, excluding all employees in DEPTNO 10, the value for TOTAL would not be 14, it would be 11. To filter results after window functions have been evaluated, you must make your windowing query into an inline view and then filter on the results from that view.

[bookmark: sqlckbk-CHP-12-SECT-18.3.2]

PostgreSQL and MySQL

For every row returned by the main query (rows from EMP E), use multiple scalar subqueries in the SELECT list to perform different counts for each DEPTNO and JOB. To get the TOTAL, simply use another scalar subquery to get the count of all employees in table EMP.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-19]

Recipe 12.19. Performing Aggregations over a Moving Range of Values

[bookmark: sqlckbk-CHP-12-SECT-19.1]

Problem

You want to compute a moving aggregation, such as a moving sum on the salaries in table EMP. You want to compute a sum for every 90 days, starting with the HIREDATE of the first employee. You want to see how spending has fluctuated for every 90-day period between the first and last employee hired. You want to return the following result set:

	HIREDATE SAL SPENDING_PATTERN

	----------- ------- ----------------

	17-DEC-1980 800 800

	20-FEB-1981 1600 2400

	22-FEB-1981 1250 3650

	02-APR-1981 2975 5825

	01-MAY-1981 2850 8675

	09-JUN-1981 2450 8275

	08-SEP-1981 1500 1500

	28-SEP-1981 1250 2750

	17-NOV-1981 5000 7750

	03-DEC-1981 950 11700

	03-DEC-1981 3000 11700

	23-JAN-1982 1300 10250

	09-DEC-1982 3000 3000

	12-JAN-1983 1100 4100

[bookmark: sqlckbk-CHP-12-SECT-19.2]

Solution

Being able to specify a moving window in the framing or windowing clause of window functions makes this problem very easy to solve, if your RDBMS supports such functions. The key is to order by HIREDATE in your window function and then specify a window of 90 days starting from the earliest employee hired. The sum will be computed using the salaries of employees hired up to 90 days prior to the current employee's HIREDATE (the current employee is included in the sum). If you do not have window functions available, you can use scalar subqueries, but the solution will be more [bookmark: idx-CHP-12-0787]complex.

[bookmark: sqlckbk-CHP-12-SECT-19.2.1]

DB2 and Oracle

For DB2 and Oracle, use the window function SUM [bookmark: idx-CHP-12-0788]OVER and order by HIREDATE. Specify a range of 90 days in the window or "framing" clause to allow the sum to be computed for each employee's salary and to include the salaries of all employees hired up to 90 days earlier. Because DB2 does not allow you to specify HIREDATE in the ORDER BY clause of a window function (line 3 below), you can order by DAYS(HIREDATE) instead:

	 1 select hiredate,

	 2 sal,

	 3 sum(sal)over(order by days(hiredate)

	 4 range between 90 preceding

	 5 and current row) spending_pattern

	 6 from emp e

The Oracle solution is more straightforward than DB2's, because Oracle allows window functions to order by datetime types:

	 1 select hiredate,

	 2 sal,

	 3 sum(sal)over(order by hiredate

	 4 range between 90 preceding

	 5 and current row) spending_pattern

	 6 from emp e

[bookmark: sqlckbk-CHP-12-SECT-19.2.2]

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to sum the salaries of all employees hired up to 90 days prior to the day each employee was hired:

	 1 select e.hiredate,

	 2 e.sal,

	 3 (select sum(sal) from emp d

	 4 where [bookmark: idx-CHP-12-0789]d.hiredate between e.hiredate-90

	 5 and e.hiredate) as spending_pattern

	 6 from emp e

	 7 order by 1

[bookmark: sqlckbk-CHP-12-SECT-19.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-19.3.1]

DB2 and Oracle

DB2 and Oracle share the same solution. The only difference, and it's minor between the two solutions, lies in how you specify HIREDATE in the [bookmark: idx-CHP-12-0790]ORDER BY clause of the window function. At the time of this book's writing, DB2 doesn't allow a DATE value in such an [bookmark: idx-CHP-12-0791]ORDER BY clause if you are using a numeric value to set the window's range. (For example, RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW allows you to order by a date, but RANGE BETWEEN 90 PRECEDING AND CURRENT ROW does not.)

To understand what the solution query is doing, you simply need to understand what the window clause is doing. The window you are defining orders the salaries for all employees by HIREDATE. Then the function computes a sum. The sum is not computed for all salaries. Instead, the processing is as follows:

			The salary of the first employee hired is evaluated. Since no employees were hired before the first employee, the sum at this point is simply the first employee's salary.

			The salary of the next employee (by HIREDATE) is evaluated. This employee's salary is included in the moving sum along with any other employees who were hired up to 90 days prior.

The HIREDATE of the first employee is December 17, 1980, and the HIREDATE of the next hired employee is February 20, 1981. The second employee was hired less than 90 days after the first employee, and thus the moving sum for the second employee is 2400 (1600 + 800). If you are having trouble understanding where the values in SPENDING_PATTERN come from, examine the following query and result set:

	

	select distinct

	 dense_rank()[bookmark: idx-CHP-12-0792]over(order by e.hiredate) window,

	 e.hiredate current_hiredate,

	 d.hiredate hiredate_within_90_days,

	 d.sal sals_used_for_sum

	 from emp e,

	 emp d

	where d.hiredate between e.hiredate-90 and e.hiredate

	WINDOW CURRENT_HIREDATE HIREDATE_WITHIN_90_DAYS SALS_USED_FOR_SUM

	------ ---------------- ----------------------- -----------------

	 1 17-DEC-1980 17-DEC-1980 800

	 2 20-FEB-1981 17-DEC-1980 800

	 2 20-FEB-1981 20-FEB-1981 1600

	 3 22-FEB-1981 17-DEC-1980 800

	 3 22-FEB-1981 20-FEB-1981 1600

	 3 22-FEB-1981 22-FEB-1981 1250

	 4 02-APR-1981 20-FEB-1981 1600

	 4 02-APR-1981 22-FEB-1981 1250

	 4 02-APR-1981 02-APR-1981 2975

	 5 01-MAY-1981 20-FEB-1981 1600

	 5 01-MAY-1981 22-FEB-1981 1250

	 5 01-MAY-1981 02-APR-1981 2975

	 5 01-MAY-1981 01-MAY-1981 2850

	 6 09-JUN-1981 02-APR-1981 2975

	 6 09-JUN-1981 01-MAY-1981 2850

	 6 09-JUN-1981 09-JUN-1981 2450

	 7 08-SEP-1981 08-SEP-1981 1500

	 8 28-SEP-1981 08-SEP-1981 1500

	 8 28-SEP-1981 28-SEP-1981 1250

	 9 17-NOV-1981 08-SEP-1981 1500

	 9 17-NOV-1981 28-SEP-1981 1250

	 9 17-NOV-1981 17-NOV-1981 5000

	 10 03-DEC-1981 08-SEP-1981 1500

	 10 03-DEC-1981 28-SEP-1981 1250

	 10 03-DEC-1981 17-NOV-1981 5000

	 10 03-DEC-1981 03-DEC-1981 950

	 10 03-DEC-1981 03-DEC-1981 3000

	 11 23-JAN-1982 17-NOV-1981 5000

	 11 23-JAN-1982 03-DEC-1981 950

	 11 23-JAN-1982 03-DEC-1981 3000

	 11 23-JAN-1982 23-JAN-1982 1300

	 12 09-DEC-1982 09-DEC-1982 3000

	 13 12-JAN-1983 09-DEC-1982 3000

	 13 12-JAN-1983 12-JAN-1983 1100

If you look at the WINDOW column, only those rows with the same WINDOW value will be considered for each sum. Take for example, WINDOW 3. The salaries used for the sum for that window are 800, 1600, and 1250, which total 3650. If you look at the final result set in the "Problem" section, you'll see the SPENDING_PATTERN for February 22, 1981 (WINDOW 3) is 3650. As proof, to verify that the above self join includes the correct salaries for the windows defined, simply sum the values in SALS_USED_FOR_SUM and group by CURRENT_DATE. The result should be the same as the result set shown in the "Problem" section (with the duplicate row for December 3, 1981, filtered out):

	

	select current_hiredate,

	 sum(sals_used_for_sum) spending_pattern

	 from (

	select distinct

	 dense_rank()[bookmark: idx-CHP-12-0793]over(order by e.hiredate) window,

	 e.hiredate current_hiredate,

	 d.hiredate hiredate_within_90_days,

	 d.sal sals_used_for_sum

	 from emp e,

	 emp d

	 where d.hiredate between e.hiredate-90 and e.hiredate

) x

	 group by current_hiredate

	CURRENT_HIREDATE SPENDING_PATTERN

	---------------- ----------------

	17-DEC-1980 800

	20-FEB-1981 2400

	22-FEB-1981 3650

	02-APR-1981 5825

	01-MAY-1981 8675

	09-JUN-1981 8275

	08-SEP-1981 1500

	28-SEP-1981 2750

	17-NOV-1981 7750

	03-DEC-1981 11700

	23-JAN-1982 10250

	09-DEC-1982 3000

	12-JAN-1983 4100

[bookmark: sqlckbk-CHP-12-SECT-19.3.2]

MySQL, PostgreSQL, and SQL Server

The key to this solution is to use a scalar subquery (a self join will work as well) while using the aggregate function SUM to compute a sum for every 90 days based on HIREDATE. If you are having trouble seeing how this works, simply convert the solution to a self join and examine which rows are included in the computations. Consider the result set below, which returns the same result set as that in the solution:

	

	select e.hiredate,

	 e.sal,

	 sum(d.sal) as spending_pattern

	 from emp e, emp d

	 where d.hiredate

	 between e.hiredate-90 and e.hiredate

	 group by e.hiredate,e.sal

	 order by 1\

	HIREDATE SAL SPENDING_PATTERN

	----------- ----- ----------------

	17-DEC-1980 800 800

	20-FEB-1981 1600 2400

	22-FEB-1981 1250 3650

	02-APR-1981 2975 5825

	01-MAY-1981 2850 8675

	09-JUN-1981 2450 8275

	08-SEP-1981 1500 1500

	28-SEP-1981 1250 2750

	17-NOV-1981 5000 7750

	03-DEC-1981 950 11700

	03-DEC-1981 3000 11700

	23-JAN-1982 1300 10250

	09-DEC-1982 3000 3000

	12-JAN-1983 1100 4100

If it is still unclear, simply remove the aggregation and start with the Cartesian product. The first step is to generate a Cartesian product using table EMP so that each HIREDATE can be compared with all the other HIREDATEs. [Only a snippet of the result set is shown below because there are 196 rows (14x14) returned by a Cartesian of EMP.]

	

	select e.hiredate,

	 e.sal,

	 d.sal,

	 d.hiredate

	 from emp e, emp d

	HIREDATE SAL SAL HIREDATE

	----------- ----- ----- -----------

	17-DEC-1980 800 800 17-DEC-1980

	17-DEC-1980 800 1600 20-FEB-1981

	17-DEC-1980 800 1250 22-FEB-1981

	17-DEC-1980 800 2975 02-APR-1981

	17-DEC-1980 800 1250 28-SEP-1981

	17-DEC-1980 800 2850 01-MAY-1981

	17-DEC-1980 800 2450 09-JUN-1981

	17-DEC-1980 800 3000 09-DEC-1982

	17-DEC-1980 800 5000 17-NOV-1981

	17-DEC-1980 800 1500 08-SEP-1981

	17-DEC-1980 800 1100 12-JAN-1983

	17-DEC-1980 800 950 03-DEC-1981

	17-DEC-1980 800 3000 03-DEC-1981

	17-DEC-1980 800 1300 23-JAN-1982

	20-FEB-1981 1600 800 17-DEC-1980

	20-FEB-1981 1600 1600 20-FEB-1981

	20-FEB-1981 1600 1250 22-FEB-1981

	20-FEB-1981 1600 2975 02-APR-1981

	20-FEB-1981 1600 1250 28-SEP-1981

	20-FEB-1981 1600 2850 01-MAY-1981

	20-FEB-1981 1600 2450 09-JUN-1981

	20-FEB-1981 1600 3000 09-DEC-1982

	20-FEB-1981 1600 5000 17-NOV-1981

	20-FEB-1981 1600 1500 08-SEP-1981

	20-FEB-1981 1600 1100 12-JAN-1983

	20-FEB-1981 1600 950 03-DEC-1981

	20-FEB-1981 1600 3000 03-DEC-1981

	20-FEB-1981 1600 1300 23-JAN-1982

If you examine the result set above, you'll notice that there is no HIREDATE 90 days earlier or equal to December 17, except for December 17. So, the sum for that row should be only 800. If you examine the next HIREDATE, February 20, you'll notice that there is one HIREDATE that falls within the 90-day window (within 90 days prior), and that is December 17. If you sum the SAL from December 17 with the SAL from February 20 (because we are looking for HIREDATEs equal to each HIREDATE or within 90 days earlier) you get 2400, which happens to be the final result for that HIREDATE.

Now that you know how it works, use a filter in the WHERE clause to return for each HIREDATE and HIREDATE that is equal to it or is no more than 90 days earlier:

	

	select e.hiredate,

	 e.sal,

	 d.sal sal_to_sum,

	 d.hiredate within_90_days

	 from emp e, emp d

	 where d.hiredate

	 between e.hiredate-90 and e.hiredate

	 order by 1

	HIREDATE SAL SAL_TO_SUM WITHIN_90_DAYS

	----------- ----- ---------- --------------

	17-DEC-1980 800 800 17-DEC-1980

	20-FEB-1981 1600 800 17-DEC-1980

	20-FEB-1981 1600 1600 20-FEB-1981

	22-FEB-1981 1250 800 17-DEC-1980

	22-FEB-1981 1250 1600 20-FEB-1981

	22-FEB-1981 1250 1250 22-FEB-1981

	02-APR-1981 2975 1600 20-FEB-1981

	02-APR-1981 2975 1250 22-FEB-1981

	02-APR-1981 2975 2975 02-APR-1981

	01-MAY-1981 2850 1600 20-FEB-1981

	01-MAY-1981 2850 1250 22-FEB-1981

	01-MAY-1981 2850 2975 02-APR-1981

	01-MAY-1981 2850 2850 01-MAY-1981

	09-JUN-1981 2450 2975 02-APR-1981

	09-JUN-1981 2450 2850 01-MAY-1981

	09-JUN-1981 2450 2450 09-JUN-1981

	08-SEP-1981 1500 1500 08-SEP-1981

	28-SEP-1981 1250 1500 08-SEP-1981

	28-SEP-1981 1250 1250 28-SEP-1981

	17-NOV-1981 5000 1500 08-SEP-1981

	17-NOV-1981 5000 1250 28-SEP-1981

	17-NOV-1981 5000 5000 17-NOV-1981

	03-DEC-1981 950 1500 08-SEP-1981

	03-DEC-1981 950 1250 28-SEP-1981

	03-DEC-1981 950 5000 17-NOV-1981

	03-DEC-1981 950 950 03-DEC-1981

	03-DEC-1981 950 3000 03-DEC-1981

	03-DEC-1981 3000 1500 08-SEP-1981

	03-DEC-1981 3000 1250 28-SEP-1981

	03-DEC-1981 3000 5000 17-NOV-1981

	03-DEC-1981 3000 950 03-DEC-1981

	03-DEC-1981 3000 3000 03-DEC-1981

	23-JAN-1982 1300 5000 17-NOV-1981

	23-JAN-1982 1300 950 03-DEC-1981

	23-JAN-1982 1300 3000 03-DEC-1981

	23-JAN-1982 1300 1300 23-JAN-1982

	09-DEC-1982 3000 3000 09-DEC-1982

	12-JAN-1983 1100 3000 09-DEC-1982

	12-JAN-1983 1100 1100 12-JAN-1983

Now that you know which SALs are to be included in the moving window of summation, simply use the aggregate function SUM to produce a more expressive result set:

	select e.hiredate,

	 e.sal,

	 sum(d.sal) as spending_pattern

	 from emp e, emp d

	 where d.hiredate

	 between e.hiredate-90 and e.hiredate

	 group by e.hiredate,e.sal

	 order by 1

If you compare the result set for the query above and the result set for the query below (which is the original solution presented), you will see they are the same:

	select e.hiredate,

	 e.sal,

	 (select sum(sal) from emp d

	 where d.hiredate between e.hiredate-90

	 and e.hiredate) as spending_pattern

	 from emp e

	 order by 1

	HIREDATE SAL SPENDING_PATTERN

	----------- ----- ----------------

	17-DEC-1980 800 800

	20-FEB-1981 1600 2400

	22-FEB-1981 1250 3650

	02-APR-1981 2975 5825

	01-MAY-1981 2850 8675

	09-JUN-1981 2450 8275

	08-SEP-1981 1500 1500

	28-SEP-1981 1250 2750

	17-NOV-1981 5000 7750

	03-DEC-1981 950 11700

	03-DEC-1981 3000 11700

	23-JAN-1982 1300 10250

	09-DEC-1982 3000 3000

	12-JAN-1983 1100 4100

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-2]

Recipe 12.2. Pivoting a Result Set into Multiple Rows

[bookmark: idx-CHP-12-0697]

[bookmark: sqlckbk-CHP-12-SECT-2.1]

Problem

You want to turn rows into columns by creating a column corresponding to each of the values in a single given column. However, unlike in the previous recipe, you need multiple rows of output.

For example, you want to return each employee and their position (JOB), and you currently use a query that returns the following result set:

	JOB ENAME

	--------- ----------

	ANALYST SCOTT

	ANALYST FORD

	CLERK SMITH

	CLERK ADAMS

	CLERK MILLER

	CLERK JAMES

	MANAGER JONES

	MANAGER CLARK

	MANAGER BLAKE

	PRESIDENT KING

	SALESMAN ALLEN

	SALESMAN MARTIN

	SALESMAN TURNER

	SALESMAN WARD

You would like to format the result set such that each job gets its own column:

	CLERKS ANALYSTS MGRS PREZ SALES

	------ -------- ----- ---- ------

	MILLER FORD CLARK KING TURNER

	JAMES SCOTT BLAKE MARTIN

	ADAMS JONES WARD

	SMITH ALLEN

[bookmark: sqlckbk-CHP-12-SECT-2.2]

Solution

Unlike the first recipe in this chapter, the result set for this recipe consists of more than one row. Using the previous recipe's technique will not work for this recipe, as the MAX(ENAME) for each JOB would be returned, which would result in one ENAME for each JOB (i.e., one row will be returned as in the first recipe). To solve this problem, you must make each JOB/ENAME combination unique. Then, when you apply an aggregate function to remove NULLs, you don't lose any ENAMEs.

[bookmark: sqlckbk-CHP-12-SECT-2.2.1]

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to make each JOB/ENAME combination unique. Pivot the result set using a CASE expression and the aggregate function MAX while grouping on the value returned by the window function:

	 1 select max(case when job='CLERK'

	 2 then ename else null end) as clerks,

	 3 max(case when job='ANALYST'

	 4 then ename else null end) as analysts,

	 5 max(case when job='MANAGER'

	 6 then ename else null end) as mgrs,

	 7 max(case when job='PRESIDENT'

	 8 then ename else null end) as prez,

	 9 max(case when job='SALESMAN'

	10 then ename else null end) as sales

	11 from (

	12 select job,

	13 ename,

	14 row_number()over(partition by job order by ename) rn

	15 from emp

	16) x

	17 group by rn

[bookmark: sqlckbk-CHP-12-SECT-2.2.2]

PostgreSQL and MySQL

Use a scalar subquery to rank each employee by EMPNO. Pivot the result set using a CASE expression and the aggregate function MAX while grouping on the value returned by the scalar subquery:

	 1 select max(case when job='CLERK'

	 2 then ename else null end) as clerks,

	 3 max(case when job='ANALYST'

	 4 then ename else null end) as analysts,

	 5 max(case when job='MANAGER'

	 6 then ename else null end) as mgrs,

	 7 max(case when job='PRESIDENT'

	 8 then ename else null end) as prez,

	 9 max(case when job='SALESMAN'

	10 then ename else null end) as sales

	11 from (

	12 select e.job,

	13 e.ename,

	14 (select count(*) from emp d

	15 where e.job=d.job and e.empno < d.empno) as rnk

	16 from emp e

	17) x

	18 group by rnk

[bookmark: sqlckbk-CHP-12-SECT-2.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-2.3.1]

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER to help make each JOB/ENAME combination unique:

	

	select job,

	 ename,

	 row_number()over(partition by job order by ename) rn

	 from emp

	 JOB ENAME RN

	 --------- ---------- ----------

	 ANALYST FORD 1

	 ANALYST SCOTT 2

	 CLERK ADAMS 1

	 CLERK JAMES 2

	 CLERK MILLER 3

	 CLERK SMITH 4

	 MANAGER BLAKE 1

	 MANAGER CLARK 2

	 MANAGER JONES 3

	 PRESIDENT KING 1

	 SALESMAN ALLEN 1

	 SALESMAN MARTIN 2

	 SALESMAN TURNER 3

	 SALESMAN WARD 4

Giving each ENAME a unique "row number" within a given job prevents any problems that might otherwise result from two employees having the same name and job. The goal here is to be able to group on row number (on RN) without dropping any employees from the result set due to the use of MAX. This step is the most important step in solving the problem. Without this first step, the aggregation in the outer query will remove necessary [bookmark: idx-CHP-12-0698]rows. Consider what the result set would look like without using ROW_NUMBER OVER, using the same technique as seen in the first recipe:

	

	select max(case when job='CLERK'

	 then ename else null end) as clerks,

	 max(case when job='ANALYST'

	 then ename else null end) as analysts,

	 max(case when job='MANAGER'

	 then ename else null end) as mgrs,

	 max(case when job='PRESIDENT'

	 then ename else null end) as prez,

	 max(case when job='SALESMAN'

	 then ename else null end) as sales

	 from emp

	CLERKS ANALYSTS MGRS PREZ SALES

	---------- ---------- ---------- ---------- ----------

	SMITH SCOTT JONES KING WARD

Unfortunately, only one row is returned for each JOB: the employee with the MAX ENAME. When it comes time to pivot the result set, using MIN or MAX should serve as a means to remove NULLs from the result set, not restrict the ENAMEs returned. How this works will be come clearer as you continue through the explanation.

The next step uses a CASE expression to organize the ENAMEs into their proper column (JOB):

	

	select rn,

	 case when job='CLERK'

	 then ename else null end as clerks,

	 case when job='ANALYST'

	 then ename else null end as analysts,

	 case when job='MANAGER'

	 then ename else null end as mgrs,

	 case when job='PRESIDENT'

	 then ename else null end as prez,

	 case when job='SALESMAN'

	 then ename else null end as sales

	 from (

	Select job,

	 ename,

	 row_number()over(partition by job order by ename) rn

	 from emp

) x

	RN CLERKS ANALYSTS MGRS PREZ SALES

	-- ---------- ---------- ---------- ---------- ----------

	 1 FORD

	 2 SCOTT

	 1 ADAMS

	 2 JAMES

	 3 MILLER

	 4 SMITH

	 1 BLAKE

	 2 CLARK

	 3 JONES

	 1 KING

	 1 ALLEN

	 2 MARTIN

	 3 TURNER

	 4 WARD

At this point, the [bookmark: idx-CHP-12-0699]rows are transposed into columns and the last step is to remove the NULLs to make the result set more readable. To remove the NULLs use the aggregate function MAX and group by RN. (You can use the function MIN as well. The choice to use MAX is arbitrary, as you will only ever be aggregating one value per group.) There is only one value for each RN/JOB/ENAME combination. Grouping by RN in conjunction [bookmark: idx-CHP-12-0700]with the CASE expressions embedded within the calls to MAX ensures that each call to MAX results in picking only one name from a group of otherwise NULL values:

	

	select max(case when job='CLERK'

	 then ename else null end) as clerks,

	 max(case when job='ANALYST'

	 then ename else null end) as analysts,

	 max(case when job='MANAGER'

	 then ename else null end) as mgrs,

	 max(case when job='PRESIDENT'

	 then ename else null end) as prez,

	 max(case when job='SALESMAN'

	 then ename else null end) as sales

	 from (

	Select job,

	 ename,

	 row_number()over(partition by job order by ename) rn

	 from emp

) x

	group by rn

	CLERKS ANALYSTS MGRS PREZ SALES

	------ -------- ----- ---- ------

	MILLER FORD CLARK KING TURNER

	JAMES SCOTT BLAKE MARTIN

	ADAMS JONES WARD

	SMITH ALLEN

The technique of using ROW_NUMBER OVER to create unique combinations of rows is extremely useful for formatting query results. Consider the query below that creates a sparse report showing employees by DEPTNO and JOB:

	

	select deptno dno, job,

	 max(case when deptno=10

	 then ename else null end) as d10,

	 max(case when deptno=20

	 then ename else null end) as d20,

	 max(case when deptno=30

	 then ename else null end) as d30,

	 max(case when job='CLERK'

	 then ename else null end) as clerks,

	 max(case when job='ANALYST'

	 then ename else null end) as anals,

	 max(case when job='MANAGER'

	 then ename else null end) as mgrs,

	 max(case when job='PRESIDENT'

	 then ename else null end) as prez,

	 max(case when job='SALESMAN'

	 then ename else null end) as sales

	 from (

	Select deptno,

	 job,

	 ename,

	 row_number()over(partition by job order by ename) rn_job,

	 row_number()over(partition by job order by ename) rn_deptno

	 from emp

) x

	 group by deptno, job, rn_deptno, rn_job

	 order by 1

	DNO JOB D10 D20 D30 CLERKS ANALS MGRS PREZ SALES

	--- --------- ------ ----- ------ ------ ----- ----- ---- ------

	 10 CLERK MILLER MILLER

	 10 MANAGER CLARK CLARK

	 10 PRESIDENT KING KING

	 20 ANALYST FORD FORD

	 20 ANALYST SCOTT SCOTT

	 20 CLERK ADAMS ADAMS

	 20 CLERK SMITH SMITH

	 20 MANAGER JONES JONES

	 30 CLERK JAMES JAMES

	 30 MANAGER BLAKE BLAKE

	 30 SALESMAN ALLEN ALLEN

	 30 SALESMAN MARTIN MARTIN

	 30 SALESMAN TURNER TURNER

	 30 SALESMAN WARD WARD

By simply modifying what you group by (hence the nonaggregate items in the SELECT list above), you can produce reports with different formats. It is worth the time of changing things around to understand how these formats change based on what you include in your GROUP BY clause.

[bookmark: sqlckbk-CHP-12-SECT-2.3.2]

PostgreSQL and MySQL

The technique for these RDBMSs is the same as for the others once a method of creating unique JOB/ENAME combinations is established. The first step is to use a scalar subquery to provide a "row number" or "rank" for each JOB/ENAME combination:

	

	select e.job,

	 e.ename,

	 (select count(*) from emp d

	 where e.job=d.job and e.empno < d.empno) as rnk

	 from emp e

	JOB ENAME RNK

	--------- ---------- ----------

	CLERK SMITH 3

	SALESMAN ALLEN 3

	SALESMAN WARD 2

	MANAGER JONES 2

	SALESMAN MARTIN 1

	MANAGER BLAKE 1

	MANAGER CLARK 0

	ANALYST SCOTT 1

	PRESIDENT KING 0

	SALESMAN TURNER 0

	CLERK ADAMS 2

	CLERK JAMES 1

	ANALYST FORD 0

	CLERK MILLER 0

Giving each JOB/ENAME combination a unique "rank" makes each row unique. Even if there are employees [bookmark: idx-CHP-12-0701]with the same name working the same job, no two employees will share the same rank within a job. This step is the most important step in solving the problem. Without this first step, the aggregation in the outer query will remove necessary [bookmark: idx-CHP-12-0702]rows. Consider what the result set would look like without applying a rank to each JOB/ENAME combination, using the same technique as seen in the first recipe:

	

	select max(case when job='CLERK'

	 then ename else null end) as clerks,

	 max(case when job='ANALYST'

	 then ename else null end) as analysts,

	 max(case when job='MANAGER'

	 then ename else null end) as mgrs,

	 max(case when job='PRESIDENT'

	 then ename else null end) as prez,

	 max(case when job='SALESMAN'

	 then ename else null end) as sales

	 from emp

	CLERKS ANALYSTS MGRS PREZ SALES

	---------- ---------- ---------- ---------- ----------

	SMITH SCOTT JONES KING WARD

Unfortunately, only one row is returned for each JOB: the employee with the MAX ENAME. When it comes time to pivot the result set, using MIN or MAX should serve as a means to remove NULLs from the result set, not to restrict the ENAMEs returned.

Now, that you see the purpose of applying a rank, you can move on to the next step. The next step uses a CASE expression to organize the ENAMEs into their proper column (JOB):

	

	select rnk,

	 case when job='CLERK'

	 then ename else null end as clerks,

	 case when job='ANALYST'

	 then ename else null end as analysts,

	 case when job='MANAGER'

	 then ename else null end as mgrs,

	 case when job='PRESIDENT'

	 then ename else null end as prez,

	 case when job='SALESMAN'

	 then ename else null end as sales

	 from (

	Select e.job,

	 e.ename,

	 (select count(*) from emp d

	 where e.job=d.job and e.empno < d.empno) as rnk

	 from emp e

) x

	RNK CLERKS ANALYSTS MGRS PREZ SALES

	--- ------ -------- ----- ---- ----------

	 3 SMITH

	 3 ALLEN

	 2 WARD

	 2 JONES

	 1 MARTIN

	 1 BLAKE

	 0 CLARK

	 1 SCOTT

	 0 KING

	 0 TURNER

	 2 ADAMS

	 1 JAMES

	 0 FORD

	 0 MILLER

At this point, the [bookmark: idx-CHP-12-0703]rows are transposed into columns and the last step is to remove the [bookmark: idx-CHP-12-0704]NULLs to make the result set more readable. To remove the NULLs use the aggregate function MAX and group by RNK. (MAX is an arbitrary choice. You can use the function MIN as well.) There is only one value for each RN/JOB/ENAME combination, so the application of the aggregate function is simply to remove NULLs:

	

	select max(case when job='CLERK'

	 then ename else null end) as clerks,

	 max(case when job='ANALYST'

	 then ename else null end) as analysts,

	 max(case when job='MANAGER'

	 then ename else null end) as mgrs,

	 max(case when job='PRESIDENT'

	 then ename else null end) as prez,

	 max(case when job='SALESMAN'

	 then ename else null end) as sales

	 from (

	Select e.job,

	 e.ename,

	 (select count(*) from emp d

	 where e.job=d.job and e.empno < d.empno) as rnk

	 from emp e

) x

	 group by rnk

	CLERKS ANALYSTS MGRS PREZ SALES

	------ -------- ----- ---- ------

	MILLER FORD CLARK KING TURNER

	JAMES SCOTT BLAKE MARTIN

	ADAMS JONES WARD

	SMITH ALLEN

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-20]

Recipe 12.20. Pivoting a Result Set with Subtotals

[bookmark: idx-CHP-12-0794]

[bookmark: idx-CHP-12-0795]

[bookmark: sqlckbk-CHP-12-SECT-20.1]

Problem

You want to create a report containing subtotals, then transpose the results to provide a more readable report. For example, you've been asked to create a report that displays for each department, the managers in the department along with a sum of the salaries of the employees who work for those managers. Additionally, you want to return two subtotals: the sum of all salaries in each department for those employees who have managers, and a sum of all salaries in the result set (the sum of the department subtotals). You currently have the following report:

	DEPTNO MGR SAL

	------ ---------- ----------

	 10 7782 1300

	 10 7839 2450

	 10 3750

	 20 7566 6000

	 20 7788 1100

	 20 7839 2975

	 20 7902 800

	 20 10875

	 30 7698 6550

	 30 7839 2850

	 30 9400

	 24025

You want to provide a more readable report and wish to transform the above result set to the following, which makes the meaning of the report much more clear:

	MGR DEPT10 DEPT20 DEPT30 TOTAL

	---- ---------- ---------- ---------- ----------

	7566 0 6000 0

	7698 0 0 6550

	7782 1300 0 0

	7788 0 1100 0

	7839 2450 2975 2850

	7902 0 800 0

	 3750 10875 9400 24025

[bookmark: sqlckbk-CHP-12-SECT-20.2]

Solution

The first step is to generate [bookmark: idx-CHP-12-0796]subtotals using the [bookmark: idx-CHP-12-0797]ROLLUP extension to GROUP BY. The next step is to perform a classic pivot (aggregate and CASE expression) to create the desired columns for your report. The GROUPING function allows you to easily determine which values are subtotals (that is, exist because of ROLLUP and otherwise would not normally be there). Depending on how your RDBMS sorts NULL values, you may need to add an ORDER BY to the solution to allow it to look like the target result set above.

[bookmark: sqlckbk-CHP-12-SECT-20.2.1]

DB2 and Oracle

Use the ROLLUP extension to GROUP BY then use a CASE expression to format the data into a more readable report:

	 1 select mgr,

	 2 sum(case deptno when 10 then sal else 0 end) dept10,

	 3 sum(case deptno when 20 then sal else 0 end) dept20,

	 4 sum(case deptno when 30 then sal else 0 end) dept30,

	 5 sum(case flag when '11' then sal else null end) total

	 6 from (

	 7 select deptno,mgr,sum(sal) sal,	

	 8 cast(grouping(deptno) as char(1))||

	 9 cast(grouping(mgr) as char(1)) flag

	10 from emp

	11 where mgr is not null

	12 group by rollup(deptno,mgr)

	13) x

	14 group by mgr

[bookmark: sqlckbk-CHP-12-SECT-20.2.2]

SQL Server

Use the ROLLUP extension to GROUP BY then use a CASE expression to format the data into a more readable report:

	 1 select mgr,

	 2 sum(case deptno when 10 then sal else 0 end) dept10,

	 3 sum(case deptno when 20 then sal else 0 end) dept20,

	 4 sum(case deptno when 30 then sal else 0 end) dept30,

	 5 sum(case flag when '11' then sal else null end) total

	 6 from (

	 7 select deptno,mgr,sum(sal) sal,

	 8 cast(grouping(deptno) as char(1))+

	 9 cast(grouping(mgr) as char(1)) flag

	10 from emp

	11 where mgr is not null

	12 group by deptno,mgr with rollup

	13) x

	14 group by mgr

[bookmark: sqlckbk-CHP-12-SECT-20.2.3]

MySQL and PostgreSQL

The [bookmark: idx-CHP-12-0798]GROUPING function is not supported by either RDBMS.

[bookmark: sqlckbk-CHP-12-SECT-20.3]

Discussion

The solutions provided above are identical except for the string concatenation and how GROUPING is specified. Because the solutions are so similar, the discussion below will refer to the SQL Server solution to highlight the intermediate [bookmark: idx-CHP-12-0799]result sets (the discussion is relevant to DB2 and Oracle as well).

The first step is to generate a result set that sums the SAL for the employees in each DEPTNO per MGR. The idea is to show how much the employees make under a particular manager in a particular department. For example, this query below will allow you to compare the salaries of employees who work for KING in DEPTNO 10 compared with those who work for KING in DEPTNO 30:

	select deptno,mgr,sum(sal) sal

	 from emp

	 where mgr is not null

	 group by mgr,deptno

	 order by 1,2

	DEPTNO MGR SAL

	------ ---------- ----------

	 10 7782 1300

	 10 7839 2450

	 20 7566 6000

	 20 7788 1100

	 20 7839 2975

	 20 7902 800

	 30 7698 6550

	 30 7839 2850

The next step is to use the ROLLUP extension to GROUP BY to create [bookmark: idx-CHP-12-0800]subtotals for each DEPTNO and across all employees (who have a manager):

	select deptno,mgr,sum(sal) sal

	 from emp

	 where mgr is not null

	 group by deptno,mgr with rollup

	DEPTNO MGR SAL

	------ ---------- ----------

	 10 7782 1300

	 10 7839 2450

	 10 3750

	 20 7566 6000

	 20 7788 1100

	 20 7839 2975

	 20 7902 800

	 20 10875

	 30 7698 6550

	 30 7839 2850

	 30 9400

	 24025

With the subtotals created, you need a way to determine which values are in fact subtotals (created by ROLLUP) and which are results of the regular GROUP BY. Use the [bookmark: idx-CHP-12-0801]GROUPING function to create bitmaps to help identify the subtotal values from the regular aggregate values:

	select deptno,mgr,sum(sal) sal,

	 cast(grouping(deptno) as char(1))+

	 cast(grouping(mgr) as char(1)) flag

	 from emp

	 where mgr is not null

	 group by deptno,mgr with rollup

	DEPTNO MGR SAL FLAG

	------ ---------- ---------- ----

	 10 7782 1300 00

	 10 7839 2450 00

	 10 3750 01

	 20 7566 6000 00

	 20 7788 1100 00

	 20 7839 2975 00

	 20 7902 800 00

	 20 10875 01

	 30 7698 6550 00

	 30 7839 2850 00

	 30 9400 01

	 24025 11

If it isn't immediately obvious, the rows with a value of 00 for FLAG are the results of regular aggregation. The rows with a value of 01 for FLAG are the results of ROLLUP aggregating SAL by DEPTNO (since DEPTNO is listed first in the ROLLUP; if you switch the order, for example, "GROUP BY MGR, DEPTNO WITH ROLLUP", you'd see quite different results). The row with a value of 11 for FLAG is the result of ROLLUP aggregating SAL over all rows.

At this point you have everything you need to create a beautified report by simply using CASE expressions. The goal is to provide a report that shows employee salaries for each manager across departments. If a manager does not have any subordinates in a particular department, a zero should be returned; otherwise, you want to return the sum of all salaries for that manager's subordinates in that department. Additionally, you want to add a final column, TOTAL, representing a sum of all the salaries in the report. The solution satisfying all these requirements is shown below:

	select mgr,

	 sum(case deptno when 10 then sal else 0 end) dept10,

	 sum(case deptno when 20 then sal else 0 end) dept20,

	 sum(case deptno when 30 then sal else 0 end) dept30,

	 sum(case flag when '11' then sal else null end) total

	 from (

	select deptno,mgr,sum(sal) sal,

	 cast(grouping(deptno) as char(1))+

	 cast(grouping(mgr) as char(1)) flag

	 from emp

	 where mgr is not null

	 group by deptno,mgr with rollup

) x

	 group by mgr

	 order by coalesce(mgr,9999)

	MGR DEPT10 DEPT20 DEPT30 TOTAL

	---- ---------- ---------- ---------- ----------

	7566 0 6000 0

	7698 0 0 6550

	7782 1300 0 0

	7788 0 1100 0

	7839 2450 2975 2850

	7902 0 800 0

	 3750 10875 9400 24025

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-3]

Recipe 12.3. Reverse Pivoting a Result Set

[bookmark: idx-CHP-12-0705]

[bookmark: sqlckbk-CHP-12-SECT-3.1]

Problem

You want to transform columns to rows. Consider the following result set:

	DEPTNO_10 DEPTNO_20 DEPTNO_30

	---------- ---------- ----------

	 3 5 6

You would like to convert that to:

	DEPTNO COUNTS_BY_DEPT

	------ --------------

	 10 3

	 20 5

	 30 6

[bookmark: sqlckbk-CHP-12-SECT-3.2]

Solution

Examining the desired result set, it's easy to see that you can execute a simple COUNT and GROUP BY on table EMP to produce the desired result. The object here, though, is to imagine that the data is not stored as rows; perhaps the data is denormalized and aggregated values are stored as [bookmark: idx-CHP-12-0706]multiple columns.

To convert columns to rows, use a Cartesian product. You'll need to know in advance how many columns you want to convert to rows because the table expression you use to create the Cartesian product must have a cardinality of at least the number of columns you want to transpose.

Rather than create a denormalized table of data, the solution for this recipe will use the solution from the first recipe of this chapter to create a "wide" result set. The full solution is as follows:

	 1 select dept.deptno,

	 2 case dept.deptno

	 3 when 10 then emp_cnts.deptno_10

	 4 when 20 then emp_cnts.deptno_20

	 5 when 30 then emp_cnts.deptno_30

	 6 end as counts_by_dept

	 7 from (

	 8 select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 9 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	10 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	11 from emp

	12) emp_cnts,

	13 (select deptno from dept where deptno <= 30) dept

[bookmark: sqlckbk-CHP-12-SECT-3.3]

Discussion

The inline view EMP_CNTS represents the denormalized view, or "wide" result set that you want to convert to rows, and is shown below:

	

	select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	 from emp

	DEPTNO_10 DEPTNO_20 DEPTNO_30

	--------- ---------- ----------

	 3 5 6

Because there are three columns, you will create three rows. Begin by creating a Cartesian product between inline view EMP_CNTS and some table expression that has at least three rows. The following code uses table DEPT to create the Cartesian product; DEPT has four rows:

	

	select dept.deptno,

	 emp_cnts.deptno_10,

	 emp_cnts.deptno_20,

	 emp_cnts.deptno_30

	 from (

	Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	 from emp

) emp_cnts,

	 (select deptno from dept where deptno <= 30) dept

	DEPTNO DEPTNO_10 DEPTNO_20 DEPTNO_30

	------ ---------- ---------- ---------

	 10 3 5 6

	 20 3 5 6

	 30 3 5 6

The Cartesian product enables you to return a row for each column in inline view EMP_CNTS. Since the final result set should have only the DEPTNO and the number of employees in said DEPTNO, use a CASE expression to transform the three columns into one:

	

	select dept.deptno,

	 case dept.deptno

	 when 10 then emp_cnts.deptno_10

	 when 20 then emp_cnts.deptno_20

	 when 30 then emp_cnts.deptno_30

	 end as counts_by_dept

	 from (

	Select sum(case when deptno=10 then 1 else 0 end) as deptno_10,

	 sum(case when deptno=20 then 1 else 0 end) as deptno_20,

	 sum(case when deptno=30 then 1 else 0 end) as deptno_30

	 from emp

) emp_cnts,

	 (select deptno from dept where deptno <= 30) dept

	DEPTNO COUNTS_BY_DEPT

	------ --------------

	 10 3

	 20 5

	 30 6

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-4]

Recipe 12.4. Reverse Pivoting a Result Set into One Column

[bookmark: idx-CHP-12-0707]

[bookmark: sqlckbk-CHP-12-SECT-4.1]

Problem

You want to return all columns from a query as just one column. For example, you want to return the ENAME, JOB, and SAL of all employees in DEPTNO 10, and you want to return all three values in one column. You want to return three rows for each employee and one row of white space between employees. You want to return the following result set:

	EMPS

	CLARK

	MANAGER

	2450

	KING

	PRESIDENT

	5000

	MILLER

	CLERK

	1300

[bookmark: sqlckbk-CHP-12-SECT-4.2]

Solution

The key is to use a Cartesian product to return four rows for each employee. This lets you return one column value per row and have an extra row for spacing between employees.

[bookmark: sqlckbk-CHP-12-SECT-4.2.1]

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each row based on EMPNO (14). Then use a CASE expression to transform three columns into one:

	 1 select case rn

	 2 when 1 then ename

	 3 when 2 then job

	 4 when 3 then cast(sal as char(4))

	 5 end emps

	 6 from (

	 7 select e.ename,e.job,e.sal,

	 8 row_number()over(partition by e.empno

	 9 order by e.empno) rn

	10 from emp e,

	11 (select *

	12 from emp where job='CLERK') four_rows

	13 where e.deptno=10

	14) x

[bookmark: sqlckbk-CHP-12-SECT-4.2.2]

PostgreSQL and MySQL

This recipe is meant to highlight the use of window functions to provide a ranking for your rows, which then comes into play later when [bookmark: idx-CHP-12-0708]pivoting. At the time of this writing, neither PostgreSQL nor MySQL support window functions.

[bookmark: sqlckbk-CHP-12-SECT-4.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-4.3.1]

DB2, Oracle, and SQL Server

The first step is to use the window function ROW_NUMBER OVER to create a ranking for each employee in DEPTNO 10:

	

	select e.ename,e.job,e.sal,

	 row_number()over(partition by e.empno

	 order by e.empno) rn

	 from emp e

	 where e.deptno=10

	ENAME JOB SAL RN

	---------- --------- ---------- ----------

	CLARK MANAGER 2450 1

	KING PRESIDENT 5000 1

	MILLER CLERK 1300 1

At this point the ranking doesn't mean much. You are partitioning by EMPNO, so the rank is 1 for all three rows in DEPTNO 10. Once you add the Cartesian product, the rank will begin to take shape, as can be seen in the following results:

	

	select e.ename,e.job,e.sal,

	 row_number()over(partition by e.empno

	 order by e.empno) rn

	 from emp e,

	 (select *

	 from emp where job='CLERK') four_rows

	 where e.deptno=10

	ENAME JOB SAL RN

	---------- --------- ---------- ----------

	CLARK MANAGER 2450 1

	CLARK MANAGER 2450 2

	CLARK MANAGER 2450 3

	CLARK MANAGER 2450 4

	KING PRESIDENT 5000 1

	KING PRESIDENT 5000 2

	KING PRESIDENT 5000 3

	KING PRESIDENT 5000 4

	MILLER CLERK 1300 1

	MILLER CLERK 1300 2

	MILLER CLERK 1300 3

	MILLER CLERK 1300 4

You should stop at this point and understand two key points:

			RN is no longer 1 for each employee; it is now a repeating sequence of values from 1 to 4, the reason being, window functions are applied after the FROM and WHERE clauses are evaluated. So, partitioning by EMPNO causes the RN to reset to 1 when a new employee is encountered.

			The inline view FOUR_ROWS is simply that a SQL statement exists simply to return four rows. That is all it does. You want to return a row for every column (ENAME, JOB, SAL) plus an additional row for whitespace.

At this point, the hard work is done and all that is left is to use a CASE expression to put ENAME, JOB, and SAL into one column for each employee (you need to cast SAL to a string to make CASE happy):

	

	select case rn

	 when 1 then ename

	 when 2 then joB

	 when 3 then cast(sal as char(4))

	 end emps

	 from (

	Select e.ename,e.job,e.sal,

	 row_number()over(partition by e.empno

	 order by e.empno) rn

	 from emp e,

	 (select *

	 from emp where job='CLERK') four_rows

	 where e.deptno=10

) x

	EMPS

	CLARK

	MANAGER

	2450

	KING

	PRESIDENT

	5000

	MILLER

	CLERK

	1300

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-5]

Recipe 12.5. Suppressing Repeating Values from a Result Set

[bookmark: idx-CHP-12-0709]

[bookmark: sqlckbk-CHP-12-SECT-5.1]

Problem

You are generating a report, and, when two rows have the same value in a column, you wish to display that value only once. For example, you want to return DEPTNO and ENAME from table EMP, you wish to group all rows for each DEPTNO, and you wish to display each DEPTNO only one time. You want to return the following result set:

	DEPTNO ENAME

	------ ---------

	 10 CLARK

	 KING

	 MILLER

	 20 SMITH

	 ADAMS

	 FORD

	 SCOTT

	 JONES

	 30 ALLEN

	 BLAKE

	 MARTIN

	 JAMES

	 TURNER

	 WARD

[bookmark: sqlckbk-CHP-12-SECT-5.2]

Solution

This is a simple formatting problem that is easily solved by the window function [bookmark: idx-CHP-12-0710]LAG OVER provided by Oracle. There are other methods such as scalar subqueries and other window functions that you can use (and that you'll have to use for non-Oracle platforms), but LAG OVER is most convenient and appropriate here.

[bookmark: sqlckbk-CHP-12-SECT-5.2.1]

DB2 and SQL Server

You can use the window function MIN OVER to find the smallest EMPNO for each DEPTNO. Then use a CASE expression to "white out" the rows that do not have this EMPNO:

	 1 select case when empno=min_empno

	 2 then deptno else null

	 3 end deptno,

	 4 ename

	 5 from (

	 6 select deptno,

	 7 min(empno)over(partition by deptno) min_empno,

	 8 empno,

	 9 ename

	10 from emp

	11) x

[bookmark: sqlckbk-CHP-12-SECT-5.2.2]

Oracle

Use the window function [bookmark: idx-CHP-12-0711]LAG OVER to access prior rows relative to the current row, to find the first DEPTNO for each partition:

	1 select to_number(

	2 decode(lag(deptno)over(order by deptno),

	3 deptno,null,deptno)

	4) deptno, ename

	5 from emp

[bookmark: sqlckbk-CHP-12-SECT-5.2.3]

PostgreSQL and MySQL

This recipe highlights the use of window functions for easily accessing rows around your current row. At the time of this writing, these vendors do not support window functions.

[bookmark: sqlckbk-CHP-12-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-5.3.1]

DB2 and SQL Server

The first step is to use the window function MIN OVER to find the lowest EMPNO in each DEPTNO:

	

	select deptno,

	 min(empno)over(partition by deptno) min_empno,

	 empno,

	 ename

	 from emp

	DEPTNO MIN_EMPNO EMPNO ENAME

	------ ---------- ---------- ----------

	 10 7782 7782 CLARK

	 10 7782 7839 KING

	 10 7782 7934 MILLER

	 20 7369 7369 SMITH

	 20 7369 7876 ADAMS

	 20 7369 7902 FORD

	 20 7369 7788 SCOTT

	 20 7369 7566 JONES

	 30 7499 7499 ALLEN

	 30 7499 7698 BLAKE

	 30 7499 7654 MARTIN

	 30 7499 7900 JAMES

	 30 7499 7844 TURNER

	 30 7499 7521 WARD

The next and last step is to use a CASE expression to suppress the repeated display of DEPTNO. If an employee's EMPNO matches MIN_EMPNO, return DEPTNO, otherwise return NULL:

	

	select case when empno=min_empno

	 then deptno else null

	 end deptno,

	 ename

	 from (

	Select deptno,

	 min(empno)over(partition by deptno) min_empno,

	 empno,

	 ename

	 from emp

) x

	DEPTNO ENAME

	------ ----------

	 10 CLARK

	 KING

	 MILLER

	 20 SMITH

	 ADAMS

	 FORD

	 SCOTT

	 JONES

	 30 ALLEN

	 BLAKE

	 MARTIN

	 JAMES

	 TURNER

	 WARD

[bookmark: sqlckbk-CHP-12-SECT-5.3.2]

Oracle

The first step is to use the window function LAG OVER to return the prior DEPTNO for each row:

	Select lag(deptno)over(order by deptno) lag_deptno,

	 deptno,

	 ename

	 from emp

	LAG_DEPTNO DEPTNO ENAME

	---------- ---------- ----------

	 10 CLARK

	 10 10 KING

	 10 10 MILLER

	 10 20 SMITH

	 20 20 ADAMS

	 20 20 FORD

	 20 20 SCOTT

	 20 20 JONES

	 20 30 ALLEN

	 30 30 BLAKE

	 30 30 MARTIN

	 30 30 JAMES

	 30 30 TURNER

	 30 30 WARD

If you eyeball the result set above, you can easily see where DEPTNO matches LAG_ DEPTNO. For those rows, you want to set DEPTNO to NULL. Do that by using DECODE (TO_NUMBER is included to cast DEPTNO as a number):

	

	select to_number(

	 decode(lag(deptno)over(order by deptno),

	 deptno,null,deptno)

) deptno, ename

	 from emp

	DEPTNO ENAME

	------ ----------

	 10 CLARK

	 KING

	 MILLER

	 20 SMITH

	 ADAMS

	 FORD

	 SCOTT

	 JONES

	 30 ALLEN

	 BLAKE

	 MARTIN

	 JAMES

	 TURNER

	 WARD

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-6]

Recipe 12.6. Pivoting a Result Set to Facilitate Inter-Row Calculations

[bookmark: idx-CHP-12-0712]

[bookmark: sqlckbk-CHP-12-SECT-6.1]

Problem

You wish to make calculations involving data from multiple rows. To make your job easier, you wish to pivot those rows into columns such that all [bookmark: idx-CHP-12-0713]values you need are then in a single row.

In this book's example data, DEPTNO 20 is the department with the highest combined salary, which you can confirm by executing the following query:

	

	select deptno, sum(sal) as sal

	 from emp

	 group by deptno

	DEPTNO SAL

	------ ----------

	 10 8750

	 20 10875

	 30 9400

You want to calculate the difference between the salaries of DEPTNO 20 and DEPTNO 10 and between DEPTNO 20 and DEPTNO 30.

[bookmark: sqlckbk-CHP-12-SECT-6.2]

Solution

Transpose the totals using the aggregate function SUM and a CASE expression. Then code your expressions in the select list:

	1 select d20_sal - d10_sal as d20_10_diff,

	2 d20_sal - d30_sal as d20_30_diff

	3 from (

	4 select sum(case when deptno=10 then sal end) as d10_sal,

	5 sum(case when deptno=20 then sal end) as d20_sal,

	6 sum(case when deptno=30 then sal end) as d30_sal

	7 from emp

	8) totals_by_dept

[bookmark: sqlckbk-CHP-12-SECT-6.3]

Discussion

The first step is to pivot the salaries for each DEPTNO from rows to columns by using a CASE expression:

	

	select case when deptno=10 then sal end as d10_sal,

	 case when deptno=20 then sal end as d20_sal,

	 case when deptno=30 then sal end as d30_sal

	 from emp

	D10_SAL D20_SAL D30_SAL

	------- ---------- ----------

	 800

	 1600

	 1250

	 2975

	 1250

	 2850

	 2450

	 3000

	 5000

	 1500

	 1100

	 950

	 3000

	 1300

The next step is to sum all the salaries for each DEPTNO by applying the aggregate function SUM to each CASE expression:

	

	select sum(case when deptno=10 then sal end) as d10_sal,

	 sum(case when deptno=20 then sal end) as d20_sal,

	 sum(case when deptno=30 then sal end) as d30_sal

	 from emp

	D10_SAL D20_SAL D30_SAL

	------- ---------- ----------

	 8750 10875 9400

The final step is to simply wrap the above SQL in an inline view and perform the subtractions.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-7]

Recipe 12.7. Creating Buckets of Data, of a Fixed Size

[bookmark: idx-CHP-12-0714]

[bookmark: sqlckbk-CHP-12-SECT-7.1]

Problem

You wish to organized data into evenly sized buckets, with a predetermined number of elements in each bucket. The total number of buckets may be unknown, but you want to ensure that each bucket has five elements. For example, you want to organize the employees in table EMP into groups of five based on the value of EMPNO, as shown in the following results:

	GRP EMPNO ENAME

	--- ---------- -------

	 1 7369 SMITH

	 1 7499 ALLEN

	 1 7521 WARD

	 1 7566 JONES

	 1 7654 MARTIN

	 2 7698 BLAKE

	 2 7782 CLARK

	 2 7788 SCOTT

	 2 7839 KING

	 2 7844 TURNER

	 3 7876 ADAMS

	 3 7900 JAMES

	 3 7902 FORD

	 3 7934 MILLER

[bookmark: sqlckbk-CHP-12-SECT-7.2]

Solution

The solution to this problem is greatly simplified if your RDBMS provides functions for ranking rows. Once rows are ranked, creating buckets of five is simply a matter of dividing and then taking the mathematical ceiling of the quotient.

[bookmark: sqlckbk-CHP-12-SECT-7.2.1]

DB2, Oracle, and SQL Server

Use the window function ROW_NUMBER OVER to rank each employee by EMPNO. Then divide by 5 to create the groups (SQL Server users will use CEILING, not CEIL):

	1 select ceil(row_number()over(order by empno)/5.0) grp,

	2 empno,

	3 ename

	4 from emp

[bookmark: sqlckbk-CHP-12-SECT-7.2.2]

PostgreSQL and MySQL

Use a scalar subquery to rank each EMPNO. Then divide by 5 to create the groups:

	1 select ceil(rnk/5.0) as grp,

	2 empno, ename

	3 from (

	4 select e.empno, e.ename,

	5 (select count(*) from emp d

	6 where e.empno > d.empno)+1 as rnk

	7 from emp e

	8) x

	9 order by grp

[bookmark: sqlckbk-CHP-12-SECT-7.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-7.3.1]

DB2, Oracle, and SQL Server

The window function ROW_NUMBER OVER assigns a rank or "row number" to each row sorted by EMPNO:

	

	select row_number()over(order by empno) rn,

	 empno,

	 ename

	 from emp

	RN EMPNO ENAME

	-- ---------- ----------

	 1 7369 SMITH

	 2 7499 ALLEN

	 3 7521 WARD

	 4 7566 JONES

	 5 7654 MARTIN

	 6 7698 BLAKE

	 7 7782 CLARK

	 8 7788 SCOTT

	 9 7839 KING

	10 7844 TURNER

	11 7876 ADAMS

	12 7900 JAMES

	13 7902 FORD

	14 7934 MILLER

The next step is to apply the function CEIL (or [bookmark: idx-CHP-12-0715]CEILING) after dividing ROW_ NUMBER OVER by five. Dividing by five logically organizes the rows into groups of five, i.e., five values less than or equal to 1, five values greater than 1 but less than or equal to 2, the remaining group (composed of the last four rows since 14, the number of rows in table EMP, is not a multiple of 5) has a value greater than 2 but less than or equal to 3.

The [bookmark: idx-CHP-12-0716]CEIL function will return the smallest whole number greater than the value passed to it; this will create whole number groups. The results of the division and application of the CEIL are shown below. You can follow the order of operation from left to right, from RN to DIVISION to GRP:

	

	select row_number()over(order by empno) rn,

	 row_number()over(order by empno)/5.0 division,

	 ceil(row_number()over(order by empno)/5.0) grp,

	 empno,

	 ename

	 from emp

	RN DIVISION GRP EMPNO ENAME

	-- ---------- --- ----- ----------

	 1 .2 1 7369 SMITH

	 2 .4 1 7499 ALLEN

	 3 .6 1 7521 WARD

	 4 .8 1 7566 JONES

	 5 1 1 7654 MARTIN

	 6 1.2 2 7698 BLAKE

	 7 1.4 2 7782 CLARK

	 8 1.6 2 7788 SCOTT

	 9 1.8 2 7839 KING

	10 2 2 7844 TURNER

	11 2.2 3 7876 ADAMS

	12 2.4 3 7900 JAMES

	13 2.6 3 7902 FORD

	14 2.8 3 7934 MILLER

[bookmark: sqlckbk-CHP-12-SECT-7.3.2]

PostgreSQL and MySQL

The first step is to use a scalar subquery to rank each row by EMPNO:

	

	select (select count(*) from emp d

	 where e.empno < d.empno)+1 as rnk,

	 e.empno, e.ename

	 from emp e

	 order by 1

	RNK EMPNO ENAME

	--- ---------- ----------

	 1 7934 MILLER

	 2 7902 FORD

	 3 7900 JAMES

	 4 7876 ADAMS

	 5 7844 TURNER

	 6 7839 KING

	 7 7788 SCOTT

	 8 7782 CLARK

	 9 7698 BLAKE

	10 7654 MARTIN

	11 7566 JONES

	12 7521 WARD

	13 7499 ALLEN

	14 7369 SMITH

The next step is to apply the function [bookmark: idx-CHP-12-0717]CEIL after dividing RNK by 5. Dividing by 5 logically organizes the rows into groups of five, i.e., five values less than or equal to 1, five values greater than one but less than or equal to 2, the remaining group (composed of the last four rows since 14, the number of rows in table EMP, is not a multiple of 5) has a value greater than 2 but less than or equal to 3. The results of the division and application of the CEIL are shown below. You can follow the order of operation from left to right as you work your way from RNK over to GRP:

	

	select rnk,

	 rnk/5.0 as division,

	 ceil(rnk/5.0) as grp,

	 empno, ename

	 from (

	Select e.empno, e.ename,

	 (select count(*) from emp d

	 where e.empno < d.empno)+1 as rnk

	 from emp e

) x

	 order by 1

	RNK DIVISION GRP EMPNO ENAME

	--- ---------- --- ----- -------

	 1 .2 1 7934 MILLER

	 2 .4 1 7902 FORD

	 3 .6 1 7900 JAMES

	 4 .8 1 7876 ADAMS

	 5 1 1 7844 TURNER

	 6 1.2 2 7839 KING

	 7 1.4 2 7788 SCOTT

	 8 1.6 2 7782 CLARK

	 9 1.8 2 7698 BLAKE

	 10 2 2 7654 MARTIN

	 11 2.2 3 7566 JONES

	 12 2.4 3 7521 WARD

	 13 2.6 3 7499 ALLEN

	 14 2.8 3 7369 SMITH

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-8]

Recipe 12.8. Creating a Predefined Number of Buckets

[bookmark: sqlckbk-CHP-12-SECT-8.1]

Problem

You want to organize your data into a fixed number of buckets. For example, you want to organize the employees in table EMP into four buckets. The result set should look similar to the following:

	GRP EMPNO ENAME

	--- ----- ---------

	 1 7369 SMITH

	 1 7499 ALLEN

	 1 7521 WARD

	 1 7566 JONES

	 2 7654 MARTIN

	 2 7698 BLAKE

	 2 7782 CLARK

	 2 7788 SCOTT

	 3 7839 KING

	 3 7844 TURNER

	 3 7876 ADAMS

	 4 7900 JAMES

	 4 7902 FORD

	 4 7934 MILLER

This problem is the opposite of the previous recipe, where you had an unknown number of buckets but a predetermined number of elements in each bucket. In this recipe, the goal is such that you may not necessarily know how many elements are in each bucket, but you are defining a fixed (known) number of buckets to be created.

[bookmark: sqlckbk-CHP-12-SECT-8.2]

Solution

The solution to this problem is trivial if your RDBMS provides functions for creating "buckets" of rows. If your RDBMS provides no such functions, you can simply rank each row, and then use the modulus of said rank and n, where n is the number of buckets you wish to create, in an expression to determine into which bucket the row falls. Where available, this solution will make use of the [bookmark: idx-CHP-12-0718]NTILE window function for creating a fixed number of buckets. NTILE organizes an ordered set into the number of buckets you specify, with any stragglers distributed into the available buckets starting from the first bucket. The desired result set for this recipe reflects this: buckets 1 and 2 have four rows while buckets 3 and 4 have three rows. If your RDBMS does not support NTILE, don't worry about which rows are in which buckets; the main goal of this recipe is to create the fixed number of buckets you are requesting.

[bookmark: sqlckbk-CHP-12-SECT-8.2.1]

DB2

Use the window function ROW_NUMBER OVER window function to rank the rows by EMPNO, then use the modulus of the rank and 4 to create four buckets:

	1 select mod(row_number()over(order by empno),4)+1 grp,

	2 empno,

	3 ename

	4 from emp

	5 order by 1

[bookmark: sqlckbk-CHP-12-SECT-8.2.2]

Oracle and SQL Server

The DB2 solution will work for these vendors but alternatively (conveniently) you may use the [bookmark: idx-CHP-12-0719]NTILE window function to create four buckets:

	1 select ntile(4)over(order by empno) grp,

	2 empno,

	3 ename

	4 from emp

[bookmark: sqlckbk-CHP-12-SECT-8.2.3]

MySQL, and PostgreSQL

Use a self join to rank the rows by EMPNO, then use the modulus of the rank and 4 to create your buckets:

	1 select mod(count(*),4)+1 as grp,

	2 e.empno,

	3 e.ename

	4 from emp e, emp d

	5 where e.empno >= d.empno

	6 group by e.empno,e.ename

	7 order by 1

[bookmark: sqlckbk-CHP-12-SECT-8.3]

Discussion

[bookmark: sqlckbk-CHP-12-SECT-8.3.1]

DB2

The first step is to use the window function ROW_NUMBER OVER to rank each row by EMPNO:

	

	select row_number()over(order by empno) grp,

	 empno,

	 ename

	 from emp

	GRP EMPNO ENAME

	--- ----- ------

	 1 7369 SMITH

	 2 7499 ALLEN

	 3 7521 WARD

	 4 7566 JONES

	 5 7654 MARTIN

	 6 7698 BLAKE

	 7 7782 CLARK

	 8 7788 SCOTT

	 9 7839 KING

	 10 7844 TURNER

	 11 7876 ADAMS

	 12 7900 JAMES

	 13 7902 FORD

	 14 7934 MILLER

Now that the rows are ranked, use the modulo function, MOD, to create four buckets:

	

	select mod(row_number()over(order by empno),4) grp,

	 empno,

	 ename

	 from emp

	GRP EMPNO ENAME

	--- ----- ------

	 1 7369 SMITH

	 2 7499 ALLEN

	 3 7521 WARD

	 0 7566 JONES

	 1 7654 MARTIN

	 2 7698 BLAKE

	 3 7782 CLARK

	 0 7788 SCOTT

	 1 7839 KING

	 2 7844 TURNER

	 3 7876 ADAMS

	 0 7900 JAMES

	 1 7902 FORD

	 2 7934 MILLER

The last step is to add one GRP so the buckets start at 1, not 0, and use ORDER BY on GRP to order the rows by bucket.

[bookmark: sqlckbk-CHP-12-SECT-8.3.2]

Oracle and SQL Server

All the work is done by the [bookmark: idx-CHP-12-0720]NTILE function. Simply pass it a number representing the number of buckets you want, and watch the magic unfold right in front of your eyes.

[bookmark: sqlckbk-CHP-12-SECT-8.3.3]

MySQL and PostgreSQL

The fist step is to generate a Cartesian product with table EMP so that each EMPNO can be compared with every other EMPNO [only a snippet of the Cartesian is shown below because there would be 196 rows returned (14x14)]:

	

	select e.empno,

	 e.ename,

	 d.empno,

	 d.ename

	 from emp e, emp d

	EMPNO ENAME EMPNO ENAME

	----- ---------- ---------- ---------

	 7369 SMITH 7369 SMITH

	 7369 SMITH 7499 ALLEN

	 7369 SMITH 7521 WARD

	 7369 SMITH 7566 JONES

	 7369 SMITH 7654 MARTIN

	 7369 SMITH 7698 BLAKE

	 7369 SMITH 7782 CLARK

	 7369 SMITH 7788 SCOTT

	 7369 SMITH 7839 KING

	 7369 SMITH 7844 TURNER

	 7369 SMITH 7876 ADAMS

	 7369 SMITH 7900 JAMES

	 7369 SMITH 7902 FORD

	 7369 SMITH 7934 MILLER

	 …

As you can see from this result set, you can compare SMITH's EMPNO to the EMPNO of all the other employees in EMP (you can compare each employee's EMPNO with all the other employees' EMPNOs). The next step is to restrict the Cartesian product to only those EMPNOs that are greater than or equal to another EMPNO. A portion of the result set (as there are 105 rows) is shown below:

	

	select e.empno,

	 e.ename,

	 d.empno,

	 d.ename

	 from emp e, emp d

	 where e.empno >= d.empno

	EMPNO ENAME EMPNO ENAME

	----- ---------- ---------- ----------

	 7934 MILLER 7934 MILLER

	 7934 MILLER 7902 FORD

	 7934 MILLER 7900 JAMES

	 7934 MILLER 7876 ADAMS

	 7934 MILLER 7844 TURNER

	 7934 MILLER 7839 KING

	 7934 MILLER 7788 SCOTT

	 7934 MILLER 7782 CLARK

	 7934 MILLER 7698 BLAKE

	 7934 MILLER 7654 MARTIN

	 7934 MILLER 7566 JONES

	 7934 MILLER 7521 WARD

	 7934 MILLER 7499 ALLEN

	 7934 MILLER 7369 SMITH

	 …

	 7499 ALLEN 7499 ALLEN

	 7499 ALLEN 7369 SMITH

	 7369 SMITH 7369 SMITH

Of the entire result set, I've included only rows (from EMP E) for MILLER, ALLEN, and SMITH in this output. The reason is to show you how the Cartesian product has been restricted by the WHERE clause. Because the filter on EMPNO in the WHERE clause uses "greater than or equal to," you know you will get at least one row for each employee because each EMPNO is equal to itself. But why is there only one row for SMITH (on the left-hand side of the result set) when there are two rows for ALLEN and 14 rows for MILLER? The reason is the compound evaluation on EMPNO in the WHERE clause: "greater than or equal to". In SMITH's case, there is no EMPNO that 7369 is greater than, so only one row is returned for SMITH. In ALLEN's case, ALLEN's EMPNO is obviously equal to itself (so that row is returned), but 7499 is also greater than 7369 (SMITH's EMPNO) so two rows are returned for ALLEN. In the case of MILLER's EMPNO 7934, it is greater than all the other EMPNOs in table EMP (and obviously equal to itself) so there are 14 MILLER rows returned.

Now you can compare each EMPNO and determine which ones are greater than others. Use the aggregate function COUNT to return the self join as a more expressive result set:

	

	select count(*) as grp,

	 e.empno,

	 e.ename

	 from emp e, emp d

	 where e.empno >= d.empno

	 group by e.empno,e.ename

	 order by 1

	GRP EMPNO ENAME

	--- ---------- ----------

	 1 7369 SMITH

	 2 7499 ALLEN

	 3 7521 WARD

	 4 7566 JONES

	 5 7654 MARTIN

	 6 7698 BLAKE

	 7 7782 CLARK

	 8 7788 SCOTT

	 9 7839 KING

	10 7844 TURNER

	11 7876 ADAMS

	12 7900 JAMES

	13 7902 FORD

	14 7934 MILLER

Now that the rows are ranked, simply add 1 to the modulus of GRP and 4 to create four buckets (adding 1 so the buckets start at 1, not 0). Use the ORDER BY clause on GRP to order the buckets appropriately:

	

	select mod(count(*),4)+1 as grp,

	 e.empno,

	 e.ename

	 from emp e, emp d

	 where e.empno >= d.empno

	 group by e.empno,e.ename

	 order by 1

	GRP EMPNO ENAME

	--- ---------- ---------

	 1 7900 JAMES

	 1 7566 JONES

	 1 7788 SCOTT

	 2 7369 SMITH

	 2 7902 FORD

	 2 7654 MARTIN

	 2 7839 KING

	 3 7499 ALLEN

	 3 7698 BLAKE

	 3 7934 MILLER

	 3 7844 TURNER

	 4 7521 WARD

	 4 7782 CLARK

	 4 7876 ADAMS

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12-SECT-9]

Recipe 12.9. Creating Horizontal Histograms

[bookmark: idx-CHP-12-0721]

[bookmark: idx-CHP-12-0722]

[bookmark: sqlckbk-CHP-12-SECT-9.1]

Problem

You want to use SQL to generate histograms that extend horizontally. For example, you want to display the number of employees in each department as a horizontal histogram with each employee represented by an instance of "*". You want to return the following result set:

	DEPTNO CNT

	------ ----------

	 10 ***

	 20 *****

	 30 ******

[bookmark: sqlckbk-CHP-12-SECT-9.2]

Solution

The key to this solution is to use the aggregate function COUNT, and use GROUP BY DEPTNO to determine the number of employees in each DEPTNO. The value returned by COUNT is then passed to a string function that generates a series of "*" characters.

[bookmark: sqlckbk-CHP-12-SECT-9.2.1]

DB2

Use the [bookmark: idx-CHP-12-0723]REPEAT function to generate the histogram:

	1 select deptno,

	2 repeat('*',count(*)) cnt

	3 from emp

	4 group by deptno

[bookmark: sqlckbk-CHP-12-SECT-9.2.2]

Oracle, PostgreSQL, and MySQL

Use the [bookmark: idx-CHP-12-0724]LPAD function to generate the needed strings of "*" characters:

	1 select deptno,

	2 lpad('*',count(*),'*') as cnt

	3 from emp

	4 group by deptno

[bookmark: sqlckbk-CHP-12-SECT-9.2.3]

SQL Server

Generate the histogram using the [bookmark: idx-CHP-12-0725]REPLICATE function:

	1 select deptno,

	2 replicate('*',count(*)) cnt

	3 from emp

	4 group by deptno

[bookmark: sqlckbk-CHP-12-SECT-9.3]

Discussion

The technique is the same for all vendors. The only difference lies in the string function used to return a "*" for each employee. The Oracle solution will be used for this discussion, but the explanation is relevant for all the solutions.

The first step is to count the number of employees in each department:

	

	select deptno,

	 count(*)

	 from emp

	 group by deptno

	DEPTNO COUNT(*)

	------ ----------

	 10 3

	 20 5

	 30 6

The next step is to use the value returned by COUNT(*) to control the number of "*"characters to return for each department. Simply pass COUNT(*) as an argument to the string function LPAD to return the desired number of "*"s:

	

	select deptno,

	 lpad('*',count(*),'*') as cnt

	 from emp

	 group by deptno

	DEPTNO CNT

	------ ----------

	 10 ***

	 20 *****

	 30 ******

For PostgreSQL users, you may need to explicitly cast the value returned by COUNT(*) to an integer as can be seen below:

	

	select deptno,

	 lpad('*',count(*)::integer,'*') as cnt

	 from emp

	 group by deptno

	DEPTNO CNT

	------ ----------

	 10 ***

	 20 *****

	 30 ******

This CAST is necessary because PostgreSQL requires the numeric argument to LPAD to be an integer.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-12]

Chapter 12. Reporting and Warehousing

This chapter introduces queries you may find helpful for creating reports. These typically involve reporting-specific formatting considerations along with different levels of aggregation. Another focus of this chapter is on transposing or pivoting result sets, converting rows into columns. Pivoting is an extremely useful technique for solving a variety of problems. As your comfort level increases with pivoting, you'll undoubtedly find uses for it outside of what are presented in this chapter.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13-SECT-1]

Recipe 13.1. Expressing a Parent-Child Relationship

[bookmark: idx-CHP-13-0803]

[bookmark: sqlckbk-CHP-13-SECT-1.1]

Problem

You want to include parent information along with data from child records. For example, you want to display each employee's name along with the name of his manager. You want to return the following result set:

	EMPS_AND_MGRS

	FORD works for JONES

	SCOTT works for JONES

	JAMES works for BLAKE

	TURNER works for BLAKE

	MARTIN works for BLAKE

	WARD works for BLAKE

	ALLEN works for BLAKE

	MILLER works for CLARK

	ADAMS works for SCOTT

	CLARK works for KING

	BLAKE works for KING

	JONES works for KING

	SMITH works for FORD

[bookmark: sqlckbk-CHP-13-SECT-1.2]

Solution

Self join EMP on MGR and EMPNO to find the name of each employee's manager. Then use your RDBMS's supplied function(s) for string concatenation to generate the strings in the desired result set.

[bookmark: sqlckbk-CHP-13-SECT-1.2.1]

DB2, Oracle, and PostgreSQL

Self join on EMP. Then use the double vertical-bar (||) concatenation operator:

	1 select a.ename || ' works for ' || b.ename as emps_and_mgrs

	2 from emp a, emp b

	3 where a.mgr = b.empno

[bookmark: sqlckbk-CHP-13-SECT-1.2.2]

MySQL

Self join on EMP. Then use the concatenation function CONCAT:

	1 select concat(a.ename, ' works for ',b.ename) as emps_and_mgrs

	2 from emp a, emp b

	3 where a.mgr = b.empno

[bookmark: sqlckbk-CHP-13-SECT-1.2.3]

SQL Server

Self join on EMP. Then use the plus sign (+) as the concatenation operator:

	1 select a.ename + ' works for ' + b.ename as emps_and_mgrs

	2 from emp a, emp b

	3 where a.mgr = b.empno

[bookmark: sqlckbk-CHP-13-SECT-1.3]

Discussion

The implementation is essentially the same for all the solutions. The difference lies only in the method of string concatenation, and thus one discussion will cover all of the solutions.

The key is the join between MGR and EMPNO. The fist step is to build a Cartesian product by joining EMP to itself (only a portion of the rows returned by the Cartesian product is shown below):

	

	select a.empno, b.empno

	 from emp a, emp b

	EMPNO MGR

	----- ----------

	 7369 7369

	 7369 7499

	 7369 7521

	 7369 7566

	 7369 7654

	 7369 7698

	 7369 7782

	 7369 7788

	 7369 7839

	 7369 7844

	 7369 7876

	 7369 7900

	 7369 7902

	 7369 7934

	 7499 7369

	 7499 7499

	 7499 7521

	 7499 7566

	 7499 7654

	 7499 7698

	 7499 7782

	 7499 7788

	 7499 7839

	 7499 7844

	 7499 7876

	 7499 7900

	 7499 7902

	 7499 7934

As you can see, by using a Cartesian product you are returning every possible EMPNO/EMPNO combination (such that it looks like the manager for EMPNO 7369 is all the other employees in the table, including EMPNO 7369).

The next step is to filter the results such that you return only each employee and his manager's EMPNO. Accomplish this by joining on MGR and EMPNO:

	

	1 select a.empno, b.empno mgr

	2 from emp a, emp b

	3 where a.mgr = b.empno

	 EMPNO MGR

	---------- ----------

	 7902 7566

	 7788 7566

	 7900 7698

	 7844 7698

	 7654 7698

	 7521 7698

	 7499 7698

	 7934 7782

	 7876 7788

	 7782 7839

	 7698 7839

	 7566 7839

	 7369 7902

Now that you have each employee and the EMPNO of his manager, you can return the name of each manager by simply selecting B.ENAME rather than B.EMPNO. If after some practice you have difficulty grasping how this works, you can use a scalar subquery rather than a self join to get the answer:

	

	select a.ename,

	 (select b.ename

	 from emp b

	 where b.empno = a.mgr) as mgr

	 from emp a

	ENAME MGR

	---------- ----------

	SMITH FORD

	ALLEN BLAKE

	WARD BLAKE

	JONES KING

	MARTIN BLAKE

	BLAKE KING

	CLARK KING

	SCOTT JONES

	KING

	TURNER BLAKE

	ADAMS SCOTT

	JAMES BLAKE

	FORD JONES

	MILLER CLARK

The scalar subquery version is equivalent [bookmark: idx-CHP-13-0804]to the self join, except for one row: employee KING is in the result set, but that is not the case with the self join. "Why not?" you might ask. Remember, NULL is never equal to anything, not even itself. In the self-join solution, you use an equi-join between EMPNO and MGR, thus filtering out any employees who have NULL for MGR. To see employee KING when using the self-join method, you must outer join as shown in the following two queries. The first solution uses the ANSI outer join while the second uses the Oracle outer-join syntax. The output is the same for both and is shown following the second query:

	

	/* ANSI */

	select a.ename, b.ename mgr

	 from emp a left join emp b

	 on (a.mgr = b.empno)

	/* Oracle */

	select a.ename, b.ename mgr

	 from emp a, emp b

	 where a.mgr = b.empno (+)

	ENAME MGR

	---------- ----------

	FORD JONES

	SCOTT JONES

	JAMES BLAKE

	TURNER BLAKE

	MARTIN BLAKE

	WARD BLAKE

	ALLEN BLAKE

	MILLER CLARK

	ADAMS SCOTT

	CLARK KING

	BLAKE KING

	JONES KING

	SMITH FORD

	KING

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13-SECT-2]

Recipe 13.2. Expressing a Child-Parent-Grandparent Relationship

[bookmark: sqlckbk-CHP-13-SECT-2.1]

Problem

Employee CLARK works for KING and to express that relationship you can use the first recipe in this chapter. What if employee CLARK was in turn a manager for another employee? Consider the following query:

	

	select ename,empno,mgr

	 from emp

	 where ename in ('KING','CLARK','MILLER')

	ENAME EMPNO MGR

	--------- -------- -------

	CLARK 7782 7839

	KING 7839

	MILLER 7934 7782

As you can see, employee MILLER works for CLARK who in turn works for KING. You want to express the full hierarchy from MILLER to KING. You want to return the following result set:

	LEAF___BRANCH___ROOT

	MILLER-->CLARK-->KING

However, the single self-join approach from the previous recipe will not suffice to show the entire relationship from top to bottom. You could write a query that does two self joins, but what you really need is a general approach for traversing such hierarchies.

[bookmark: sqlckbk-CHP-13-SECT-2.2]

Solution

This recipe differs from the first recipe because there is now a three-tier relationship, as the title suggests. If your RDBMS does not supply functionality for traversing tree-structured data, then you can solve this problem using the technique from , but you must add an additional self join. DB2, SQL Server, and Oracle offer functions for expressing hierarchies. Thus self joins on those RDBMSs aren't necessary, though they certainly work.

[bookmark: sqlckbk-CHP-13-SECT-2.2.1]

DB2 and SQL Server

Use the recursive WITH clause to find MILLER's manager, CLARK, then CLARK's manager, KING. The SQL Server string concatenation operator + is used in this solution:

	1 with x (tree,mgr,depth)

	2 as (

	3 select cast(ename as varchar(100)),

	4 mgr, 0

	5 from emp

	6 where ename = 'MILLER'

	7 union all

	8 select cast(x.tree+'-->'+e.ename as varchar(100)),

	9 e.mgr, x.depth+1

	10 from emp e, x

	11 where x.mgr = e.empno

	12)

	13 select tree leaf___branch___root

	14 from x

	15 where depth = 2

The only modification necessary for this solution to work on DB2 is to use DB2's concatenation operator, ||. Otherwise, the solution will work as is, on DB2 as well as SQL Server.

[bookmark: sqlckbk-CHP-13-SECT-2.2.2]

Oracle

Use the function [bookmark: idx-CHP-13-0805]SYS_CONNECT_BY_PATH to return MILLER, MILLER's manager, CLARK, then CLARK's manager, KING. Use the CONNECT BY clause to walk the tree:

	1 select ltrim(

	2 sys_connect_by_path(ename,'-->'),

	3 '-->') leaf___branch___root

	4 from emp

	5 where level = 3

	6 start with ename = 'MILLER'

	7 connect by prior mgr = empno

[bookmark: sqlckbk-CHP-13-SECT-2.2.3]

PostgreSQL and MySQL

Self join on table EMP twice to return MILLER, MILLER's manager, CLARK, then CLARK's manager, KING. The following solution uses PostgreSQL's concatenation operator, the double vertical-bar (||):

	1 select a.ename||'-->'||b.ename

	2 ||'-->'||c.ename as leaf___branch___root

	3 from emp a, emp b, emp c

	4 where a.ename = 'MILLER'

	5 and a.mgr = b.empno

	6 and b.mgr = c.empno

For MySQL users, simply use the CONCAT function; this solution will work for PostgreSQL as well.

[bookmark: sqlckbk-CHP-13-SECT-2.3]

Discussion

[bookmark: sqlckbk-CHP-13-SECT-2.3.1]

DB2 and SQL Server

The approach here is to start at the leaf node and walk your way up to the root (as useful practice, try walking in the other direction). The upper part of the UNION ALL simply finds the row for employee MILLER (the leaf node). The lower part of the UNION ALL finds the employee who is MILLER's manager, then finds that person's manager, and this process of finding the "manager's manager" repeats until processing stops at the highest-level manager (the root node). The value for DEPTH starts at 0 and increments automatically by 1 each time a manager is found. DEPTH is a value that DB2 maintains for you when you execute a recursive query.

						[image:]			

For an interesting and in-depth introduction to the WITH clause with focus on its use recursively, see Jonathan Gennick's article "[bookmark: idx-CHP-13-0806]Understanding the WITH Clause" at http://gennick.com/with.htm.

Next, the second query of the UNION ALL joins the recursive view X to table EMP, to define the parentchild relationship. The query at this point, using SQL Server's concatenation operator, is as follows:

	

	 with x (tree,mgr,depth)

	 as (

	select cast(ename as varchar(100)),

	 mgr, 0

	 from emp

	 where ename = 'MILLER'

	 union all

	select cast(x.tree+'-->'+e.ename as varchar(100)),

	 e.mgr, x.depth+1

	 from emp e, x

	 where x.mgr = e.empno

)

	select tree leaf___branch___root

	 from x

	TREE DEPTH

	---------- ----------

	MILLER 0

	CLARK 1

	KING 2

At this point, the heart of the problem has been solved; starting from MILLER, return the full hierarchical relationship from bottom to top. What's left then is merely formatting. Since the tree traversal is recursive, simply concatenate the current ENAME from EMP to the one before it, which gives you the following result set:

	

	 with x (tree,mgr,depth)

	 as (

	select cast(ename as varchar(100)),

	 mgr, 0

	 from emp

	 where ename = 'MILLER'

	 union all

	select cast(x.tree+'-->'+e.ename as varchar(100)),

	 e.mgr, x.depth+1

	 from emp e, x

	 where x.mgr = e.empno

)

	select depth, tree

	 from x

	DEPTH TREE

	----- ---------------------------

	 0 MILLER

	 1 MILLER-->CLARK

	 2 MILLER-->CLARK-->KING

The final step is to keep only the last row in the hierarchy. There are several ways to do this, but the solution uses DEPTH to determine when the root is reached (obviously, if CLARK has a manager other than KING, the filter on DEPTH would have to change; for a more generic solution that requires no such filter, see the next recipe).

[bookmark: sqlckbk-CHP-13-SECT-2.3.2]

Oracle

The CONNECT BY clause does all the work in the Oracle solution. Starting with MILLER, you walk all the way to KING without the need for any joins. The expression in the CONNECT BY clause defines the relationship of the data and how the tree will be walked:

	

	 select ename

	 from emp

	 start with ename = 'MILLER'

	connect by [bookmark: idx-CHP-13-0807]prior mgr = empno

	ENAME

	MILLER

	CLARK

	KING

The keyword PRIOR lets you access values from the previous record in the hierarchy. Thus, for any given EMPNO you can use PRIOR MGR to access that employee's manager number. When you see a clause such as CONNECT BY PRIOR MGR = EMPNO, think of that clause as expressing a join between, in this case, parent and child.

						[image:]			

For more on CONNECT BY and related features, see the following Oracle Technology Network articles: "Querying Hierarchies: Top-of-the-Line Support" at http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby.html, and "New CONNECT BY Features in Oracle Database 10g"at http://www.oracle.com/technology/oramag/webcolumns/2003/techarticles/gennick_connectby_10g.html.

At this point you have successfully displayed the full hierarchy starting from MILLER and ending at KING. The problem is for the most part solved. All that remains is the formatting. Use the function [bookmark: idx-CHP-13-0808]SYS_CONNECT_BY_PATH to append each ENAME to the one before it:

	

	 select sys_connect_by_path(ename,'-->') tree

	 from emp

	 start with ename = 'MILLER'

	connect by prior mgr = empno

	TREE

	-->MILLER

	-->MILLER-->CLARK

	-->MILLER-->CLARK-->KING

Because you are interested in only the complete hierarchy, you can filter on the pseudo-column LEVEL (a more generic approach is shown in the next recipe):

	

	 select sys_connect_by_path(ename,'-->') tree

	 from emp

	 where level = 3

	 start with ename = 'MILLER'

	connect by prior mgr = empno

	TREE

	-->MILLER-->CLARK-->KING

The final step is to use the [bookmark: idx-CHP-13-0809]LTRIM function to remove the leading "-->" from the result set.

[bookmark: sqlckbk-CHP-13-SECT-2.3.3]

PostgreSQL and MySQL

Without built-in support for hierarchical queries, you must self join n times to return the whole tree (where n is the number of nodes between the leaf and the root, including the root itself; in this example, relative to MILLER, CLARK is a branch node and KING is the root node, so the distance is two nodes, and n = 2). This solution simply uses the technique from the previous recipe and adds one more self join:

	

	select a.ename as leaf,

	 b.ename as branch,

	 c.ename as root

	 from emp a, emp b, emp c

	 where a.ename = 'MILLER'

	 and a.mgr = b.empno

	 and b.mgr = c.empno

	LEAF BRANCH ROOT

	--------- ---------- -----

	MILLER CLARK KING

The next and last step is to format the output using the || concatenation operator for PostgreSQL or the CONCAT function for MySQL. The drawback to this kind of query is that if the hierarchy changesfor example, if there is another node between CLARK and KINGthe query would need to have yet another join to return the whole tree. This is why it is such an advantage to have and use built-in functions for hierarchies.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13-SECT-3]

Recipe 13.3. Creating a Hierarchical View of a Table

[bookmark: sqlckbk-CHP-13-SECT-3.1]

Problem

You want to return a result set that describes the hierarchy of an entire table. In the case of the EMP table, employee KING has no manager, so KING is the root node. You want to display, starting from KING, all employees under KING and all employees (if any) under KING's subordinates. Ultimately, you want to return the following result set:

	EMP_TREE

	KING

	KING - BLAKE

	KING - BLAKE - ALLEN

	KING - BLAKE - JAMES

	KING - BLAKE - MARTIN

	KING - BLAKE - TURNER

	KING - BLAKE - WARD

	KING - CLARK

	KING - CLARK - MILLER

	KING - JONES

	KING - JONES - FORD

	KING - JONES - FORD - SMITH

	KING - JONES - SCOTT

	KING - JONES - SCOTT - ADAMS

[bookmark: sqlckbk-CHP-13-SECT-3.2]

Solution

[bookmark: sqlckbk-CHP-13-SECT-3.2.1]

DB2 and SQL Server

Use the recursive WITH clause to start building the hierarchy at KING and then ultimately display all the employees. The solution following uses the DB2 concatenation operator "||". SQL Server users use the concatenation operator +. Other than the concatenation operators, the solution will work as-is on both RDBMSs:

	 1 with x (ename,empno)

	 2 as (

	 3 select cast(ename as varchar(100)),empno

	 4 from emp

	 5 where mgr is null

 	 6 union all

	 7 select cast(x.ename||' - '||e.ename as varchar(100)),

	 8 e.empno

	 9 from emp e, x

	10 where e.mgr = x.empno

	11)

	12 select ename as emp_tree

	13 from x

	14 order by 1

[bookmark: sqlckbk-CHP-13-SECT-3.2.2]

Oracle

Use the CONNECT BY function to define the hierarchy. Use SYS_CONNECT_BY_PATH function to format the output accordingly:

	1 select ltrim(

	2 sys_connect_by_path(ename,' - '),

	3 ' - ') emp_tree

	4 from emp

	5 start with mgr is null

	6 connect by prior empno=mgr

	7 order by 1

This solution differs from that in the previous recipe in that it includes no filter on the LEVEL pseudo-column. Without the filter, all possible trees (where PRIOR EMPNO=MGR) are displayed.

[bookmark: sqlckbk-CHP-13-SECT-3.2.3]

PostgreSQL

Use three UNIONs and multiple self joins:

	 1 select emp_tree

	 2 from (

	 3 select ename as emp_tree

	 4 from emp

	 5 where mgr is null

	 6 union

	 7 select a.ename||' - '||b.ename

	 8 from emp a

	 9 join

	10 emp b on (a.empno=b.mgr)

	11 where a.mgr is null

	12 union

	13 select rtrim(a.ename||' - '||b.ename

	14 ||' - '||c.ename,' - ')

	15 from emp a

	16 join

	17 emp b on (a.empno=b.mgr)

	18 left join

	19 emp c on (b.empno=c.mgr)

	20 where a.ename = 'KING'

	21 union

	22 select rtrim(a.ename||' - '||b.ename||' - '||

	23 c.ename||' - '||d.ename,' - ')

	24 from emp a

	25 join

	26 emp b on (a.empno=b.mgr)

	27 join

	28 emp c on (b.empno=c.mgr)

	29 left join

	30 emp d on (c.empno=d.mgr)

	31 where a.ename = 'KING'

	32) x

	33 where tree is not null

	34 order by 1

[bookmark: sqlckbk-CHP-13-SECT-3.2.4]

MySQL

Use three UNIONs and multiple self joins:

	 1 select emp_tree

	 2 from (

	 3 select ename as emp_tree

	 4 from emp

	 5 where mgr is null

	 6 union

	 7 select concat(a.ename,' - ',b.ename)

	 8 from emp a

	 9 join

	10 emp b on (a.empno=b.mgr)

	11 where a.mgr is null

	12 union

	13 select concat(a.ename,' - ',

	14 b.ename,' - ',c.ename)

	15 from emp a

	16 join

	17 emp b on (a.empno=b.mgr)

	18 left join

	19 emp c on (b.empno=c.mgr)

	20 where a.ename = 'KING'

	21 union

	22 select concat(a.ename,' - ',b.ename,' - ',

	23 c.ename,' - ',d.ename)

	24 from emp a

	25 join

	26 emp b on (a.empno=b.mgr)

	27 join

	28 emp c on (b.empno=c.mgr)

	29 left join

	30 emp d on (c.empno=d.mgr)

	31 where a.ename = 'KING'

	32) x

	33 where tree is not null

	34 order by 1

[bookmark: sqlckbk-CHP-13-SECT-3.3]

Discussion

[bookmark: sqlckbk-CHP-13-SECT-3.3.1]

DB2 and SQL Server

The first step is to identify the root row (employee KING) in the upper part of the UNION ALL in the recursive view X. The next step is to find KING's subordinates, and their subordinates if there are any, by joining recursive view X to table EMP. Recursion will continue until you've returned all employees. Without the formatting you see in the final result set, the result set returned by the recursive view X is shown below:

	

	with x (ename,empno)

	 as (

	select cast(ename as varchar(100)),empno

	 from emp

	 where mgr is null

	 union all

	select cast(e.ename as varchar(100)),e.empno

	 from emp e, x

	 where e.mgr = x.empno

)

	 select ename emp_tree

	 from x

	 EMP_TREE

	 KING

	 JONES

	 SCOTT

	 ADAMS

	 FORD

	 SMITH

	 BLAKE

	 ALLEN

	 WARD

	 MARTIN

	 TURNER

	 JAMES

	 CLARK

	 MILLER

All the rows in the hierarchy are returned (which can be useful), but without the formatting you cannot tell who the managers are. By concatenating each employee to her manager, you return more meaningful output. Produce the desired output simply by using

	cast(x.ename+','+e.ename as varchar(100))

in the SELECT clause of the lower portion of the UNION ALL in recursive view X.

The WITH clause is extremely useful in solving this type of problem, because the hierarchy can change (for example, leaf nodes become branch nodes) without any need to modify the query.

[bookmark: sqlckbk-CHP-13-SECT-3.3.2]

Oracle

The CONNECT BY clause returns the rows in the hierarchy. The [bookmark: idx-CHP-13-0810]START WITH clause defines the root row. If you run the solution without SYS_CONNECT_BY_PATH, you can see that the correct rows are returned (which can be useful), but not formatted to express the relationship of the rows:

	

	select ename emp_tree

	 from emp

	 start with mgr is null

	connect by prior empno = mgr

	EMP_TREE

	KING

	JONES

	SCOTT

	ADAMS

	FORD

	SMITH

	BLAKE

	ALLEN

	WARD

	MARTIN

	TURNER

	JAMES

	CLARK

	MILLER

By using the pseudo-column LEVEL and the function LPAD, you can see the hierarchy more clearly, and you can ultimately see why SYS_CONNECT_BY_PATH returns the results that you see in the desired output shown earlier:

	select lpad('.',2*level,'.')||ename emp_tree

	 from emp

	 start with mgr is null

	connect by prior empno = mgr

	EMP_TREE

	..KING

JONES

SCOTT

ADAMS

FORD

SMITH

BLAKE

ALLEN

WARD

MARTIN

TURNER

JAMES

CLARK

MILLER

The indentation in this output indicates who the managers are by nesting subordinates under their superiors. For example, KING works for no one. JONES works for KING. SCOTT works for JONES. ADAMS works for SCOTT.

If you look at the corresponding rows from the solution when using SYS_CONNECT_BY_PATH, you will see that SYS_CONNECT_BY_PATH rolls up the hierarchy for you. When you get [bookmark: idx-CHP-13-0811]to a new node, you see all the prior nodes as well:

	KING

	KING - JONES

	KING - JONES - SCOTT

	KING - JONES - SCOTT - ADAMS

						[image:]			

If you are on Oracle8i Database or earlier, you can use the PostgreSQL solution to this problem. Alternatively, because CONNECT BY is available on older versions of Oracle, you can simply use LEVEL and RPAD/ LPAD for formatting (although to reproduce the output created by SYS_CONNECT_BY_PATH would require a bit more work).

[bookmark: sqlckbk-CHP-13-SECT-3.3.3]

PostgreSQL and MySQL

With the exception of string concatenation in the SELECT clauses, the solutions are the same for both PostgreSQL and MySQL. The first step is to determine the maximum number of nodes for any one branch. You have to do this manually, before you write the query. If you examine the data in the EMP table, you will see that employees ADAM and SMITH are the leaf nodes at the greatest depth (you may wish to look at the Oracle discussion where you'll find a nicely formatted tree of the EMP hierarchy). If you look at employee ADAMS, you see that ADAMS works for SCOTT who in turn works for JONES who in turn works for KING, so the depth is 4. To be able to express a hierarchy with a depth of four, you must self join four instances of table EMP, and you must write a four-part UNION query. The results of the four-way self join (which is the lower part of the last UNION, from top to bottom) is shown below (using PostgreSQL syntax; MySQL users, simply substitute "||" for the CONCAT function call):

	

	select rtrim(a.ename||' - '||b.ename||' - '||

	 c.ename||' - '||d.ename,' - ') as max_depth_4

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 join

	 emp c on (b.empno=c.mgr)

	 left join

	 emp d on (c.empno=d.mgr)

	 where a.ename = 'KING'

	MAX_DEPTH_4

	KING - JONES - FORD - SMITH

	KING - JONES - SCOTT - ADAMS

	KING - BLAKE - TURNER

	KING - BLAKE - ALLEN

	KING - BLAKE - WARD

	KING - CLARK - MILLER

	KING - BLAKE - MARTIN

	KING - BLAKE - JAMES

The filter on A.ENAME is necessary to ensure that the root row is KING and no other employee. If you look at the result set above and compare it with the final result set, you'll see that there are some three-deep hierarchies not returned: KING - JONES - FORD and KING - JONES - SCOTT. To include those rows in the final result set, you need to write another query similar to the one above, but with one less join (self joining only three instances of table EMP rather than four). The result set of this query is shown below:

	

	select rtrim(a.ename||' - '||b.ename

	 ||' - '||c.ename,' - ') as max_depth_3

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 left join

	 emp c on (b.empno=c.mgr)

	 where a.ename = 'KING'

	MAX_DEPTH_3

	KING - BLAKE - ALLEN

	KING - BLAKE - WARD

	KING - BLAKE - MARTIN

	KING - JONES - SCOTT

	KING - BLAKE - TURNER

	KING - BLAKE - JAMES

	KING - JONES - FORD

	KING - CLARK - MILLER

Like the query before it, the filter on A.ENAME is necessary to ensure the root row node is KING. You'll notice some overlapping rows between the query above and the four-way EMP join. To get rid of the redundant rows, simply UNION the two queries:

	

	select rtrim(a.ename||' - '||b.ename

	 ||' - '||c.ename,' - ') as partial_tree

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 left join

	 emp c on (b.empno=c.mgr)

	 where a.ename = 'KING'

	union

	select rtrim(a.ename||' - '||b.ename||' - '||

	 c.ename||' - '||d.ename,' - ')

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 join

	 emp c on (b.empno=c.mgr)

	 left join

	 emp d on (c.empno=d.mgr)

	 where a.ename = 'KING'

	PARTIAL_TREE

	KING - BLAKE - ALLEN

	KING - BLAKE - JAMES

	KING - BLAKE - MARTIN

	KING - BLAKE - TURNER

	KING - BLAKE - WARD

	KING - CLARK - MILLER

	KING - JONES - FORD

	KING - JONES - FORD - SMITH

	KING - JONES - SCOTT

	KING - JONES - SCOTT - ADAMS

At this point the tree is almost complete. The next step is to return rows that represent a two-deep hierarchy with KING as the root node (i.e., employees who work directly for KING). The query to return those rows is shown below:

	

	select a.ename||' - '||b.ename as max_depth_2

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 where a.mgr is null

	MAX_DEPTH_2

	KING - JONES

	KING - BLAKE

	KING - CLARK

The next step is to UNION the above query, to the PARTIAL_TREE union:

	

	select a.ename||' - '||b.ename as partial_tree

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 where a.mgr is null

	union

	select rtrim(a.ename||' - '||b.ename

	 ||' - '||c.ename,' - ')

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 left join

	 emp c on (b.empno=c.mgr)

	 where a.ename = 'KING'

	union

	select rtrim(a.ename||' - '||b.ename||' - '||

	 c.ename||' - '||d.ename,' - ')

	 from emp a

	 join

	 emp b on (a.empno=b.mgr)

	 join

	 emp c on (b.empno=c.mgr)

	 left join

	 emp d on (c.empno=d.mgr)

	 where a.ename = 'KING'

	PARTIAL_TREE

	KING - BLAKE

	KING - BLAKE - ALLEN

	KING - BLAKE - JAMES

	KING - BLAKE - MARTIN

	KING - BLAKE - TURNER

	KING - BLAKE - WARD

	KING - CLARK

	KING - CLARK - MILLER

	KING - JONES

	[bookmark: idx-CHP-13-0812]KING - JONES - FORD

	KING - JONES - FORD - SMITH

	KING - JONES - SCOTT

	KING - JONES - SCOTT - ADAMS

The final step is to UNION KING to the top of PARTIAL_TREE to return the desired result set.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13-SECT-4]

Recipe 13.4. Finding All Child Rows for a Given Parent Row

[bookmark: sqlckbk-CHP-13-SECT-4.1]

Problem

You want to find all the employees who work for JONES, either directly or indirectly (i.e., they work for someone who works for JONES). The list of employees under JONES is shown below (JONES is included in the result set):

	ENAME

	JONES

	SCOTT

	ADAMS

	FORD

	SMITH

[bookmark: sqlckbk-CHP-13-SECT-4.2]

Solution

Being able to move to the absolute top or bottom of a tree is extremely useful. For this solution there is no special formatting necessary. The goal is to simply return all employees who work under employee JONES, including JONES himself. This type of query really shows the usefulness of recursive SQL extensions like Oracle's CONNECT BY and SQL Server's/DB2's [bookmark: idx-CHP-13-0813]WITH clause.

[bookmark: sqlckbk-CHP-13-SECT-4.2.1]

DB2 and SQL Server

Use the recursive WITH clause to find all employees under JONES. Begin with JONES by specifying WHERE ENAME = 'JONES' in the first of the two union queries:

	 1 with x (ename,empno)

	 2 as (

	 3 select ename,empno

	 4 from emp

	 5 where ename = 'JONES'

	 6 union all

	 7 select e.ename, e.empno

	 8 from emp e, x

	 9 where x.empno = e.mgr

	10)

	11 select ename

	12 from x

[bookmark: sqlckbk-CHP-13-SECT-4.2.2]

Oracle

Use the CONNECT BY clause and specify START WITH ENAME = 'JONES' to find all the employees under JONES:

	1 select ename

	2 from emp

	3 start with ename = 'JONES'

	4 connect by prior empno = mgr

[bookmark: sqlckbk-CHP-13-SECT-4.2.3]

PostgreSQL and MySQL

You must know in advance how many nodes there are in the tree. The following queries show how to determine the depth of the hierarchy:

	

	/* find JONES' EMPNO */

	select ename,empno,mgr

	 from emp

	 where ename = 'JONES'

	ENAME EMPNO MGR

	---------- ----------- ---------

	JONES 7566 7839

	

	/* are there any employees who work directly under JONES? */

	select count(*)

	 from emp

	 where mgr = 7566

	 COUNT(*)

	 2

	

	/* there are two employees under JONES, find their EMPNOs */

	select ename,empno,mgr

	 from emp

	 where mgr = 7566

	ENAME EMPNO MGR

	---------- ----------- -----------

	SCOTT 7788 7566

	FORD 7902 7566

	

	/* are there any employees under SCOTT or FORD? */

	select count(*)

	 from emp

	 where mgr in (7788,7902)

	 COUNT(*)

	 2

	

	/* there are two employees under SCOTT or FORD, find their EMPNOs */

	select ename,empno,mgr

	 from emp

	 where mgr in (7788,7902)

	ENAME EMPNO MGR

	--------- ----------- --------

	SMITH 7369 7902

	ADAMS 7876 7788

	

	/* are there any employees under SMITH or ADAMS? */

	select count(*)

	 from emp

	 where mgr in (7369,7876)

	 COUNT(*)

	 0

The hierarchy starting from JONES ends with employees SMITH and ADAMS. That makes the hierarchy three levels deep. Now that you know the depth, you can begin [bookmark: idx-CHP-13-0814]to traverse the hierarchy from top to bottom.

First, self join table EMP twice. Then unpivot inline view X to transform three columns with two rows into one column with six rows (in PostgreSQL, you can use GENERATE_SERIES(1,6) as an alternative to querying the T100 pivot table):

	 1 select distinct

	 2 case t100.id

	 3 when 1 then root

	 4 when 2 then branch

	 5 else leaf

	 6 end as JONES_SUBORDINATES

	 7 from (

	 8 select a.ename as root,

	 9 b.ename as branch,

	10 c.ename as leaf

	11 from emp a, emp b, emp c

	12 where a.ename = 'JONES'

	13 and a.empno = b.mgr

	14 and b.empno = c.mgr

	15) x,

	16 t100

	17 where t100.id <= 6

As an alternative, you can use views and UNION the results. If you create the following views:

	create view v1

	as

	select ename,mgr,empno

	 from emp

	 where ename = 'JONES'

	 create view v2

	 as

	 select ename,mgr,empno

	 from emp

	 where mgr = (select empno from v1)

	 create view v3

	 as

	 select ename,mgr,empno

	 from emp

	 where mgr [bookmark: idx-CHP-13-0815]in (select empno from v2)

the solution then becomes:

	select ename from v1

	 union

	select ename from v2

	 union

	select ename from v3

[bookmark: sqlckbk-CHP-13-SECT-4.3]

Discussion

[bookmark: sqlckbk-CHP-13-SECT-4.3.1]

DB2 and SQL Server

The recursive [bookmark: idx-CHP-13-0816]WITH clause makes this a relatively easy problem to solve. The first part of the WITH clause, the upper part of the UNION ALL, returns the row for employee JONES. You need to return ENAME to see the name and EMPNO so you can use it to join on. The lower part of the UNION ALL recursively joins EMP.MGR to X.EMPNO. The join condition will be applied until the result set is exhausted.

[bookmark: sqlckbk-CHP-13-SECT-4.3.2]

Oracle

The [bookmark: idx-CHP-13-0817]START WTH clause tells the query to make JONES the root [bookmark: idx-CHP-13-0818]node. The condition in the CONNECT BY clause drives the tree walk and will run until the condition is no longer true.

[bookmark: sqlckbk-CHP-13-SECT-4.3.3]

PostgreSQL and MySQL

The technique used here is the same as that of the second recipe in this chapter, "Expressing a Child-Parent-Grandparent Relationship." A major drawback is that you must know in advance the depth of the hierarchy.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13-SECT-5]

Recipe 13.5. Determining Which Rows Are Leaf, Branch, or Root Nodes

[bookmark: sqlckbk-CHP-13-SECT-5.1]

Problem

You want to determine what type of node a given row is: a leaf, branch, or root. For this example, a leaf node is an employee who is not a manager. A branch node is an employee who is both a manager and also has a manager. A root node is an employee [bookmark: idx-CHP-13-0819][bookmark: idx-CHP-13-0820]without a manager. You want to return 1 (TRUE) or 0 (FALSE) to reflect the status of each row in the hierarchy. You want to return the following result set:

	ENAME IS_LEAF IS_BRANCH IS_ROOT

	---------- ---------- ---------- ----------

	KING 0 0 1

	JONES 0 1 0

	SCOTT 0 1 0

	FORD 0 1 0

	CLARK 0 1 0

	BLAKE 0 1 0

	ADAMS 1 0 0

	MILLER 1 0 0

	JAMES 1 0 0

	TURNER 1 0 0

	ALLEN 1 0 0

	WARD 1 0 0

	MARTIN 1 0 0

	SMITH 1 0 0

[bookmark: sqlckbk-CHP-13-SECT-5.2]

Solution

It is important to realize that the EMP table is modeled in a [bookmark: idx-CHP-13-0821]tree hierarchy, not a recursive hierarchy, the value for MGR for root nodes is NULL. If EMP was modeled to use a recursive hierarchy, root nodes would be self-referencing (i.e., the value for MGR for employee KING would be KING's EMPNO). I find self-referencing to be counterintuitive and thus am using NULL values for root nodes' MGR. For Oracle users using CONNECT BY and DB2/SQL Server users using WITH, you'll find tree hierarchies easier to work with and potentially more efficient than recursive hierarchies. If you are in a situation where you have a recursive hierarchy and are using CONNECT BY or WITH, watch out: you can end up with a loop in your SQL. You need to code around such loops if you are stuck with recursive hierarchies.

[bookmark: sqlckbk-CHP-13-SECT-5.2.1]

DB2, PostgreSQL, MySQL, and SQL Server

Use three scalar subqueries to determine the correct "Boolean" value (either a 1 or a 0) to return for each [bookmark: idx-CHP-13-0822]node type:

	 1 select e.ename,

	 2 (select sign(count(*)) from emp d

	 3 where 0 =

	 4 (select count(*) from emp f

	 5 where f.mgr = e.empno)) as is_leaf,

	 6 (select sign(count(*)) from emp d

	 7 where d.mgr = e.empno

	 8 and e.mgr is not null) as is_branch,

	 9 (select sign(count(*)) from emp d

	10 where d.empno = e.empno

	11 and d.mgr is null) as is_root

	12 from emp e

	13 order by 4 desc,3 desc

[bookmark: sqlckbk-CHP-13-SECT-5.2.2]

Oracle

The scalar subquery solution will work for Oracle as well, and should be used if you are on a version of Oracle prior to Oracle Database 10g. The following solution highlights built-in functions provided by Oracle (that were introduced in Oracle Database 10g) to identify root and leaf rows. The functions are [bookmark: idx-CHP-13-0823]CONNECT_BY_ROOT and [bookmark: idx-CHP-13-0824]CONNECT_BY_ISLEAF, respectively:

	 1 select ename,

	 2 connect_by_isleaf is_leaf,

	 3 (select count(*) from emp e

	 4 where e.mgr = emp.empno

	 5 and emp.mgr is not null

	 6 and rownum = 1) is_branch,

	 7 decode(ename,connect_by_root(ename),1,0) is_root

	 8 from emp

	 9 start with mgr is null

	10 connect by prior empno = mgr

	11 order by 4 desc, 3 desc

[bookmark: sqlckbk-CHP-13-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-13-SECT-5.3.1]

DB2, PostgreSQL, MySQL, and SQL Server

This solution simply applies the rules defined in the "Problem" section to determine leaves, branches, and roots. The first step is to find determine whether an employee is a leaf [bookmark: idx-CHP-13-0825]node. If the employee is not a manager (no one works under her), then she is a leaf node. The first scalar subquery, IS_LEAF, is shown below:

	

	select e.ename,

	 (select sign(count(*)) from emp d

	 where 0 =

	 (select count(*) from emp f

	 where f.mgr = e.empno)) as is_leaf

	 from emp e

	order by 2 desc

	ENAME IS_LEAF

	----------- --------

	SMITH 1

	ALLEN 1

	WARD 1

	ADAMS 1

	TURNER 1

	MARTIN 1

	JAMES 1

	MILLER 1

	JONES 0

	BLAKE 0

	CLARK 0

	FORD 0

	SCOTT 0

	KING 0

Because the output for IS_LEAF should be a 0 or 1, it is necessary to take the SIGN of the COUNT(*) operation. Otherwise you would get 14 instead of 1 for leaf rows. As an alternative, you can use a table with only one row to count against, because you only want to return 0 or 1. For example:

	

	select e.ename,

	 (select count(*) from t1 d

	 where not exists

	 (select null from emp f

	 where f.mgr = e.empno)) as is_leaf

	 from emp e

	order by 2 desc

	ENAME IS_LEAF

	---------- ----------

	SMITH 1

	ALLEN 1

	WARD 1

	ADAMS 1

	TURNER 1

	MARTIN 1

	JAMES 1

	MILLER 1

	JONES 0

	BLAKE 0

	CLARK 0

	FORD 0

	SCOTT 0

	KING 0

The next step is to find branch [bookmark: idx-CHP-13-0826]nodes. If an employee is a manager (someone works for them), and they also happen to work for someone else, then the employee is a branch node. The results of the scalar subquery IS_BRANCH are shown below:

	

	select e.ename,

	 (select sign(count(*)) from emp d

	 where d.mgr = e.empno

	 and e.mgr is not null) as is_branch

	 from emp e

	order by 2 desc

	ENAME IS_BRANCH

	----------- ---------

	JONES 1

	BLAKE 1

	SCOTT 1

	CLARK 1

	FORD 1

	SMITH 0

	TURNER 0

	MILLER 0

	JAMES 0

	ADAMS 0

	KING 0

	ALLEN 0

	MARTIN 0

	WARD 0

Again, it is necessary to take the SIGN of the COUNT(*) operation. Otherwise you will get (potentially) values greater than 1 when a [bookmark: idx-CHP-13-0827]node is a branch. Like scalar subquery IS_LEAF, you can use a table with one row to avoid using SIGN. The following solution uses a one-row table named dual:

	

	select e.ename,

	 (select count(*) from t1 t

	 where exists (

	 select null from emp f

	 where f.mgr = e.empno

	 and e.mgr is not null)) as is_branch

	 from emp e

	order by 2 desc

	ENAME IS_BRANCH

	--------------- ----------

	JONES 1

	BLAKE 1

	SCOTT 1

	CLARK 1

	FORD 1

	SMITH 0

	TURNER 0

	MILLER 0

	JAMES 0

	ADAMS 0

	KING 0

	ALLEN 0

	MARTIN 0

	WARD 0

The last step is to find the root nodes. A root node is defined as an employee who is a manager but who does not work for anyone else. In table EMP, only KING is a root node. Scalar subquery IS_ROOT is shown below:

	

	select e.ename,

	 (select sign(count(*)) from emp d

	 where d.empno = e.empno

	 and d.mgr is null) as is_root

	 from emp e

	order by 2 desc

	ENAME IS_ROOT

	---------- ---------

	KING 1

	SMITH 0

	ALLEN 0

	WARD 0

	JONES 0

	TURNER 0

	JAMES 0

	MILLER 0

	FORD 0

	ADAMS 0

	MARTIN 0

	BLAKE 0

	CLARK 0

	SCOTT 0

Because EMP is a small 14-row table, it is easy to see that employee KING is the only root [bookmark: idx-CHP-13-0828]node, so in this case taking the SIGN of the COUNT(*) operation is not strictly necessary. If there can be multiple root nodes, then you can use SIGN, or you can use a one-row table in the scalar subquery as is shown earlier for IS_BRANCH and IS_LEAF.

[bookmark: sqlckbk-CHP-13-SECT-5.3.2]

Oracle

For those of you on versions of Oracle prior to Oracle Database 10g, you can follow the discussion for the other RDBMSs, as that solution will work (without modifications) in Oracle. If you are on Oracle Database 10g or later, you may want to take advantage of two functions to make identifying root and leaf nodes a simple task: they are [bookmark: idx-CHP-13-0829]CONNECT_BY_ROOT and [bookmark: idx-CHP-13-0830]CONNECT_BY_ISLEAF, respectively. As of the time of this writing, it is necessary to use CONNECT BY in your SQL statement in order for you to be able to use CONNECT_BY_ROOT and CONNECT_BY_ISLEAF. The first step is to find the leaf nodes by using CONNECT_BY_ISLEAF as follows:

	

	select ename,

	 connect_by_isleaf is_leaf

	 from emp

	 start with mgr is null

	connect by prior empno = mgr

	order by 2 desc

	ENAME IS_LEAF

	---------- ----------

	ADAMS 1

	SMITH 1

	ALLEN 1

	TURNER 1

	MARTIN 1

	WARD 1

	JAMES 1

	MILLER 1

	KING 0

	JONES 0

	BLAKE 0

	CLARK 0

	FORD 0

	SCOTT 0

The next step is to use a scalar subquery to find the branch [bookmark: idx-CHP-13-0831]nodes. Branch nodes are employees who are managers but who also work for someone else:

	

	select ename,

	 (select count(*) from emp e

	 where e.mgr = emp.empno

	 and emp.mgr is not null

	 and rownum = 1) is_branch

	 from emp

	 start with mgr is null

	connect by prior empno = mgr

	order by 2 desc

	ENAME IS_BRANCH

	---------- ----------

	JONES 1

	SCOTT 1

	BLAKE 1

	FORD 1

	CLARK 1

	KING 0

	MARTIN 0

	MILLER 0

	JAMES 0

	TURNER 0

	WARD 0

	ADAMS 0

	ALLEN 0

	SMITH 0

The filter on ROWNUM is necessary to ensure that you return a count of 1 or 0, and nothing else.

The last step is to identify the root nodes by using the function CONNECT_BY_ROOT. The solution finds the ENAME for the root node and compares it with all the rows returned by the query. If there is a match, that row is the root node:

	

	select ename,

	 decode(ename,connect_by_root(ename),1,0) is_root

	 from emp

	 start with mgr is null

	connect by prior empno = mgr

	order by 2 desc

	ENAME IS_ROOT

	---------- ----------

	KING 1

	JONES 0

	SCOTT 0

	ADAMS 0

	FORD 0

	SMITH 0

	BLAKE 0

	ALLEN 0

	WARD 0

	MARTIN 0

	TURNER 0

	JAMES 0

	CLARK 0

	MILLER 0

If using Oracle9i Database or later, you can use the [bookmark: idx-CHP-13-0832]SYS_CONNECT_BY_PATH function as an alternative to CONNECT_BY_ROOT. The Oracle9i Database version of the preceding would be:

	

	select ename,

	 decode(substr(root,1,instr(root,',')-1),NULL,1,0) root

	 from (

	select ename,

	 ltrim(sys_connect_by_path(ename,','),',') root

	 from emp

	start with mgr is null

	connect by prior empno=mgr

)

	ENAME ROOT

	---------- ----

	KING 1

	JONES 0

	SCOTT 0

	ADAMS 0

	FORD 0

	SMITH 0

	BLAKE 0

	ALLEN 0

	WARD 0

	MARTIN 0

	TURNER 0

	JAMES 0

	CLARK 0

	MILLER 0

The SYS_CONNECT_BY_PATH function rolls up a hierarchy starting from the root value as is shown below:

	

	select ename,

	 ltrim(sys_connect_by_path(ename,','),',') path

	 from emp

	start with mgr is null

	connect by prior empno=mgr

	ENAME PATH

	---------- ----------------------------

	KING KING

	JONES KING,JONES

	SCOTT KING,JONES,SCOTT

	ADAMS KING,JONES,SCOTT,ADAMS

	FORD KING,JONES,FORD

	SMITH KING,JONES,FORD,SMITH

	BLAKE KING,BLAKE

	ALLEN KING,BLAKE,ALLEN

	WARD KING,BLAKE,WARD

	MARTIN KING,BLAKE,MARTIN

	TURNER KING,BLAKE,TURNER

	JAMES KING,BLAKE,JAMES

	CLARK KING,CLARK

	MILLER KING,CLARK,MILLER

To get the root row, simply substring out the first ENAME in PATH:

	

	select ename,

	 substr(root,1,instr(root,',')-1) root

	 from (

	select ename,

	 ltrim(sys_connect_by_path(ename,','),',') root

	 from emp

	start with mgr is null

	connect by prior empno=mgr

)

	ENAME ROOT

	---------- ----------

	KING

	JONES KING

	SCOTT KING

	ADAMS KING

	FORD KING

	SMITH KING

	BLAKE KING

	ALLEN KING

	WARD KING

	MARTIN KING

	TURNER KING

	JAMES KING

	CLARK KING

	MILLER KING

The last step is to flag the result from the ROOT column if it is NULL; that is your root row.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-13]

Chapter 13. Hierarchical Queries

This chapter introduces recipes for expressing hierarchical relationships that you may have in your data. It is typical when working with hierarchical data to have more difficulty retrieving and displaying the data (as a hierarchy) than storing it. This is particularly true because of the inflexibility of SQL (SQL's nonrecursive [bookmark: idx-CHP-13-0802]nature). When working with hierarchical queries, it is absolutely crucial that you take advantage of what your RDBMS supplies you to facilitate these operations; otherwise you will end up writing potentially less efficient queries and constructing convoluted data models to deal with the hierarchical data. For PostgreSQL users, the recursive WITH clause will most likely be added to later versions PostgreSQL, so it would behoove you to pay attention to the DB2 solutions to these queries.

This chapter will provide recipes to help you unravel the hierarchical structure of your data by taking advantage of the functions supplied by each of the RDBMSs. Before starting, examine table EMP and the hierarchical relationship between EMPNO and MGR:

	

	select empno,mgr

	 from emp

	order by 2

	 EMPNO MGR

	---------- ----------

	 7788 7566

	 7902 7566

	 7499 7698

	 7521 7698

	 7900 7698

	 7844 7698

	 7654 7698

	 7934 7782

	 7876 7788

	 7566 7839

	 7782 7839

	 7698 7839

	 7369 7902

	 7839

If you look carefully, you will see that each value for MGR is also an EMPNO, meaning the manager of each employee in table EMP is also an employee in table EMP and not stored somewhere else. The relationship between MGR and EMPNO is a parentchild relationship in that the value for MGR is the most immediate parent for a given EMPNO (it is also possible that the manager for a specific employee can have a manager herself, and those managers can in turn have managers, and so on, creating an n-tier hierarchy). If an employee has no manager, then MGR is NULL.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-1]

Recipe 14.1. Creating Cross-Tab Reports Using SQL Server's PIVOT Operator

[bookmark: idx-CHP-14-0833]

[bookmark: idx-CHP-14-0834]

[bookmark: sqlckbk-CHP-14-SECT-1.1]

Problem

You want to create a cross-tab report, to transform your result set's rows into columns. You are aware of traditional methods of pivoting but would like to try something different. In particular, you want to return the following result set without using CASE expressions or joins:

	DEPT_10 DEPT_20 DEPT_30 DEPT_40

	------- ----------- ----------- ----------

	 3 5 6 0

[bookmark: sqlckbk-CHP-14-SECT-1.2]

Solution

Use the PIVOT operator to create the required result set without CASE expressions or additional joins:

	1 select [10] as dept_10,

	2 [20] as dept_20,

	3 [30] as dept_30,

	4 [40] as dept_40

	5 from (select deptno, empno from emp) driver

	6 pivot (

	7 count(driver.empno)

	8 for driver.deptno in ([10],[20],[30],[40])

	9) as empPivot

[bookmark: sqlckbk-CHP-14-SECT-1.3]

Discussion

The [bookmark: idx-CHP-14-0835]PIVOT operator may seem strange at first, but the operation it performs in the solution is technically the same as the more familiar transposition query shown below:

	

	select sum(case deptno when 10 then 1 else 0 end) as dept_10,

	 sum(case deptno when 20 then 1 else 0 end) as dept_20,

	 sum(case deptno when 30 then 1 else 0 end) as dept_30,

	 sum(case deptno when 40 then 1 else 0 end) as dept_40

	 from emp

	DEPT_10 DEPT_20 DEPT_30 DEPT_40

	------- ---------- ---------- ----------

	 3 5 6 0

Now that you know what is essentially happening, let's break down what the PIVOT operator is doing. Line 5 of the solution shows an inline view named DRIVER:

	from (select deptno, empno from emp) driver

I've chosen the alias "driver" because the rows from this inline view (or table expression) feed directly into the PIVOT operation. The PIVOT operator rotates the rows to columns by evaluating the items listed on line 8 in the FOR list (shown below):

	for driver.deptno in ([10],[20],[30],[40])

The evaluation goes something like this:

			If there are any DEPTNOs with a value of 10, perform the aggregate operation defined (COUNT(DRIVER.EMPNO)) for those rows.

			Repeat for DEPTNOs 20, 30, and 40.

The items listed in the brackets on line 8 serve not only to define values for which aggregation is performed; the items also become the column names in the result set (without the square brackets). In the SELECT clause of the solution, the items in the FOR list are referenced and aliased. If you do not alias the items in the FOR list, the column names become the items in the FOR list sans brackets.

Interestingly enough, since inline view DRIVER is just that, an inline view, you may put more complex SQL in there. For example, consider the situation where you want to modify the result set such that the actual department name is the name of the column. Listed below are the rows in table DEPT:

	

	select * from dept

	DEPTNO DNAME LOC

	------ -------------- -------------

	 10 ACCOUNTING NEW YORK

	 20 RESEARCH DALLAS

	 30 SALES CHICAGO

	 40 OPERATIONS BOSTON

You would like to use PIVOT to return the following result set:

	ACCOUNTING RESEARCH SALES OPERATIONS

	---------- ---------- ---------- ----------

	 3 5 6 0

Because inline view DRIVER can be practically any valid table expression, you can perform the join from table EMP to table DEPT, and then have PIVOT evaluate those rows. The following query will return the desired result set:

	select [ACCOUNTING] as ACCOUNTING,

	 [SALES] as SALES,

	 [RESEARCH] as RESEARCH,

	 [OPERATIONS] as OPERATIONS

	 from (

	 select d.dname, e.empno

	 from emp e,dept d

	 where e.deptno=d.deptno

) driver

	 pivot (

	 count(driver.empno)

	 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])

) as empPivot

As you can see, PIVOT provides an interesting spin on pivoting result sets. Regardless of whether or not you prefer using it to the traditional methods of pivoting, it's nice to have another tool in your toolbox.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-10]

Recipe 14.10. Converting a Scalar Subquery to a Composite Subquery in Oracle

[bookmark: idx-CHP-14-0874]

[bookmark: idx-CHP-14-0875]

[bookmark: sqlckbk-CHP-14-SECT-10.1]

Problem

You would like to bypass the restriction of returning exactly one value from a scalar subquery. For example, you attempt to execute the following query:

	select e.deptno,

	 e.ename,

	 e.sal,

	 (select d.dname,d.loc,sysdate today

	 from dept d

	 where e.deptno=d.deptno)

	 from emp e

but receive an error because subqueries in the SELECT list are allowed to return only a single value.

[bookmark: sqlckbk-CHP-14-SECT-10.2]

Solution

Admittedly, this problem is quite unrealistic, because a simple join between tables EMP and DEPT would allow you to return as many values you want from DEPT. Nevertheless, the key is to focus on the technique and understand how to apply it to a scenario that you find useful. The key to bypassing the requirement to return a single value when placing a SELECT within SELECT (scalar subquery) is to take advantage of Oracle's [bookmark: idx-CHP-14-0876]object types. You can define an object to have several attributes, and then you can work with it as a single entity or reference each element individually. In effect, you don't really bypass the rule at all. You simply return one value, an object, that in turn contains many attributes.

This solution makes use of the following object type:

	create type generic_obj

	 as object (

	 val1 varchar2(10),

	 val2 varchar2(10),

	 val3 date

);

With this type in place, you can execute the following query:

	

	 1 select x.deptno,

	 2 x.ename,

	 3 x.multival.val1 dname,

	 4 x.multival.val2 loc,

	 5 x.multival.val3 [bookmark: idx-CHP-14-0877]today

	 6 from (

	 7select e.deptno,

	 8 e.ename,

	 9 e.sal,

	10 (select generic_obj(d.dname,d.loc,sysdate+1)

	11 from dept d

	12 where e.deptno=d.deptno) multival

	13 from emp e

	14) x

	DEPTNO ENAME DNAME LOC TODAY

	------ ---------- ---------- ---------- -----------

	 20 SMITH RESEARCH DALLAS 12-SEP-2005

	 30 ALLEN SALES CHICAGO 12-SEP-2005

	 30 WARD SALES CHICAGO 12-SEP-2005

	 20 JONES RESEARCH DALLAS 12-SEP-2005

	 30 MARTIN SALES CHICAGO 12-SEP-2005

	 30 BLAKE SALES CHICAGO 12-SEP-2005

	 10 CLARK ACCOUNTING NEW YORK 12-SEP-2005

	 20 SCOTT RESEARCH DALLAS 12-SEP-2005

	 10 KING ACCOUNTING NEW YORK 12-SEP-2005

	 30 TURNER SALES CHICAGO 12-SEP-2005

	 20 ADAMS RESEARCH DALLAS 12-SEP-2005

	 30 JAMES SALES CHICAGO 12-SEP-2005

	 20 FORD RESEARCH DALLAS 12-SEP-2005

	 10 MILLER ACCOUNTING NEW YORK 12-SEP-2005

[bookmark: sqlckbk-CHP-14-SECT-10.3]

Discussion

The key to the solution is to use the object's constructor function (by default the constructor function has the same name as the object). Because the object itself is a single scalar value, it does not violate the scalar subquery rule, as you can see from the following:

	

	select e.deptno,

	 e.ename,

	 e.sal,

	 (select generic_obj(d.dname,d.loc,sysdate-1)

	 from dept d

	 where e.deptno=d.deptno) multival

	from emp e

	DEPTNO ENAME SAL MULTIVAL(VAL1, VAL2, VAL3)

	------ ------ ----- ---

	 20 SMITH 800 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')

	 30 ALLEN 1600 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 30 WARD 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 20 JONES 2975 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')

	 30 MARTIN 1250 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 30 BLAKE 2850 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 10 CLARK 2450 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')

	 20 SCOTT 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')

	 10 KING 5000 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')

	 30 TURNER 1500 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 20 ADAMS 1100 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')

	 30 JAMES 950 GENERIC_OBJ('SALES', 'CHICAGO', '12-SEP-2005')

	 20 FORD	 3000 GENERIC_OBJ('RESEARCH', 'DALLAS', '12-SEP-2005')

	 10 MILLER 1300 GENERIC_OBJ('ACCOUNTING', 'NEW YORK', '12-SEP-2005')

The next step is [bookmark: idx-CHP-14-0878]to simply wrap the query in an inline view and extract the attributes.

						[image:]			

One important note: In Oracle, unlike the case with other vendors, you do not generally need to name your [bookmark: idx-CHP-14-0879]inline views. In this particular case, however, you do need to name your inline view. Otherwise you will not be able to reference the object's attributes.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-11]

Recipe 14.11. Parsing Serialized Data into Rows

[bookmark: idx-CHP-14-0880]

[bookmark: idx-CHP-14-0881]

[bookmark: sqlckbk-CHP-14-SECT-11.1]

Problem

You have serialized data (stored in strings) that you want to parse and return as rows. For example, you store the following data:

	STRINGS

	entry:stewiegriffin:lois:brian:

	entry:moe::sizlack:

	entry:petergriffin:meg:chris:

	entry:willie:

	entry:quagmire:mayorwest:cleveland:

	entry:::flanders:

	entry:robo:tchi:ken:

You want to convert these serialized strings into the following result set:

	VAL1 VAL2 VAL3

	--------------- --------------- ---------------

	moe sizlack

	petergriffin meg chris

	quagmire mayorwest cleveland

	robo tchi ken

	stewiegriffin lois brian

	willie

	 flanders

[bookmark: sqlckbk-CHP-14-SECT-11.2]

Solution

Each [bookmark: idx-CHP-14-0882]serialized string in this example can store up to three values. The values are delimited by colons, and a string may or may not have all three entries. If a string does not have all three entries, you must be careful to place the entries that are available into the correct column in the result set. For example, consider the following row:

	entry:::flanders:

This row represents an entry with the first two values missing and only the third value available. Hence, if you examine the target result set in the "Problem" section, you will notice that for the row "flanders" is in, both VAL1 and VAL2 are NULL.

The key to this solution is nothing more than a string walk with some string [bookmark: idx-CHP-14-0883]parsing, following by a simple pivot. This solution uses rows from view V, which is defined as follows. The example uses Oracle syntax, but since nothing more than string parsing functions are needed for this recipe, converting to other platforms is trivial:

	create view V

	 as

	select 'entry:stewiegriffin:lois:brian:' strings

	 from dual

	 union all

	select 'entry:moe::sizlack:'

	 from dual

	 union all

	select 'entry:petergriffin:meg:chris:'

	 from dual

	 union all

	select 'entry:willie:'

	 from dual

	 union all

	select 'entry:quagmire:mayorwest:cleveland:'

	 from dual

	 union all

	select 'entry:::flanders:'

	 from dual

	 union all

	select 'entry:robo:tchi:ken:'

	 from dual

 Using view V to supply the example data to parse, the solution is as follows:

	 1 with cartesian as (

	 2 select level id

	 3 from dual

	 4 connect by level <= 100

	 5)

	 6 select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,

	 7 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,

	 8 max(decode(id,3,substr(strings,p1+1,p2-1))) val3

	 9 from (

	10 select v.strings,

	11 c.id,

	12 instr(v.strings,':',1,c.id) p1,

	13 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2

	14 from v, cartesian c

	15 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

	16)

	17 group by strings

	18 order by 1

[bookmark: sqlckbk-CHP-14-SECT-11.3]

Discussion

The first step is to walk the [bookmark: idx-CHP-14-0884]serialized strings:

	

	with cartesian as (

	select level id

	 from dual

	 connect by level <= 100

)

	select v.strings,

		 c.id

	 from v,cartesian c

	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

	STRINGS ID

	----------------------------------- ---

	entry:::flanders: 1

	entry:::flanders: 2

	entry:::flanders: 3

	entry:moe::sizlack: 1

	entry:moe::sizlack: 2

	entry:moe::sizlack: 3

	entry:petergriffin:meg:chris: 1

	entry:petergriffin:meg:chris: 3

	entry:petergriffin:meg:chris: 2

	entry:quagmire:mayorwest:cleveland: 1

	entry:quagmire:mayorwest:cleveland: 3

	entry:quagmire:mayorwest:cleveland: 2

	entry:robo:tchi:ken: 1

	entry:robo:tchi:ken: 2

	entry:robo:tchi:ken: 3

	entry:stewiegriffin:lois:brian: 1

	entry:stewiegriffin:lois:brian: 3

	entry:stewiegriffin:lois:brian: 2

	entry:willie: 1

The next step is to use the function INSTR to find the numeric position of each colon in each string. Since each value you need to extract is enclosed by two colons, the numeric values are aliased P1 and P2, for "position 1" and "position 2":

	

	with cartesian as (

	select level id

	 from dual

	 connect by level <= 100

)

	select v.strings,

	 c.id,

	 instr(v.strings,':',1,c.id) p1,

	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2

	 from v,cartesian c

	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

	 order by 1

	STRINGS ID P1 P2

	----------------------------------- --- ---------- ----------

	entry:::flanders: 1 6 1

	entry:::flanders: 2 7 1

	entry:::flanders: 3 8 9

	entry:moe::sizlack: 1 6 4

	entry:moe::sizlack: 2 10 1

	entry:moe::sizlack: 3 11 8

	entry:petergriffin:meg:chris: 1 6 13

	entry:petergriffin:meg:chris: 3 23 6

	entry:petergriffin:meg:chris: 2 19 4

	entry:quagmire:mayorwest:cleveland: 1 6 9

	entry:quagmire:mayorwest:cleveland: 3 25 10

	entry:quagmire:mayorwest:cleveland: 2 15 10

	entry:robo:tchi:ken: 1 6 5

	entry:robo:tchi:ken: 2 11 5

	entry:robo:tchi:ken: 3 16 4

	entry:stewiegriffin:lois:brian: 1 6 14

	entry:stewiegriffin:lois:brian: 3 25 6

	entry:stewiegriffin:lois:brian: 2 20 5

	entry:willie: 1 6 7

Now that you know the numeric positions for each pair of colons in each string, simply pass the information to the function SUBSTR to extract values. Since you want to create a result set with three columns, use DECODE to evaluate the ID from the Cartesian product:

	with cartesian as (

	select level id

	 from dual

	 connect by level <= 100

)

	select decode(id,1,substr(strings,p1+1,p2-1)) val1,

	 decode(id,2,substr(strings,p1+1,p2-1)) val2,

	 decode(id,3,substr(strings,p1+1,p2-1)) val3

	 from (

	select v.strings,

	 c.id,

	 instr(v.strings,':',1,c.id) p1,

	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2

	 from v,cartesian c

	 where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

)

	 order by 1

	VAL1 VAL2 VAL3

	--------------- --------------- --------------

	moe

	petergriffin

	quagmire

	robo

	stewiegriffin

	willie

	 lois

	 meg

	 mayorwest

	 tchi

	 brian

	 sizlack

	 chris

	 cleveland

	 flanders

	 ken

The last step is to apply an aggregate function to the values returned by SUBSTR while grouping by ID, to make a human-readable result set:

	

	with cartesian as (

	select level id

	 from dual

	 connect by level <= 100

)

	select max(decode(id,1,substr(strings,p1+1,p2-1))) val1,

	 max(decode(id,2,substr(strings,p1+1,p2-1))) val2,

	 max(decode(id,3,substr(strings,p1+1,p2-1))) val3

	 from (

	select v.strings,

	 c.id,

	 instr(v.strings,':',1,c.id) p1,

	 instr(v.strings,':',1,c.id+1)-instr(v.strings,':',1,c.id) p2

	 from v,cartesian c

	where c.id <= (length(v.strings)-length(replace(v.strings,':')))-1

)

	group by strings

	order by 1

	VAL1 VAL2 VAL3

	--------------- --------------- -----------

	moe sizlack

	petergriffin meg chris

	quagmire mayorwest cleveland

	robo tchi ken

	stewiegriffin lois brian

	willie

	 flanders

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-12]

Recipe 14.12. Calculating Percent Relative to Total

[bookmark: sqlckbk-CHP-14-SECT-12.1]

Problem

You want to report a set of numeric values, and you want to show each value as a [bookmark: idx-CHP-14-0885]percentage of the whole. For example, you are on an Oracle system and you want to return a result set that shows the breakdown of salaries by JOB so that you can determine which JOB position costs the company the most money. You also want to include the number of employees per JOB to prevent the results from being misleading. You want to produce the following report:

	JOB NUM_EMPS PCT_OF_ALL_SALARIES

	--------- ---------- -------------------

	CLERK 4 14

	ANALYST 2 20

	MANAGER 3 28

	SALESMAN 4 19

	PRESIDENT 1 17

As you can see, if the number of employees is not included in the report, it would look as if the president position takes very little of the overall salary. Seeing that there is only one president helps put into perspective what that 17% means.

[bookmark: sqlckbk-CHP-14-SECT-12.2]

Solution

Only Oracle enables a decent solution to this problem, which involves using the built-in function [bookmark: idx-CHP-14-0886]RATIO_TO_REPORT. To calculate [bookmark: idx-CHP-14-0887]percentages of the whole for other databases, you can use division as shown in "Determining the Percentage of a Total" in Chapter 7.

	1 select job,num_emps,sum(round(pct)) pct_of_all_salaries

	2 from (

	3 select job,

	4 count(*)over(partition by job) num_emps,

	5 ratio_to_report(sal)over()*100 pct

	6 from emp

	7)

	8 group by job,num_emps

[bookmark: sqlckbk-CHP-14-SECT-12.3]

Discussion

The first step is to use the window function COUNT OVER to return the number of employees per JOB. Then use RATIO_TO_REPORT to return the percentage each salary counts against the total (the value is returned in decimal):

	

	select job,

	 count(*)over(partition by job) num_emps,

	 ratio_to_report(sal)over()*100 pct

	 from emp

	JOB NUM_EMPS PCT

	--------- ---------- ----------

	ANALYST 2 10.3359173

	ANALYST 2 10.3359173

	CLERK 4 2.75624462

	CLERK 4 3.78983635

	CLERK 4 4.4788975

	CLERK 4 3.27304048

	MANAGER 3 10.2497847

	MANAGER 3 8.44099914

	MANAGER 3 9.81912145

	PRESIDENT 1 17.2265289

	SALESMAN 4 5.51248923

	SALESMAN 4 4.30663221

	SALESMAN 4 5.16795866

	SALESMAN 4 4.30663221

The last step is to use the aggregate function SUM to sum the values returned by RATIO_TO_REPORT. Be sure to group by JOB and NUM_EMPS. Multiply by 100 to return a whole number that represents a [bookmark: idx-CHP-14-0888]percentage (e.g., to return 25 rather than 0.25 for 25%):

	

	select job,num_emps,sum(round(pct)) pct_of_all_salaries

	 from (

	select job,

	 count(*)over(partition by job) num_emps,

	 ratio_to_report(sal)over()*100 pct

	 from emp

)

	 group by job,num_emps

	JOB NUM_EMPS PCT_OF_ALL_SALARIES

	--------- ---------- -------------------

	CLERK 4 14

	ANALYST 2 20

	MANAGER 3 28

	SALESMAN 4 19

	PRESIDENT 1 17

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-13]

Recipe 14.13. Creating CSV Output from Oracle

[bookmark: idx-CHP-14-0889]

[bookmark: sqlckbk-CHP-14-SECT-13.1]

Problem

You want to create a delimited list (perhaps comma delimited) from rows in a table. For example, using table EMP, you want to return the following result set:

	DEPTNO LIST

	------ --------------------------------------

	 10 MILLER,KING,CLARK

	 20 FORD,ADAMS,SCOTT,JONES,SMITH

	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

You are on an Oracle system (Oracle Database 10g or later) and want to use the MODEL clause.

[bookmark: sqlckbk-CHP-14-SECT-13.2]

Solution

This solution takes advantage of the iteration capabilities of Oracle's MODEL clause. The technique is to use the window function ROW_NUMBER OVER to rank each employee (by EMPNO, which is arbitrary) in each DEPTNO. Because MODEL provides array access, you can access prior array elements by subtracting from the rank. So, for each row, create a list that includes each employee's name, plus the name of the employee ranked before the current employee:

	 1 select deptno,

	 2 list

	 3 from (

	 4 select *

	 5 from (

	 6 select deptno,empno,ename,

	 7 lag(deptno)over(partition by deptno

	 8 order by empno) prior_deptno

	 9 from emp

	10)

	11 model

	12 dimension by

	13 (

	14 deptno,

	15 row_number()over(partition by deptno order by empno) rn

	16)

	17 measures

	18 (

	19 ename,

	20 prior_deptno,cast(null as varchar2(60)) list,

	21 count(*)over(partition by deptno) cnt,

	22 row_number()over(partition by deptno order by empno) rnk

	23)

	24 rules

	25 (

	26 list[any,any]

	27 order by deptno,rn = case when prior_deptno[cv(),cv()] is null

	28 then ename[cv(),cv()]

	29 else ename[cv(),cv()]||','||

	30 list[cv(),rnk[cv(),cv()]-1]

	31 end

	32)

	33)

	34 where cnt = rn

[bookmark: sqlckbk-CHP-14-SECT-13.3]

Discussion

The first step is to use the window function LAG OVER to return the DEPTNO of the previous employee (sorted by EMPNO). The results are partitioned by DEPTNO, so the return value will be NULL for the first employee (by EMPNO) in the department and DEPTNO for the rest. The results are as follows:

	

	select deptno,empno,ename,

	 lag(deptno)over(partition by deptno

	 order by empno) prior_deptno

	 from emp

	DEPTNO EMPNO ENAME PRIOR_DEPTNO

	------ ---------- ------ ------------

	 10 7782 CLARK

	 10 7839 KING 10

	 10 7934 MILLER 10

	 20 7369 SMITH

	 20 7566 JONES 20

	 20 7788 SCOTT 20

	 20 7876 ADAMS 20

	 20 7902 FORD 20

	 30 7499 ALLEN

	 30 7521 WARD 30

	 30 7654 MARTIN 30

	 30 7698 BLAKE 30

	 30 7844 TURNER 30

	 30 7900 JAMES 30

The next step is to examine the [bookmark: idx-CHP-14-0890]MEASURES subclause of the MODEL clause. The items in the MEASURES list are the arrays:

			
ENAME

			

An array of all the ENAMEs in EMP

			
PRIOR_DEPTNO

			

An array of the values returned by the LAG OVER window function

			
CNT

			

An array of the number of employees in each DEPTNO

			
RNK

			

An array of rankings (by EMPNO) for each employee in each DEPTNO

The array indices are DEPTNO and RN (the value returned by the ROW_NUMBER OVER window function in the DIMENSION BY subclause). To see what all these arrays contain, simply comment out the code listed in the RULES subclause of the MODEL clause and execute the query, as follows:

	

	select *

	 from (

	select deptno,empno,ename,

	 lag(deptno)over(partition by deptno

	 order by empno) prior_deptno

	 from emp

)

	 model

	 dimension by

	 (

	 deptno,

	 row_number()over(partition by deptno order by empno) rn

)

	 measures

	 (

	 ename,

	 prior_deptno,cast(null as varchar2(60)) list,

	 count(*)over(partition by deptno) cnt,

	 row_number()over(partition by deptno order by empno) rnk

)

	 rules

	 (

	/*

	 list[any,any]

	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null

	 then ename[cv(),cv()]

	 else ename[cv(),cv()]||','||

	 list[cv(),rnk[cv(),cv()]-1]

	 end

	*/

)

	 order by 1

	DEPTNO RN ENAME PRIOR_DEPTNO LIST CNT RNK

	------ --- ------ ------------ ---------- --- ----

	 10 1 CLARK 3 1

	 10 2 KING 10 3 2

	 10 3 MILLER 10 3 3

	 20 1 SMITH 5 1

	 20 2 JONES 20 5 2

	 20 4 ADAMS 20 5 4

	 20 5 FORD 20 5 5

	 20 3 SCOTT 20 5 3

	 30 1 ALLEN 6 1

	 30 6 JAMES 30 6 6

	 30 4 BLAKE 30 6 4

	 30 3 MARTIN 30 6 3

	 30 5 TURNER 30 6 5

	 30 2 WARD 30 6 2

Now that you know exactly what each item declared in the MODEL clause does, continue on to the RULES subclause. If you look at the CASE expression, you'll see that the current value for PRIOR_DEPTNO is being evaluated. If that value is NULL, it signifies that the first employee in each DEPTNO and ENAME should be returned to that employee's LIST array. If the value for PRIOR_DEPTNO is not NULL, then append the value of the prior employee's LIST to the current employee's name (ENAME array), and then return that result as the current employee's LIST. This CASE expression operation, when performed for each row in DEPTNO, results in an iteratively built comma-separated values ([bookmark: idx-CHP-14-0891]CSV) list. You can see the intermediate results in the following example:

	

	select deptno,

	 list

	 from (

	select *

	 from (

	select deptno,empno,ename,

	 lag(deptno)over(partition by deptno

	 order by empno) prior_deptno

	 from emp

)

	 model

	 dimension by

	 (

	 deptno,

	 row_number()over(partition by deptno order by empno) rn

)

	 measures

	 (

	 ename,

	 prior_deptno,cast(null as varchar2(60)) list,

	 count(*)over(partition by deptno) cnt,

	 row_number()over(partition by deptno order by empno) rnk

)

	 rules

	 (

	 list[any,any]

	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null

	 then ename[cv(),cv()]

	 else ename[cv(),cv()]||','||

	 list[cv(),rnk[cv(),cv()]-1]

	 end

)

)

	DEPTNO LIST

	------ ---------------------------------------

	 10 CLARK

	 10 KING,CLARK

	 10 MILLER,KING,CLARK

	 20 SMITH

	 20 JONES,SMITH

	 20 SCOTT,JONES,SMITH

	 20 ADAMS,SCOTT,JONES,SMITH

	 20 FORD,ADAMS,SCOTT,JONES,SMITH

	 30 ALLEN

	 30 WARD,ALLEN

	 30 MARTIN,WARD,ALLEN

	 30 BLAKE,MARTIN,WARD,ALLEN

	 30 TURNER,BLAKE,MARTIN,WARD,ALLEN

	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

The last step is to keep only the last employee in each DEPTNO to ensure that you have a complete [bookmark: idx-CHP-14-0892]CSV list for each DEPTNO. Use the values stored in the CNT array and the values stored in the RN array to keep only the completed CSV for each DEPTNO. Because RN represents a ranking of employees in each DEPTNO by EMPNO, the last employee in each DEPTNO will be the one where CNT = RN, as the following example shows:

	

	select deptno,

	 list

	 from (

	select *

	 from (

	select deptno,empno,ename,

	 lag(deptno)over(partition by deptno

	 order by empno) prior_deptno

	 from emp

)

	 model

	 dimension by

	 (

	 deptno,

	 row_number()over(partition by deptno order by empno) rn

)

	 measures

	 (

	 ename,

	 prior_deptno,cast(null as varchar2(60)) list,

	 count(*)over(partition by deptno) cnt,

	 row_number()over(partition by deptno order by empno) rnk

)

	 rules

	 (

	 list[any,any]

	 order by deptno,rn = case when prior_deptno[cv(),cv()] is null

	 then ename[cv(),cv()]

	 else ename[cv(),cv()]||','||

	 list[cv(),rnk[cv(),cv()]-1]

	 end

)

)

	 where cnt = rn

	DEPTNO LIST

	------ --

	 10 MILLER,KING,CLARK

	 20 [bookmark: idx-CHP-14-0893]FORD,ADAMS,SCOTT,JONES,SMITH

	 30 JAMES,TURNER,BLAKE,MARTIN,WARD,ALLEN

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-14]

Recipe 14.14. Finding Text Not Matching a Pattern (Oracle)

[bookmark: idx-CHP-14-0894]

[bookmark: sqlckbk-CHP-14-SECT-14.1]

Problem

You have a text field that contains some structured text values (e.g., phone numbers), and you wish to find occurrences where those values are structured incorrectly. For example, you have data like the following:

	

	select emp_id, text

	 from employee_comment

	EMP_ID TEXT

	---------- --

	7369 126 Varnum, Edmore MI 48829, 989 313-5351

	7499 1105 McConnell Court

	 Cedar Lake MI 48812

	 Home: 989-387-4321

	 Cell: (237) 438-3333

and you wish to list rows having invalidly [bookmark: idx-CHP-14-0895]formatted phone numbers. For example, you wish to list the following row because its phone number uses two different separator characters:

	7369 126 Varnum, Edmore MI 48829, 989 313-5351

You wish to consider valid only those phone numbers that use the same character for both delimiters.

[bookmark: sqlckbk-CHP-14-SECT-14.2]

Solution

This problem has a multi-part solution:

			Find a way to describe the universe of apparent phone numbers that you wish to consider.

			Remove any validly formatted phone numbers from consideration.

			See whether you still have any apparent phone numbers left. If you do, you know those are invalidly formatted.

The following solution makes good use of the [bookmark: idx-CHP-14-0896]regular expression functionality introduced in Oracle Database 10g

	

	select emp_id, text

	from employee_comment

	where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

	 and regexp_like(

	 regexp_replace(text,

	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

	 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

	 EMP_ID TEXT

	---------- --

	 7369 126 Varnum, Edmore MI 48829, 989 313-5351

	 7844 989-387.5359

	 9999 906-387-1698, 313-535.8886

Each of these rows contains at least one apparent phone number that is not correctly formatted.

[bookmark: sqlckbk-CHP-14-SECT-14.3]

Discussion

The key to this solution lies in the detection of an "apparent phone number." Given that the phone numbers are stored in a comment field, any text at all in the field could be construed to be an invalid phone number. You need a way to narrow the field to a more reasonable set of values to consider. You don't, [bookmark: idx-CHP-14-0897]for example, want to see the following row in your output:

	 EMP_ID TEXT

	---------- --

	 7900 Cares for 100-year-old aunt during the day. Schedule only

	 for evening and night shifts.

Clearly there's no phone number at all in this row, much less one that is invalid. You and I can see that. The question is, how do you get the RDBMS to "see" it. I think you'll enjoy the answer. Please read on.

						[image:]			

This recipe comes (with permission) from an article by Jonathan Gennick called "[bookmark: idx-CHP-14-0898]Regular Expression Anti-Patterns," which you can read at: http://gennick.com/antiregex.htm.

The solution uses Pattern A to define the set of "apparent" phone numbers to consider:

	Pattern A: [0-9]{3}[-.][0-9]{3}[-.][0-9]{4}

Pattern A checks for two groups of three digits followed by one group of four digits. Any one of a dash (-), a period (.), or a space are accepted as delimiters between groups. You could come up with a more complex pattern. For example, you could decide that you also wish to consider seven-digit phone numbers. But don't get side-tracked. The point now is that somehow you do need to define the universe of possible phone number strings to consider, and for this problem that universe is defined by Pattern A. You can define a different Pattern A, and the general solution still applies.

The solution uses Pattern A in the WHERE clause to ensure that only rows having potential phone numbers (as defined by the pattern!) are considered:

	select emp_id, text

	 from employee_comment

	 where regexp_like(text, '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

Next, you need to define what a "good" phone number looks like. The solution does this using Pattern B:

	Pattern B: [0-9]{3}([-.])[0-9]{3}\1[0-9]{4}

This time, the pattern uses \1 to reference the first subexpression. Whichever character is matched by ([-.]) must also be matched by \1. Pattern B describes good phone numbers, which must be eliminated from consideration (as they are not bad). The solution eliminates the well-formatted phone numbers through a call to REGEXP_ REPLACE:

	[bookmark: idx-CHP-14-0899]regexp_replace(text,

	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

This call to REGEXP_REPLACE occurs in the WHERE clause. Any well-[bookmark: idx-CHP-14-0900]formatted phone numbers are replaced by a string of three asterisks. Again, Pattern B can be any pattern that you desire. The point is that Pattern B describes the acceptable pattern that you are after.

Having replaced well-formatted phone numbers with strings of three asterisks (***), any "apparent" phone numbers that remain must, by definition, be poorly formatted. The solution applies REGEXP_LIKE to the output from REGEXP_LIKE to see whether any poorly formatted phone numbers remain:

	and regexp_like(

	 regexp_replace(text,

	 '[0-9]{3}([-.])[0-9]{3}\1[0-9]{4}','***'),

	 '[0-9]{3}[-.][0-9]{3}[-.][0-9]{4}')

This recipe would be difficult to implement without the pattern matching capabilities inherent in Oracle's relatively new regular expression features. In particular, this recipe depends on REGEXP_REPLACE. Other databases (notably PostgreSQL) implement support for [bookmark: idx-CHP-14-0901]regular expressions. But to my knowledge, only Oracle supports the regular expression search and replace functionality on which this recipe depends.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-15]

Recipe 14.15. Transforming Data with an Inline View

[bookmark: idx-CHP-14-0902]

[bookmark: sqlckbk-CHP-14-SECT-15.1]

Problem

You have a table in a column that sometimes contains numeric data and sometimes character data. Another column in the same table indicates which is the case. You wish to use a subquery to isolate only the numeric data:

	select *

	 from (select flag, to_number(num) num

	 from subtest

	 where flag in ('A', 'C'))

	 where num > 0

Unfortunately, this query against an inline view often (but perhaps not always!) results in the following error message;

	ERROR:

	ORA-01722: invalid number

[bookmark: sqlckbk-CHP-14-SECT-15.2]

Solution

One solution is to force the inline view to completely execute prior to the outer SELECT statement. You can do that, in Oracle at least, by including the row number pseudo-column in your inner SELECT list:

	select *

	 from (select rownum, flag, to_number(num) num

	 from subtest

	 where flag in ('A', 'C'))

	 where num > 0

See "Discussion" for an explanation of why this solution works.

[bookmark: sqlckbk-CHP-14-SECT-15.3]

Discussion

The reason for the invalid number error in the problem query is that some optimizers will merge the inner and outer queries. While it looks like you are executing an inner query first to remove all non-numeric NUM values, you might really be executing:

	select flag, to_number(num) num

	from subtest

	where to_number(num) > 0 and flag in ('A', 'C');

And now you can probably clearly see the reason for the error: rows with non-numeric NUM values are not filtered out before the TO_NUMBER function is applied.

						[image:]			

Should a database merge sub and main queries? The answer depends on whether you are thinking in terms of relational theory, in terms of the SQL standard, or in terms of how your particular database vendor chooses to implement his brand of SQL. You can learn more by visiting http://gennick.com/madness.html.

The solution solves the problem, in Oracle at least, because it adds ROWNUM to the inner query's SELECT list. ROWNUM is a function that returns a sequentially increasing number for each row returned by a query. Those last words are important. The sequentially increasing number, termed a row number, cannot be computed outside the context of returning a row from a query. Thus, Oracle is forced to materialize the result of the subquery, which means that Oracle is forced to execute the subquery first in order to return rows from that subquery in order to properly assign row numbers. Thus, querying for ROWNUM is one mechanism that you can use to force Oracle to fully execute a subquery prior to the main query (i.e., no merging of queries allowed). If you are not using Oracle, and you need to force the order of execution of a subquery, check to see whether your database supports something analogous to Oracle's ROWNUM function.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-16]

Recipe 14.16. Testing for Existence of a Value Within a Group

[bookmark: idx-CHP-14-0903]

[bookmark: sqlckbk-CHP-14-SECT-16.1]

Problem

You want to create a Boolean flag for a row depending on whether or not any row in its group contains a specific value. Consider an example of a student who has taken a certain number of exams during a period of time. A student will take three exams over three months. If a student passes one of these exams, the requirement is satisfied and a flag should be returned to express that fact. If a student did not pass any of the three tests in the three month period, then an additional flag should be returned to express that fact as well. Consider the following example (using Oracle syntax to make up rows [bookmark: idx-CHP-14-0904]for this example; minor modifications are necessary for DB2 and SQL Server, because both support window functions):

	create view V

	as

	select 1 student_id,

	 1 test_id,

	 2 grade_id,

	 1 period_id,

	 to_date('02/01/2005','MM/DD/YYYY') test_date,

	 0 pass_fail

	 from dual union all

	select 1, 2, 2, 1, to_date('03/01/2005','MM/DD/YYYY'), 1 from dual union all

	select 1, 3, 2, 1, to_date('04/01/2005','MM/DD/YYYY'), 0 from dual union all

	select 1, 4, 2, 2, to_date('05/01/2005','MM/DD/YYYY'), 0 from dual union all

	select 1, 5, 2, 2, to_date('06/01/2005','MM/DD/YYYY'), 0 from dual union all

	select 1, 6, 2, 2, to_date('07/01/2005','MM/DD/YYYY'), 0 from dual

	select *

	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL

	---------- ------- -------- --------- ----------- ---------

	 1 1 2 1 01-FEB-2005 0

	 1 2 2 1 01-MAR-2005 1

	 1 3 2 1 01-APR-2005 0

	 1 4 2 2 01-MAY-2005 0

	 1 5 2 2 01-JUN-2005 0

	 1 6 2 2 01-JUL-2005 0

Examining the result set above, you see that the student has taken six tests over two, three-month periods. The student has passed one test (1 means "pass"; 0 means "fail"), thus the requirement is satisfied for the entire first period. Because the student did not pass any exams during the second period (the next three months), PASS_FAIL is 0 for all three exams. You want to return a result set that highlights whether or not a student has passed a test for a given period. Ultimately you want to return the following result set:

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS

	---------- ------- -------- --------- ----------- ------ -----------

	 1 1 2 1 01-FEB-2005 + 0

	 1 2 2 1 01-MAR-2005 + 0

	 1 3 2 1 01-APR-2005 + 0

	 1 4 2 2 01-MAY-2005 - 0

	 1 5 2 2 01-JUN-2005 - 0

	 1 6 2 2 01-JUL-2005 - 1

The values for METREQ ("met requirement") are + and -, signifying the student either has or has not satisfied the requirement of passing at least one test in a period (three-month span), respectively. The value for IN_PROGRESS should be 0 if a student has already passed a test in a given period. If a student has not passed a test for a given period, then the row that has the latest exam date [bookmark: idx-CHP-14-0905]for that student will have a value of 1 for IN_PROGRESS.

[bookmark: sqlckbk-CHP-14-SECT-16.2]

Solution

What makes this problem a bit tricky is the fact that you have to treat rows in a group as a group and not as individuals. Consider the values for PASS_FAIL in the problem section. If you evaluate row by row, it would seem that the value for METREQ for each row except TEST_ID 2 should be "-", when in fact that is not the case. You must ensure you evaluate the rows as a group. By using the window function [bookmark: idx-CHP-14-0906]MAX OVER you can easily determine whether or not a student passed at least one test during a particular period. Once you have that information, the "Boolean" values are a simple matter of using CASE expressions:

	 1 select student_id,

	 2 test_id,

	 3 grade_id,

	 4 period_id,

	 5 test_date,

	 6 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,

	 7 decode(grp_p_f,1,0,

	 8 decode(test_date,last_test,1,0)) in_progress

	 9 from (

	10 select V.*,

	11 max(pass_fail)over(partition by

	12 student_id,grade_id,period_id) grp_p_f,

	13 max(test_date)over(partition by

	14 student_id,grade_id,period_id) last_test

	15 from V

	16) x

[bookmark: sqlckbk-CHP-14-SECT-16.3]

Discussion

The key to the solution is using the window function MAX OVER to return the greatest value of PASS_FAIL for each group. Because the values for PASS_FAIL are only 1 or 0, if a student passed at least one exam, then MAX OVER would return 1 for the entire group. How this works is shown below:

	select V.*,

	 max(pass_fail)over(partition by

	 student_id,grade_id,period_id) grp_pass_fail

	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_PASS_FAIL

	---------- ------- -------- --------- ----------- --------- -------------

	 1 1 2 1 01-FEB-2005 0 1

	 1 2 2 1 01-MAR-2005 1 1

	 1 3 2 1 01-APR-2005 0 1

	 1 4 2 2 01-MAY-2005 0 0

	 1 5 2 2 01-JUN-2005 0 0

	 1 6 2 2 01-JUL-2005 0 0

The result set above shows that the student passed at least one test during the first period, thus the entire group has a value of 1 or "pass." The next requirement is that if the student has not passed any tests in a period, return a value of 1 for he IN_ PROGRESS flag for the latest test date in that group. You can use the window function MAX OVER to do this as well:

	select V.*,

	 max(pass_fail)over(partition by

	 student_id,grade_id,period_id) grp_p_f,

	 max(test_date)over(partition by

	 student_id,grade_id,period_id) last_test

	 from V

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE PASS_FAIL GRP_P_F LAST_TEST

	---------- ------- -------- --------- ----------- --------- ------- -----------

	 1 1 2 1 01-FEB-2005 0 1 01-APR-2005

	 1 2 2 1 01-MAR-2005 1 1 01-APR-2005

	 1 3 2 1 01-APR-2005 0 1 01-APR-2005

	 1 4 2 2 01-MAY-2005 0 0 01-JUL-2005

	 1 5 2 2 01-JUN-2005 0 0 01-JUL-2005

	 1 6 2 2 01-JUL-2005 0 0 01-JUL-2005

Now that you have determined for which period the student has passed a test and what the latest test date for each period is, the last step is simply a matter of applying some formatting magic to make the result set look nice. The final solution uses Oracle's DECODE function (CASE supporters eat your hearts out) to create the METREQ and IN_PROGRESS columns. Use the LPAD function to right justify the values for METREQ:

	select student_id,

	 test_id,

	 grade_id,

	 period_id,

	 test_date,

	 decode(grp_p_f,1,lpad('+',6),lpad('-',6)) metreq,

	 decode(grp_p_f,1,0,

	 decode(test_date,last_test,1,0)) in_progress

	 from (

	select V.*,

	 max(pass_fail)over(partition by

	 student_id,grade_id,period_id) grp_p_f,

	 max(test_date)over(partition by

	 student_id,grade_id,period_id) last_test

	 from V

) x

	STUDENT_ID TEST_ID GRADE_ID PERIOD_ID TEST_DATE METREQ IN_PROGRESS

	---------- ------- -------- --------- ----------- ------ -----------

	 1 1 2 1 01-FEB-2005 + 0

	 1 2 2 1 01-MAR-2005 + 0

	 1 3 2 1 01-APR-2005 + 0

	 1 4 2 2 01-MAY-2005 - 0

	 1 5 2 2 01-JUN-2005 - 0

	 1 6 2 2 01-JUL-2005 - 1

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-2]

Recipe 14.2. Unpivoting a Cross-Tab Report Using SQL Server's UNPIVOT Operator

[bookmark: idx-CHP-14-0836]

[bookmark: idx-CHP-14-0837]

[bookmark: sqlckbk-CHP-14-SECT-2.1]

Problem

You have a pivoted result set (or simply a fat table) and you wish to unpivot the result set. For example, instead of having a result set with one row and four columns you want to return a result set with two columns and four rows. Using the result set from the previous recipe, you want to convert it from this:

	ACCOUNTING RESEARCH SALES OPERATIONS

	---------- ---------- ---------- ----------

	 3 5 6 0

to this:

	DNAME CNT

	-------------- ----------

	ACCOUNTING 3

	RESEARCH 5

	SALES 6

	OPERATIONS 0

[bookmark: sqlckbk-CHP-14-SECT-2.2]

Solution

You didn't think SQL Server would give you the ability to PIVOT without being able to UNPIVOT, did you? To unpivot the result set just use it as the driver and let the [bookmark: idx-CHP-14-0838]UNPIVOT operator do all the work. All you need to do is specify the column names:

	 1 select DNAME, CNT

	 2 from (

	 3 select [ACCOUNTING] as ACCOUNTING,

	 4 [SALES] as SALES,

	 5 [RESEARCH] as RESEARCH,

	 6 [OPERATIONS] as OPERATIONS

	 7 from (

	 8 select d.dname, e.empno

	 9 from emp e,dept d

	10 where e.deptno=d.deptno

	11

	12) driver

	13 pivot (

	14 count(driver.empno)

	15 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])

	16) as empPivot

	17) new_driver

	18 unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)

	19) as un_pivot

Hopefully, before reading this recipe you've read the one prior to it, because the inline view NEW_DRIVER is simply the code from the previous recipe (if you don't understand it, please refer to the previous recipe before looking at this one). Since lines 316 consist of code you've already seen, the only new syntax is on line 18, where you use UNPIVOT.

The UNPIVOT command simply looks at the result set from NEW_DRIVER and evaluates each column and row. For example, the UNPIVOT operator evaluates the column names from NEW_DRIVER. When it encounters ACCOUNTING, it transforms the column name ACCOUNTING into a row value (under the column DNAME). It also takes the value for ACCOUNTING from NEW_DRIVER (which is 3) and returns that as part of the ACCOUNTING row as well (under the column CNT). UNPIVOT does this for each of the items specified in the FOR list and simply returns each one as a row.

The new result set is now skinny and has two columns, DNAME and CNT, with four rows:

	

	select DNAME, CNT

	 from (

	 select [ACCOUNTING] as ACCOUNTING,

	 [SALES] as SALES,

	 [RESEARCH] as RESEARCH,

	 [OPERATIONS] as OPERATIONS

	 from (

	 select d.dname, e.empno

	 from emp e,dept d

	 where e.deptno=d.deptno

) driver

	 pivot (

	 count(driver.empno)

	 for driver.dname in ([ACCOUNTING],[SALES],[RESEARCH],[OPERATIONS])

) as empPivot

) new_driver

	[bookmark: idx-CHP-14-0839]unpivot (cnt for dname in (ACCOUNTING,SALES,RESEARCH,OPERATIONS)

) as un_pivot

	DNAME CNT

	-------------- ----------

	ACCOUNTING 3

	RESEARCH 5

	SALES 6

	OPERATIONS 0

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-3]

Recipe 14.3. Transposing a Result Set Using Oracle's MODEL Clause

[bookmark: idx-CHP-14-0840]

[bookmark: idx-CHP-14-0841]

[bookmark: idx-CHP-14-0842]

[bookmark: sqlckbk-CHP-14-SECT-3.1]

Problem

Like the fist recipe in this chapter, you wish to find an alternative to the traditional pivoting techniques you've seen already. You want to try your hand at Oracle's MODEL clause. Unlike SQL Server's PIVOT operator, Oracle's MODEL clause does not exist to transpose result sets; as a matter of fact, it would be quite accurate to say the application of the MODEL clause for pivoting would be a misuse and clearly not what the MODEL clause was intended for. Nevertheless, the MODEL clause provides for an interesting approach to a common problem. For this particular problem, you want to transform the following result set from this:

	

	select deptno, count(*) cnt

	 from emp

	 group by deptno

	DEPTNO CNT

	------ ----------

	 10 3

	 20 5

	 30 6

to this:

	 D10 D20 D30

	---------- ---------- ----------

	 3 5 6

[bookmark: sqlckbk-CHP-14-SECT-3.2]

Solution

Use aggregation and CASE expressions in the MODEL clause just as you would use them if pivoting with traditional techniques. The main difference in this case is that you use arrays to store the values of the aggregation and return the arrays in the [bookmark: idx-CHP-14-0843]result set:

	select max(d10) d10,

	 max(d20) d20,

	 max(d30) d30

	 from (

	select d10,d20,d30

	 from (select deptno, count(*) cnt from emp group by deptno)

	 model

	 dimension by(deptno d)

	 measures(deptno, cnt d10, cnt d20, cnt d30)

	 rules(

	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,

	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,

	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end

)

)

[bookmark: sqlckbk-CHP-14-SECT-3.3]

Discussion

The MODEL clause is an extremely useful and powerful addition to the Oracle SQL toolbox. Once you begin working with MODEL you'll notice helpful features such as iteration, array access to row values, the ability to "upsert" rows into a [bookmark: idx-CHP-14-0844]result set, and the ability to build reference models. You'll quickly see that this recipe doesn't take advantage of any of the cool features the MODEL clause offers, but it's nice to be able to look at a problem from multiple angles and use different features in unexpected ways (if for no other reason than to learn where certain features are more useful than others).

The first step to understanding the solution is to examine the inline view in the FROM clause. The inline view simply counts the number of employees in each DEPTNO in table EMP. The results are shown below:

	

	select deptno, count(*) cnt

	 from emp

	 group by deptno

	DEPTNO CNT

	------ ----------

	 10 3

	 20 5

	 30 6

This result set is what is given to MODEL to work with. Examining the MODEL clause, you see three [bookmark: idx-CHP-14-0845]subclauses that stand out: DIMENSION BY, MEASURES, and RULES. Let's start with MEASURES.

The items in the MEASURES list are simply the arrays you are declaring for this query. The query uses four arrays: DEPTNO, D10, D20, and D30. Like columns in a SELECT list, arrays in the MEASURES list can have aliases. As you can see, three of the four arrays are actually CNT from the inline view.

If the MEASURES list contains our arrays, then the items in the DIMENSION BY subclause are the array indices. Consider this: array D10 is simply an alias for CNT. If you look at the [bookmark: idx-CHP-14-0846]result set for the inline view above, you'll see that CNT has three values: 3, 5, and 6. When you create an array of CNT, you are creating an array with three elements, namely, the three integers 3, 5, and 6. Now, how do you access these values from the array individually? You use the array index. The index, defined in the DIMENSION BY subclause, has the values of 10, 20, and 30 (from the [bookmark: idx-CHP-14-0847]result set above). So, for example, the following expression:

	d10[10]

would evaluate to 3, as you are accessing the value for CNT in array D10 for DEPTNO 10 (which is 3).

Because each of the three arrays (D10, D20, D30) contain the values from CNT, all three of them have the same results. How then do we get the proper count into the correct array? Enter the RULES subclause. If you look at the result set for the inline view shown earlier, you'll see that the values for DEPTNO are 10, 20, and 30. The expressions involving CASE in the RULES clause simply evaluate each value in the DEPTNO array:

			If the value is 10, store the CNT for DEPTNO 10 in D10[10] else store 0.

			If the value is 20, store the CNT for DEPTNO 20 in D20[20] else store 0.

			If the value is 30, store the CNT for DEPTNO 30 in D30[30] else store 0.

If you find yourself feeling a bit like Alice tumbling down the rabbit hole, don't worry; just stop and execute what's been discussed thus far. The following result set represents what has been discussed. Sometimes it's easier to read a bit, look at the code that actually performs what you just read, then go back and read it again. The following is quite simple once you see it in action:

	

	select deptno, d10,d20,d30

	 from (select deptno, count(*) cnt from emp group by deptno)

	 model

	 dimension by(deptno d)

	 measures(deptno, cnt d10, cnt d20, cnt d30)

	 rules(

	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,

	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,

	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end

)

	 DEPTNO D10 D20 D30

	 ------ ---------- ---------- ----------

	 10 3 0 0

	 20 0 5 0

	 30 0 0 6

As you can see, the [bookmark: idx-CHP-14-0848]RULES subclause is what changed the values in each array. If you are still not catching on, simply execute the same query but comment out the expressions in the RULES subclase:

	

	select deptno, d10,d20,d30

	 from (select deptno, count(*) cnt from emp group by deptno)

	 model

	 dimension by(deptno d)

	 measures(deptno, cnt d10, cnt d20, cnt d30)

	 rules(

	 /*

	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,

	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,

	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end

	 */

)

	 DEPTNO D10 D20 D30

	 ------ ---------- ---------- ----------

	 10 3 3 3

	 20 5 5 5

	 30 6 6 6

It should be clear now that the [bookmark: idx-CHP-14-0849]result set from the MODEL clause is the same as the inline view, except that the COUNT operation is aliased D10, D20, and D30. The query below proves this:

	

	select deptno, count(*) d10, count(*) d20, count(*) d30

	 from emp

	 group by deptno

	 DEPTNO D10 D20 D30

	 ------ ---------- ---------- ----------

	 10 3 3 3

	 20 5 5 5

	 30 6 6 6

So, all the MODEL clause did was to take the values for DEPTNO and CNT, put them into arrays, and then make sure that each array represents a single DEPTNO. At this point, arrays D10, D20, and D30 each have a single non-zero value representing the CNT for a given DEPTNO. The [bookmark: idx-CHP-14-0850]result set is already transposed, and all that is left is to use the aggregate function MAX (you could have used MIN or SUM; it would make no difference in this case) to return only one row:

	

	select max(d10) d10,

	 max(d20) d20,

	 max(d30) d30

	 from (

	select d10,d20,d30

	 from (select deptno, count(*) cnt from emp group by deptno)

	 model

	 dimension by(deptno d)

	 measures(deptno, cnt d10, cnt d20, cnt d30)

	 rules(

	 d10[any] = case when deptno[cv()]=10 then d10[cv()] else 0 end,

	 d20[any] = case when deptno[cv()]=20 then d20[cv()] else 0 end,

	 d30[any] = case when deptno[cv()]=30 then d30[cv()] else 0 end

)

)

	 D10 D20 D30

	 ---------- ---------- ----------

	 3 5 6

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-4]

Recipe 14.4. Extracting Elements of a String from Unfixed Locations

[bookmark: idx-CHP-14-0851]

[bookmark: sqlckbk-CHP-14-SECT-4.1]

Problem

You have a string field that contains serialized log data. You want to parse through the string and extract the relevant information. Unfortunately, the relevant information is not at fixed points in the string. Instead, you must use the fact that certain characters exist around the information you need, to extract said information. For example, consider the following strings:

	xxxxxabc[867]xxx[-]xxxx[5309]xxxxx

	xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx

	call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx

	film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx

You want to extract the values between the square brackets, returning the following [bookmark: idx-CHP-14-0852]result set:

	FIRST_VAL SECOND_VAL LAST_VAL

	--------------- ------------------- ---------------

	867 - 5309

	11271978 4 Joe

	F_GET_ROWS() ROSEWOOD…SIR 44400002

	non_marked unit withabanana?

[bookmark: sqlckbk-CHP-14-SECT-4.2]

Solution

Despite not knowing the exact locations within the string of the interesting values, you do know that they are located between square brackets [], and you know there are three of them. Use Oracle's built-in function [bookmark: idx-CHP-14-0853]INSTR to find the locations to of the brackets. Use the built-in function SUBSTR to extract the values from the string. View V will contain the strings to parse and is defined as follows (its use is strictly for readability):

	create view V

	as

	select 'xxxxxabc[867]xxx[-]xxxx[5309]xxxxx' msg

	 from dual

	 union all

	 select 'xxxxxtime:[11271978]favnum:[4]id:[Joe]xxxxx' msg

	 from dual

	 union all

	 select 'call:[F_GET_ROWS()]b1:[ROSEWOOD…SIR]b2:[44400002]77.90xxxxx' msg

	 from dual

	 union all

	 select 'film:[non_marked]qq:[unit]tailpipe:[withabanana?]80sxxxxx' msg

	 from dual

	 1 select substr(msg,

	 2 [bookmark: idx-CHP-14-0854]instr(msg,'[',1,1)+1,

	 3 instr(msg,']',1,1)-instr(msg,'[',1,1)-1) first_val,

	 4 substr(msg,

	 5 instr(msg,'[',1,2)+1,

	 6 instr(msg,']',1,2)-instr(msg,'[',1,2)-1) second_val,

	 7 substr(msg,

	 8 instr(msg,'[',-1,1)+1,

	 9 instr(msg,']',-1,1)-instr(msg,'[',-1,1)-1) last_val

	10 from V

[bookmark: sqlckbk-CHP-14-SECT-4.3]

Discussion

Using Oracle's built-in function INSTR makes this problem fairly simple to solve. Since you know the values you are after are enclosed in [], and that there are three sets of [], the first step to this solution is to simply use INSTR to find the numeric positions of [] in each string. The following example returns the numeric position of the opening and closing brackets in each row:

	

	select instr(msg,'[',1,1) "1st_[",

	 instr(msg,']',1,1) "]_1st",

	 instr(msg,'[',1,2) "2nd_[",

	 instr(msg,']',1,2) "]_2nd",

	 instr(msg,'[',-1,1) "3rd_[",

	 instr(msg,']',-1,1) "]_3rd"

	 from V

	 1st_[]_1st 2nd_[]_2nd 3rd_[]_3rd

	 ------ ----- ---------- ----- ---------- -----

	 9 13 17 19 24 29

	 11 20 28 30 34 38

	 6 19 23 38 42 51

	 6 17 21 26 36 49

At this point, the hard work is done. All that is left is to plug the numeric positions into SUBSTR to parse MSG at those locations. You'll notice that in the complete solution there's some simple arithmetic on the values returned by INSTR, particularly, +1 and1; this is necessary to ensure the opening square bracket, [, is not returned in the final result set. Listed below is the solution less addition and subtraction of 1 on the return values from INSTR; notice how each value has a leading square bracket:

	

	select substr(msg,

	 instr(msg,'[',1,1),

	 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,

	 substr(msg,

	 instr(msg,'[',1,2),

	 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,

	 substr(msg,

	 instr(msg,'[',-1,1),

	 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val

	 from V

	FIRST_VAL SECOND_VAL LAST_VAL

	--------------- -------------------- -------

	[867 [- [5309

	[11271978 [4 [Joe

	[F_GET_ROWS() [ROSEWOOD…SIR [44400002

	[non_marked [unit [withabanana?

From the result set above, you can see that the open bracket is there. You may be thinking: "OK, put the addition of 1 to INSTR back and the leading square bracket goes away. Why do we need to subtract 1?" The reason is this: if you put the addition back but leave out the subtraction, you end up including the closing square bracket, as can be seen below:

	

	select substr(msg,

	 instr(msg,'[',1,1)+1,

	 instr(msg,']',1,1)-instr(msg,'[',1,1)) first_val,

	 substr(msg,

	 instr(msg,'[',1,2)+1,

	 instr(msg,']',1,2)-instr(msg,'[',1,2)) second_val,

	 substr(msg,

	 instr(msg,'[',-1,1)+1,

	 instr(msg,']',-1,1)-instr(msg,'[',-1,1)) last_val

	 from V

	FIRST_VAL SECOND_VAL LAST_VAL

	--------------- --------------- -------------

	867] -] 5309]

	11271978] 4] Joe]

	F_GET_ROWS()] ROSEWOOD…SIR] 44400002]

	non_marked] unit] withabanana?]

At this point it should be clear: to ensure you include neither of the square brackets, you must add 1 to the beginning index and subtract one from the ending index.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-5]

Recipe 14.5. Finding the Number of Days in a Year (an Alternate Solution for Oracle)

[bookmark: idx-CHP-14-0855]

[bookmark: sqlckbk-CHP-14-SECT-5.1]

Problem

You want to find the number of days in a year.

						[image:]			

This recipe presents an alternative solution to "Determining the Number of Days in a Year" from Chapter 9. This solution is specific to Oracle.

[bookmark: sqlckbk-CHP-14-SECT-5.2]

Solution

Use the TO_CHAR function to format the last date of the year into a three-digit day-of-the-year number:

	

	1 select 'Days in 2005: '||

	2 to_char(add_months(trunc(sysdate,'y'),12)-1,'DDD')

	3 as report

	4 from dual

	5 union all

	6 select 'Days in 2004: '||

	7 to_char(add_months(trunc(

	8 to_date('01-SEP-2004'),'y'),12)-1,'DDD')

	9 from dual

	REPORT

	Days in 2005: 365

	Days in 2004: 366

[bookmark: sqlckbk-CHP-14-SECT-5.3]

Discussion

Begin by using the TRUNC function to return the first day of the year for the given date, as follows:

	

	select trunc(to_date('01-SEP-2004'),'y')

	 from dual

	TRUNC(TO_DA

	01-JAN-2004

Next, use ADD_MONTHS to add one year (12 months) to the truncated date. Then subtract one day, bringing you to the end of the year in which your original date falls:

	

	select add_months(

	 trunc(to_date('01-SEP-2004'),'y'),

	 12) before_subtraction,

	 add_months(

	 trunc(to_date('01-SEP-2004'),'y'),

	 12)-1 after_subtraction

	 from dual

	BEFORE_SUBT AFTER_SUBTR

	----------- -----------

	01-JAN-2005 31-DEC-2004

Now that you have found the last day in the year you are working with, simply use TO_CHAR to return a three-digit number representing on which day (1st, 50th, etc.) of the year the last day is:

	

	select to_char(

	 add_months(

	 trunc(to_date('01-SEP-2004'),'y'),

	 12)-1,'DDD') num_days_in_2004

	 from dual

	NUM

	366

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-6]

Recipe 14.6. Searching for Mixed Alphanumeric Strings

[bookmark: idx-CHP-14-0856]

[bookmark: sqlckbk-CHP-14-SECT-6.1]

Problem

You have a column with mixed alphanumeric data. You want to return those rows that have both alphabetical and numeric characters; in other words, if a string has only number or only letters, do not return it. The return values should have a mix of both letters and numbers. Consider the following data:

	STRINGS

	1010 switch

	333

	3453430278

	ClassSummary

	findRow 55

	threes

The final result set should contain only those rows that have both letters and numbers:

	STRINGS

	1010 switch

	findRow 55

[bookmark: sqlckbk-CHP-14-SECT-6.2]

Solution

Use the built-in function TRANSLATE to convert each occurrence of a letter or digit into a specific character. Then keep only those strings that have at least one occurrence of both. The solution uses Oracle syntax, but both DB2 and PostgreSQL support TRANSLATE, so modifying the solution to work on those platforms should be trivial:

	with v as (

	select 'ClassSummary' strings from dual union

	select '3453430278' from dual union

	select 'findRow 55' from dual union

	select '1010 switch' from dual union

	select '333' from dual union

	select 'threes' from dual

)

	select strings

	 from (

	select strings,

	translate(

	strings,

	'abcdefghijklmnopqrstuvwxyz0123456789',

	 rpad('#',26,'#')||rpad('*',10,'*')) translated

	from v

) x

where [bookmark: idx-CHP-14-0857]instr(translated,'#') > 0

and instr(translated,'*') > 0

						[image:]			

As an alternative to the WITH clause, you may use an inline view or simply create a view.

[bookmark: sqlckbk-CHP-14-SECT-6.3]

Discussion

The TRANSLATE function makes this problem extremely easy to solve. The first step is to use TRANSLATE to identify all letters and all digits by pound (#) and asterisk (*) characters, respectively. The intermediate results (from inline view X) are as follows:

	

	with v as (

	select 'ClassSummary' strings from dual union

	select '3453430278' from dual union

	select 'findRow 55' from dual union

	select '1010 switch' from dual union

	select '333' from dual union

	select 'threes' from dual

)

	select strings,

	 translate(

	 strings,

	 'abcdefghijklmnopqrstuvwxyz0123456789',

	 rpad('#',26,'#')||rpad('*',10,'*')) translated

	 from v

	STRINGS TRANSLATED

	------------- ------------

	1010 switch **** ######

	333 ***

	3453430278 **********

	ClassSummary C####S######

	findRow 55 ####R## **

	threes ######

At this point, it is only a matter of keeping those rows that have at least one instance each of "#" and "*". Use the function INSTR to determine whether "#" and "*" are in a string. If those two characters are, in fact, present, then the value returned will be greater than zero. The final strings to return, along with their translated values, are shown next [bookmark: idx-CHP-14-0858]for clarity:

	

	with v as (

	select 'ClassSummary' strings from dual union

	select '3453430278' from dual union

	select 'findRow 55' from dual union

	select '1010 switch' from dual union

	select '333' from dual union

	select 'threes' from dual

)

	select strings, translated

	 from (

	select strings,

	 translate(

	 strings,

	 'abcdefghijklmnopqrstuvwxyz0123456789',

	 rpad('#',26,'#')||rpad('*',10,'*')) translated

	 from v

)

	 where instr(translated,'#') > 0

	 and instr(translated,'*') > 0

	STRINGS TRANSLATED

	------------ ------------

	1010 switch **** ######

	findRow 55 ####R## **

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-7]

Recipe 14.7. Converting Whole Numbers to Binary Using Oracle

[bookmark: idx-CHP-14-0859]

[bookmark: sqlckbk-CHP-14-SECT-7.1]

Problem

You want to convert a whole number to its binary representation on an Oracle system. For example, you would like to return all the salaries in table EMP in binary as part of the following result set:

	ENAME SAL SAL_BINARY

	---------- ----- --------------------

	SMITH 800 1100100000

	ALLEN 1600 11001000000

	WARD 1250 10011100010

	JONES 2975 101110011111

	MARTIN 1250 10011100010

	BLAKE 2850 101100100010

	CLARK 2450 100110010010

	SCOTT 3000 101110111000

	KING 5000 1001110001000

	TURNER 1500 10111011100

	ADAMS 1100 10001001100

	JAMES 950 1110110110

	FORD 3000 101110111000

	MILLER 1300 10100010100

[bookmark: sqlckbk-CHP-14-SECT-7.2]

Solution

This solution makes use of the [bookmark: idx-CHP-14-0860]MODEL clause, so you'll need to be running Oracle Database 10g or later for it to work. Because of MODEL's ability to iterate and provide array access to row values, it is a natural choice for this operation (assuming you are forced to solve the problem in SQL, as a stored function is more appropriate here). Like the rest of the solutions in this book, even if you don't find a practical application for this code, focus on the technique. It is useful to know that the MODEL clause can perform procedural tasks while still keeping SQL's set-based nature and power. So, even if you find yourself saying: "I'd never do this in SQL," that's fine. I'm in no way suggesting you should or shouldn't. I only remind you to focus on the technique, so you can apply it to whatever you consider a more "practical" application.

The following solution returns all ENAME and SAL from table EMP, while calling the MODEL clause in a scalar subquery (this way it serves as sort of a standalone function from table EMP that simply receives an input, processes it, and returns a value, much like a function would):

	 1 select ename,

	 2 sal,

	 3 (

	 4 select bin

	 5 from dual

	 6 model

	 7 dimension by (0 attr)

	 8 measures (sal num,

	 9 cast(null as varchar2(30)) bin,

	10 '0123456789ABCDEF' hex

	11)

	12 rules iterate (10000) until (num[0] <= 0) (

	13 bin[0] = substr(hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],

	14 num[0] = trunc(num[cv()]/2)

	15)

	16) sal_binary

	17 from emp

[bookmark: sqlckbk-CHP-14-SECT-7.3]

Discussion

I mentioned in the "Solution" section that this problem is most likely better solved via a stored function. Indeed, the idea for this recipe came from a function. As a matter of fact, this recipe is an adaptation of a function called [bookmark: idx-CHP-14-0861]TO_BASE, written by Tom [bookmark: idx-CHP-14-0862]Kyte of Oracle Corporation. Like other recipes in this book that you may decide not to use, even if you do not use this recipe it does a nice job of showing of some of the features of the MODEL clause such as iteration and array access of rows.

To make the explanation easier, I am going to focus on a slight variation of the subquery containing the MODEL clause. The code that follows is essentially the subquery from the solution, except that it's been hard-wired to return the value 2 in binary:

	

	select bin

	 from dual

	 model

	 dimension by (0 attr)

	 measures (2 num,

	 cast(null as varchar2(30)) bin,

	 '0123456789ABCDEF' hex

)

	 rules iterate (10000) until (num[0] <= 0) (

	 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],

	 num[0] = trunc(num[cv()]/2)

)

	BIN

	10

The following query outputs the values returned from one iteration of the RULES defined in the query above:

	

	select 2 start_val,

	 '0123456789ABCDEF' hex,

	 substr('0123456789ABCDEF',mod(2,2)+1,1) ||

	 cast(null as varchar2(30)) bin,

	 trunc(2/2) num

	 from dual

	START_VAL HEX BIN NUM

	--------- ---------------- ---------- ---

	 2 0123456789ABCDEF 0 1

START_VAL represents the number you want to convert to binary, which in this case is 2. The value for BIN is the result of a substring operation on '0123456789ABCDEF' (HEX, in the original solution). The value for NUM is the test that will determine when you exit the loop.

As you can see from the preceding result set, the first time through the loop BIN is 0 and NUM is 1. Because NUM is not less than or equal to 0, another loop iteration occurs. The following SQL statement shows the results of the next iteration:

	

	select num start_val,

	 substr('0123456789ABCDEF',mod(1,2)+1,1) || bin bin,

	 trunc(1/2) num

	 from (

	select 2 start_val,

	 '0123456789ABCDEF' hex,

	 substr('0123456789ABCDEF',mod(2,2)+1,1) ||

	 cast(null as varchar2(30)) bin,

	 trunc(2/2) num

	 from dual

)

	START_VAL BIN NUM

	--------- ---------- ---

	 1 10 0

The next time through the loop, the result of the substring operation on HEX returns 1 and the prior value of BIN, 0, is appended to it. The test, NUM, is now 0, thus this is the last iteration and the return value "10" is the binary representation of the number 2. Once you're comfortable with what's going on, you can remove the iteration from the MODEL clause and step through it row by row to follow how the rules are applied to come to the final result set, as is shown below:

	

	select 2 orig_val, num, bin

	 from dual

	 model

	 dimension by (0 attr)

	 measures (2 num,

	 cast(null as varchar2(30)) bin,

	 '0123456789ABCDEF' hex

)

	 rules (

	 bin[0] = substr (hex[cv()],mod(num[cv()],2)+1,1)||bin[cv()],

	 num[0] = trunc(num[cv()]/2),

	 bin[1] = substr (hex[0],mod(num[0],2)+1,1)||bin[0],

	 num[1] = trunc(num[0]/2)

)

	ORIG_VAL NUM BIN

	-------- --- ---------

	 2 1 0

	 2 0 10

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-8]

Recipe 14.8. Pivoting a Ranked Result Set

[bookmark: idx-CHP-14-0863]

[bookmark: sqlckbk-CHP-14-SECT-8.1]

Problem

You want to rank the values in a table, then pivot the result set into three columns. The idea is to show the top three, the next three, then all the rest. For example, you want to rank the employees in table EMP by SAL, and then pivot the results into three columns. The desired result set is as follows:

	TOP_3 NEXT_3 REST

	--------------- --------------- --------------

	KING (5000) BLAKE (2850) TURNER (1500)

	FORD (3000) CLARK (2450) MILLER (1300)

	SCOTT (3000) ALLEN (1600) MARTIN (1250)

	JONES (2975) WARD (1250)

	 ADAMS (1100)

	 JAMES (950)

	 SMITH (800)

[bookmark: sqlckbk-CHP-14-SECT-8.2]

Solution

The key to this solution is to first use the window function [bookmark: idx-CHP-14-0864]DENSE_RANK OVER to rank the employees by SAL while allowing for ties. By using DENSE_RANK OVER, you can easily see the top three salaries, the next three salaries, and then all the rest.

Next, use the window function ROW_NUMBER OVER to rank each employee within his group (the top three, next three, or last group). From there, simply perform a classic transpose, while using the built-in string functions available on your platform to beautify the [bookmark: idx-CHP-14-0865]results. The following solution uses Oracle syntax. Since both DB2 and SQL Server 2005 support window functions, converting the solution to work for those platforms is trivial:

	 1 select max(case grp when 1 then rpad(ename,6) ||

	 2 ' ('|| sal ||')' end) top_3,

	 3 max(case grp when 2 then rpad(ename,6) ||

	 4 ' ('|| sal ||')' end) next_3,

	 5 max(case grp when 3 then rpad(ename,6) ||

	 6 ' ('|| sal ||')' end) rest

	 7 from (

	 8 select ename,

	 9 sal,

	10 rnk,

	11 case when rnk <= 3 then 1

	12 when rnk <= 6 then 2

	13 else 3

	14 end grp,

	15 row_number()over (

	16 partition by case when rnk <= 3 then 1

	17 when rnk <= 6 then 2

	18 else 3

	19 end

	20 order by sal desc, ename

	21) grp_rnk

	22 from (

	23 select ename,

	24 sal,

	25 dense_rank()over(order by sal desc) rnk

	26 from emp

	27) x

	28) y

	29 group by grp_rnk

[bookmark: sqlckbk-CHP-14-SECT-8.3]

Discussion

This recipe is a perfect example of how much you can accomplish with so little, with the help of window functions. The solution may look involved, but as you break it down from inside out you will be surprised how simple it is. Let's begin by executing inline view X first:

	

	select ename,

	 sal,

	 dense_rank()over(order by sal desc) rnk

	 from emp

	ENAME SAL RNK

	---------- ----- ----------

	KING 5000 1

	SCOTT 3000 2

	FORD 3000 2

	JONES 2975 3

	BLAKE 2850 4

	CLARK 2450 5

	ALLEN 1600 6

	TURNER 1500 7

	MILLER 1300 8

	WARD 1250 9

	MARTIN 1250 9

	ADAMS 1100 10

	JAMES 950 11

	SMITH 800 12

As you can see from the [bookmark: idx-CHP-14-0866]result set above, inline view X simply ranks the employees by SAL, while allowing for ties (because the solution uses [bookmark: idx-CHP-14-0867]DENSE_RANK instead of RANK, there are ties without gaps). The next step is to take the rows from inline view X and create groups by using a CASE expression to evaluate the ranking from DENSE_RANK. Additionally, use the window function ROW_NUMBER OVER to rank the employees by SAL within their group (within the group you are creating with the CASE expression). All of this happens in inline view Y and is shown below:

	

	select ename,

	 sal,

	 rnk,

	 case when rnk <= 3 then 1

	 when rnk <= 6 then 2

	 else 3

	 end grp,

	 row_number()over (

	 partition by case when rnk <= 3 then 1

	 when rnk <= 6 then 2

	 else 3

	 end

	 order by sal desc, ename

) grp_rnk

	 from (

	select ename,

	 sal,

	 dense_rank()over(order by sal desc) rnk

	 from emp

) x

	ENAME SAL RNK GRP GRP_RNK

	---------- ----- ---- ---- -------

	KING 5000 1 1 1

	FORD 3000 2 1 2

	SCOTT 3000 2 1 3

	JONES 2975 3 1 4

	BLAKE 2850 4 2 1

	CLARK 2450 5 2 2

	ALLEN 1600 6 2 3

	TURNER 1500 7 3 1

	MILLER 1300 8 3 2

	MARTIN 1250 9 3 3

	WARD 1250 9 3 4

	ADAMS 1100 10 3 5

	JAMES 950 11 3 6

	SMITH 800 12 3 7

Now the query is starting to take shape and, if you followed it from the beginning (from inline view X), you can see that it's not that complicated. The query so far returns each employee, her SAL, her RNK, which represents where her SAL ranks amongst all employees, her GRP, which indicates the group each employee is in (based on SAL), and finally GRP_RANK, which is a ranking (based on SAL) within her GRP.

At this point, perform a traditional pivot on ENAME while using the Oracle concatenation operator || to append the SAL. The function [bookmark: idx-CHP-14-0868]RPAD ensures that the numeric values in parentheses line up nicely. Finally, use GROUP BY on GRP_RNK to ensure you show each employee in the [bookmark: idx-CHP-14-0869]result set. The final result set is shown below:

	

	select max(case grp when 1 then rpad(ename,6) ||

	 ' ('|| sal ||')' end) top_3,

	 max(case grp when 2 then rpad(ename,6) ||

	 ' ('|| sal ||')' end) next_3,

	 max(case grp when 3 then rpad(ename,6) ||

	 ' ('|| sal ||')' end) rest

	 from (

	select ename,

	 sal,

	 rnk,

	 case when rnk <= 3 then 1

	 when rnk <= 6 then 2

	 else 3

	 end grp,

	 row_number()over (

	 partition by case when rnk <= 3 then 1

	 when rnk <= 6 then 2

	 else 3

	 end

	 Order by sal desc, ename

) grp_rnk

	 from (

	select ename,

	 sal,

	 dense_rank()over(order by sal desc) rnk

	 from emp

) x

) y

	group by grp_rnk

	TOP_3 NEXT_3 REST

	--------------- --------------- -------------

	KING (5000) BLAKE (2850) TURNER (1500)

	FORD (3000) CLARK (2450) MILLER (1300)

	SCOTT (3000) ALLEN (1600) MARTIN (1250)

	JONES (2975) WARD (1250)

	ADAMS (1100)

	 JAMES (950)

	 SMITH (800)

If you examine the queries in all of the steps you'll notice that table EMP is accessed exactly once. One of the remarkable things about window functions is how much work you can do in just one pass through your data. No need for self joins or temp tables; just get the rows you need, then let the window functions do the rest. Only in inline view X do you need to access EMP. From there, it's simply a matter of massaging the result set to look the way you want. Consider what all this means for performance if you can create this type of report with a single table access. Pretty cool.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14-SECT-9]

Recipe 14.9. Adding a Column Header into a Double Pivoted Result Set

[bookmark: idx-CHP-14-0870]

[bookmark: sqlckbk-CHP-14-SECT-9.1]

Problem

You want to stack two [bookmark: idx-CHP-14-0871]result sets, and then pivot them into two columns. Additionally, you want to add a "header" for each group of rows in each column. For example, you have two tables containing information about employees working in different areas of development in your company (say, in research and applications):

	

	select * from it_research

	DEPTNO ENAME

	------ --------------------

	 100 HOPKINS

	 100 JONES

	 100 TONEY

	 200 MORALES

	 200 P.WHITAKER

	 200 MARCIANO

	 200 ROBINSON

	 300 LACY

	 300 WRIGHT

	 300 J.TAYLOR

	

	select * from it_apps

	DEPTNO ENAME

	------ -----------------

	 400 CORRALES

	 400 MAYWEATHER

	 400 CASTILLO

	 400 MARQUEZ

	 400 MOSLEY

	 500 GATTI

	 500 CALZAGHE

	 600 LAMOTTA

	 600 HAGLER

	 600 HEARNS

	 600 FRAZIER

	 700 GUINN

	 700 JUDAH

	 700 MARGARITO

You would like to create a report listing the employees from each table in two columns. You want to return the DEPTNO followed by ENAME for each. Ultimately you want to return the following result set:

	RESEARCH APPS

	-------------------- ---------------

	100 400

	 JONES MAYWEATHER

	 TONEY CASTILLO

	 HOPKINS MARQUEZ

	200 MOSLEY

	 P.WHITAKER CORRALES

	 MARCIANO 500

	 ROBINSON CALZAGHE

	 MORALES GATTI

	300 600

	 WRIGHT HAGLER

	 J.TAYLOR HEARNS

	 LACY FRAZIER

	 LAMOTTA

	 700

	 JUDAH

	 MARGARITO

	 GUINN

[bookmark: sqlckbk-CHP-14-SECT-9.2]

Solution

For the most part, this solution requires nothing more than a simple stack-n-pivot (union then pivot) with an added twist: the DEPTNO must precede the ENAME for each employee returned. The technique here uses a Cartesian product to generate an extra row for each DEPTNO, so you have the required rows necessary to show all employees, plus room for the DEPTNO. The solution uses Oracle syntax, but since DB2 supports window functions that can compute moving windows (the [bookmark: idx-CHP-14-0872]framing clause), converting this solution to work for DB2 is trivial. Because the IT_ RESEARCH and IT_APPS tables exist only for this recipe, their table creation statements are shown along with this solution:

	create table IT_research (deptno number, ename varchar2(20))

	insert into IT_research values (100,'HOPKINS')

	insert into IT_research values (100,'JONES')

	insert into IT_research values (100,'TONEY')

	insert into IT_research values (200,'MORALES')

	insert into IT_research values (200,'P.WHITAKER')

	insert into IT_research values (200,'MARCIANO')

	insert into IT_research values (200,'ROBINSON')

	insert into IT_research values (300,'LACY')

	insert into IT_research values (300,'WRIGHT')

	insert into IT_research values (300,'J.TAYLOR')

	create table IT_apps (deptno number, ename varchar2(20))

	insert into IT_apps values (400,'CORRALES')

	insert into IT_apps values (400,'MAYWEATHER')

	insert into IT_apps values (400,'CASTILLO')

	insert into IT_apps values (400,'MARQUEZ')

	insert into IT_apps values (400,'MOSLEY')

	insert into IT_apps values (500,'GATTI')

	insert into IT_apps values (500,'CALZAGHE')

	insert into IT_apps values (600,'LAMOTTA')

	insert into IT_apps values (600,'HAGLER')

	insert into IT_apps values (600,'HEARNS')

	insert into IT_apps values (600,'FRAZIER')

	insert into IT_apps values (700,'GUINN')

	insert into IT_apps values (700,'JUDAH')

	insert into IT_apps values (700,'MARGARITO')

	 1 select max(decode(flag2,0,it_dept)) research,

	 2 max(decode(flag2,1,it_dept)) apps

	 3 from (

	 4 select sum(flag1)over(partition by flag2

	 5 order by flag1,rownum) flag,

	 6 it_dept, flag2

	 7 from (

	 8 select 1 flag1, 0 flag2,

	 9 decode(rn,1,to_char(deptno),' '||ename) it_dept

	10 from (

	11 select x.*, y.id,

	12 row_number()over(partition by x.deptno order by y.id) rn

	13 from (

	14 select deptno,

	15 ename,

	16 count(*)over(partition by deptno) cnt

	17 from it_research

	18) x,

	19 (select level id from dual connect by level <= 2) y

	20)

	21 where rn <= cnt+1

	22 union all

	23 select 1 flag1, 1 flag2,

	24 decode(rn,1,to_char(deptno),' '||ename) it_dept

	25 from (

	26 select x.*, y.id,

	27 row_number()over(partition by x.deptno order by y.id) rn

	28 from (

	29 select deptno,

	30 ename,

	31 count(*)over(partition by deptno) cnt

	32 from it_apps

	33) x,

	34 (select level id from dual connect by level <= 2) y

	35)

	36 where rn <= cnt+1

	37) tmp1

	38) tmp2

	39 group by flag

[bookmark: sqlckbk-CHP-14-SECT-9.3]

Discussion

Like many of the other warehousing/report type queries, the solution presented looks quite convoluted but once broken down you'll seen it's nothing more than a stack-n-pivot with a Cartesian twist (on the rocks, with a little umbrella). The way to break this query down is to work on each part of the UNION ALL first, then bring it together for the pivot. Let's start with the lower portion of the UNION ALL:

	

	select 1 flag1, 1 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

) z

	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT

	----- ---------- --------------------------

	 1 1 400

	 1 1 MAYWEATHER

	 1 1 CASTILLO

	 1 1 MARQUEZ

	 1 1 MOSLEY

	 1 1 CORRALES

	 1 1 500

	 1 1 CALZAGHE

	 1 1 GATTI

	 1 1 600

	 1 1 HAGLER

	 1 1 HEARNS

	 1 1 FRAZIER

	 1 1 LAMOTTA

	 1 1 700

	 1 1 JUDAH

	 1 1 MARGARITO

	 1 1 GUINN

Let's examine exactly how that result set is put together. Breaking down the above query to its simplest components, you have inline view X, which simply returns each ENAME and DEPTNO and the number of employees in each DEPTNO from table IT_APPS. The results are as follows:

	

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

	DEPTNO ENAME CNT

	------ -------------------- ----------

	 400 CORRALES 5

	 400 MAYWEATHER 5

	 400 CASTILLO 5

	 400 MARQUEZ 5

	 400 MOSLEY 5

	 500 GATTI 2

	 500 CALZAGHE 2

	 600 LAMOTTA 4

	 600 HAGLER 4

	 600 HEARNS 4

	 600 FRAZIER 4

	 700 GUINN 3

	 700 JUDAH 3

	 700 MARGARITO 3

The next step is to create a Cartesian product between the rows returned from inline view X and two rows generated from DUAL using CONNECT BY. The results of this operation are as follows:

	

	select *

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

	 order by 2

	DEPTNO ENAME CNT ID

	------ ---------- --- ---

	 500 CALZAGHE 2 1

	 500 CALZAGHE 2 2

	 400 CASTILLO 5 1

	 400 CASTILLO 5 2

	 400 CORRALES 5 1

	 400 CORRALES 5 2

	 600 FRAZIER 4 1

	 600 FRAZIER 4 2

	 500 GATTI 2 1

	 500 GATTI 2 2

	 700 GUINN 3 1

	 700 GUINN 3 2

	 600 HAGLER 4 1

	 600 HAGLER 4 2

	 600 HEARNS 4 1

	 600 HEARNS 4 2

	 700 JUDAH 3 1

	 700 JUDAH 3 2

	 600 LAMOTTA 4 1

	 600 LAMOTTA 4 2

	 700 MARGARITO 3 1

	 700 MARGARITO 3 2

	 400 MARQUEZ 5 1

	 400 MARQUEZ 5 2

	 400 MAYWEATHER 5 1

	 400 MAYWEATHER 5 2

	 400 MOSLEY 5 1

	 400 MOSLEY 5 2

As you can see from these results, each row from inline view X is now returned twice due to the Cartesian product with inline view Y. The reason a Cartesian is needed will become clear shortly. The next step is to take the current result set and rank each employee within his DEPTNO by ID (ID has a value of 1 or 2 as was returned by the Cartesian product). The result of this ranking is shown in the output from the following query:

	

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

	DEPTNO ENAME CNT ID RN

	------ ---------- --- --- ----------

	 400 CORRALES 5 1 1

	 400 MAYWEATHER 5 1 2

	 400 CASTILLO 5 1 3

	 400 MARQUEZ 5 1 4

	 400 MOSLEY 5 1 5

	 400 CORRALES 5 2 6

	 400 MOSLEY 5 2 7

	 400 MAYWEATHER 5 2 8

	 400 CASTILLO 5 2 9

	 400 MARQUEZ 5 2 10

	 500 GATTI 2 1 1

	 500 CALZAGHE 2 1 2

	 500 GATTI 2 2 3

	 500 CALZAGHE 2 2 4

	 600 LAMOTTA 4 1 1

	 600 HAGLER 4 1 2

	 600 HEARNS 4 1 3

	 600 FRAZIER 4 1 4

	 600 LAMOTTA 4 2 5

	 600 HAGLER 4 2 6

	 600 FRAZIER 4 2 7

	 600 HEARNS 4 2 8

	 700 GUINN 3 1 1

	 700 JUDAH 3 1 2

	 700 MARGARITO 3 1 3

	 700 GUINN 3 2 4

	 700 JUDAH 3 2 5

	 700 MARGARITO 3 2 6

Each employee is ranked; then his duplicate is ranked. The result set contains duplicates for all employees in table IT_APP, along with their ranking within their DEPTNO. The reason you need to generate these extra rows is because you need a slot in the result set to slip in the DEPTNO in the ENAME column. If you Cartesian-join IT_APPS with a one-row table, you get no extra rows (because cardinality of any table x1 = cardinality of that table).

The next step is to take the results returned thus far and pivot the result set such that all the ENAMES are returned in one column but are preceded by the DEPTNO they are in. The following query shows how this happens:

	

	select 1 flag1, 1 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

) z

	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT

	----- ---------- -------------------------

	 1 1 400

	 1 1 MAYWEATHER

	 1 1 CASTILLO

	 1 1 MARQUEZ

	 1 1 MOSLEY

	 1 1 CORRALES

	 1 1 500

	 1 1 CALZAGHE

	 1 1 GATTI

	 1 1 600

	 1 1 HAGLER

	 1 1 HEARNS

	 1 1 FRAZIER

	 1 1 LAMOTTA

	 1 1 700

	 1 1 JUDAH

	 1 1 MARGARITO

	 1 1 GUINN

FLAG1 and FLAG2 come into play later and can be ignored for the moment. Focus your attention on the rows in IT_DEPT. The number of rows returned for each DEPTNO is CNT*2, but all that is needed is CNT+1, which is the filter in the WHERE clause. RN is the ranking for each employee. The rows kept are all those ranked less than or equal to CNT+1; i.e., all employees in each DEPTNO plus one more (this extra employee is the employee who is ranked first in their DEPTNO). This extra row is where the DEPTNO will slide in. By using [bookmark: idx-CHP-14-0873]DECODE (an older Oracle function that gives more or less the equivalent of a CASE expression) to evaluate the value of RN, you can slide the value of DEPTNO into the result set. The employee who was at position 1 (based on the value of RN) is still shown in the result set, but is now last in each DEPTNO (because the order is irrelevant, this is not a problem). That pretty much covers the lower part of the UNION ALL.

The upper part of the UNION ALL is processed in the same way as the lower part so there's no need to explain how that works. Instead, let's examine the result set returned when stacking the queries:

	

	select 1 flag1, 0 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_research

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

	union all

	select 1 flag1, 1 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

	FLAG1 FLAG2 IT_DEPT

	----- ---------- -----------------------

	 1 0 100

	 1 0 JONES

	 1 0 TONEY

	 1 0 HOPKINS

	 1 0 200

	 1 0 P.WHITAKER

	 1 0 MARCIANO

	 1 0 ROBINSON

	 1 0 MORALES

	 1 0 300

	 1 0 WRIGHT

	 1 0 J.TAYLOR

	 1 0 LACY

	 1 1 400

	 1 1 MAYWEATHER

	 1 1 CASTILLO

	 1 1 MARQUEZ

	 1 1 MOSLEY

	 1 1 CORRALES

	 1 1 500

	 1 1 CALZAGHE

	 1 1 GATTI

	 1 1 600

	 1 1 HAGLER

	 1 1 HEARNS

	 1 1 FRAZIER

	 1 1 LAMOTTA

	 1 1 700

	 1 1 JUDAH

	 1 1 MARGARITO

	 1 1 GUINN

At this point, it isn't clear what FLAG1's purpose is, but you can see that FLAG2 identifies which rows come from which part of the UNION ALL (0 for the upper part, 1 for the lower part).

The next step is to wrap the stacked result set in an inline view and create a running total on FLAG1 (finally, its purpose is revealed!), which will act as a ranking for each row in each stack. The results of the ranking (running total) are shown below:

	

	select sum(flag1)over(partition by flag2

	 order by flag1,rownum) flag,

	 it_dept, flag2

	 from (

	select 1 flag1, 0 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_research

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

	union all

	select 1 flag1, 1 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

) tmp1

	FLAG IT_DEPT FLAG2

	---- --------------- ----------

	 1 100 0

	 2 JONES 0

	 3 TONEY 0

	 4 HOPKINS 0

	 5 200 0

	 6 P.WHITAKER 0

	 7 MARCIANO 0

	 8 ROBINSON 0

	 9 MORALES 0

	 10 300 0

	 11 WRIGHT 0

	 12 J.TAYLOR 0

	 13 LACY 0

	 1 400 1

	 2 MAYWEATHER 1

	 3 CASTILLO 1

	 4 MARQUEZ 1

	 5 MOSLEY 1

	 6 CORRALES 1

	 7 500 1

	 8 CALZAGHEe 1

	 9 GATTI 1

	 10 600 1

	 11 HAGLER 1

	 12 HEARNS 1

	 13 FRAZIER 1

	 14 LAMOTTA 1

	 15 700 1

	 16 JUDAH 1

	 17 MARGARITO 1

	 18 GUINN 1

The last remaining step (finally!) is to pivot the value returned by TMP1 on FLAG2 while grouping by FLAG (the running total generated in TMP1). The results from TMP1 are wrapped in an inline view and pivoted (wrapped in a final inline view called TMP2). The final solution and result set is shown below:

	

	select max(decode(flag2,0,it_dept)) research,

	 max(decode(flag2,1,it_dept)) apps

	 from (

	select sum(flag1)over(partition by flag2

	 order by flag1,rownum) flag,

	 it_dept, flag2

	 from (

	select 1 flag1, 0 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_research

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

	union all

	select 1 flag1, 1 flag2,

	 decode(rn,1,to_char(deptno),' '||ename) it_dept

	 from (

	select x.*, y.id,

	 row_number()over(partition by x.deptno order by y.id) rn

	 from (

	select deptno deptno,

	 ename,

	 count(*)over(partition by deptno) cnt

	 from it_apps

) x,

	 (select level id from dual connect by level <= 2) y

)

	 where rn <= cnt+1

) tmp1

) tmp2

	 group by flag

	RESEARCH APPS

	-------------------- ---------------

	100 400

	 JONES MAYWEATHER

	 TONEY CASTILLO

	 HOPKINS MARQUEZ

	200 MOSLEY

	 P.WHITAKER CORRALES

	 MARCIANO 500

	 ROBINSON CALZAGHE

	 MORALES GATTI

	300 600

	 WRIGHT HAGLER

	 J.TAYLOR HEARNS

	 LACY FRAZIER

	 LAMOTTA

	 700

	 JUDAH

	 MARGARITO

	 GUINN

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-14]

Chapter 14. Odds 'n' Ends

This chapter contains queries that didn't fit in any other chapter either because the chapter they would belong to is already long enough, or because the problems they solve are more fun than realistic. This chapter is meant to be a "fun" chapter, in that the recipes here may or may not be recipes that you would actually use; nevertheless, I consider the queries interesting and wanted to include them somewhere in this book.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-1]

Recipe 2.1. Returning Query Results in a Specified Order

[bookmark: sqlckbk-CHP-2-SECT-1.1]

Problem

You want to display the names, job, and salaries of employees in department 10 in order based on their salary (from lowest to highest). You want to return the following result set:

	ENAME JOB SAL

	---------- --------- ----------

	MILLER CLERK 1300

	CLARK MANAGER 2450

	KING PRESIDENT 5000

[bookmark: sqlckbk-CHP-2-SECT-1.2]

Solution

Use the [bookmark: idx-CHP-2-0045]ORDER BY clause:

	1 select ename,job,sal

	2 from emp

	3 where deptno = 10

	4 order by sal asc

[bookmark: sqlckbk-CHP-2-SECT-1.3]

Discussion

The ORDER BY clause allows you to order the rows of your result set. The solution sorts the rows based on SAL in ascending order. By default, ORDER BY will sort in ascending order, and the ASC clause is therefore optional. Alternatively, specify DESC to sort in descending order:

	

	select ename,job,sal

	 from emp

	 where deptno = 10

	 order by sal desc

	ENAME JOB SAL

	---------- --------- ----------

	KING PRESIDENT 5000

	CLARK MANAGER 2450

	MILLER CLERK 1300

You need not specify the name of the column [bookmark: idx-CHP-2-0046]on which to sort. You can instead specify a number representing the column. The number starts at 1 and matches the items in the SELECT list from left to right. For example:

	

	select ename,job,sal

	 from emp

	 where deptno = 10

	 order by 3 desc

	ENAME JOB SAL

	---------- --------- ----------

	KING PRESIDENT 5000

	CLARK MANAGER 2450

	MILLER CLERK 1300

The number 3 in this example's ORDER BY clause corresponds to the third column in the SELECT list, which is SAL.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-2]

Recipe 2.2. Sorting by Multiple Fields

[bookmark: idx-CHP-2-0047]

[bookmark: sqlckbk-CHP-2-SECT-2.1]

Problem

You want to sort the rows from EMP first by DEPTNO ascending, then by salary descending. You want to return the following result set:

	 EMPNO DEPTNO SAL ENAME JOB

	---------- ---------- ---------- ---------- ---------

	 7839 10 5000 KING PRESIDENT

	 7782 10 2450 CLARK MANAGER

	 7934 10 1300 MILLER CLERK

	 7788 20 3000 SCOTT ANALYST

	 7902 20 3000 FORD ANALYST

	 7566 20 2975 JONES MANAGER

	 7876 20 1100 ADAMS CLERK

	 7369 20 800 SMITH CLERK

	 7698 30 2850 BLAKE MANAGER

	 7499 30 1600 ALLEN SALESMAN

	 7844 30 1500 TURNER SALESMAN

	 7521 30 1250 WARD SALESMAN

	 7654 30 1250 MARTIN SALESMAN

	 7900 30 950 JAMES CLERK

[bookmark: sqlckbk-CHP-2-SECT-2.2]

Solution

List the different sort columns in the [bookmark: idx-CHP-2-0048]ORDER BY clause, separated by commas:

	1 select empno,deptno,sal,ename,job

	2 from emp

	3 order by deptno, sal desc

[bookmark: sqlckbk-CHP-2-SECT-2.3]

Discussion

The order of precedence in ORDER BY is from left to right. If you are ordering using the numeric position of a column in the [bookmark: idx-CHP-2-0049]SELECT list, then that number must not be greater than the number of items in the SELECT list. You are generally permitted to order by a column not in the SELECT list, but to do so you must explicitly name the column. However, if you are using [bookmark: idx-CHP-2-0050]GROUP BY or DISTINCT in your query, you cannot order by columns that are not in the SELECT list.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-3]

Recipe 2.3. Sorting by Substrings

[bookmark: idx-CHP-2-0051]

[bookmark: idx-CHP-2-0052]

[bookmark: sqlckbk-CHP-2-SECT-3.1]

Problem

You want to sort the results of a query by specific parts of a string. For example, you want to return employee names and jobs from table EMP and sort by the last two characters in the job field. The result set should look like the following:

	ENAME JOB

	---------- ---------

	KING PRESIDENT

	SMITH CLERK

	ADAMS CLERK

	JAMES CLERK

	MILLER CLERK

	JONES MANAGER

	CLARK MANAGER

	BLAKE MANAGER

	ALLEN SALESMAN

	MARTIN SALESMAN

	WARD SALESMAN

	TURNER SALESMAN

	SCOTT ANALYST

	FORD ANALYST

[bookmark: sqlckbk-CHP-2-SECT-3.2]

Solution

[bookmark: sqlckbk-CHP-2-SECT-3.2.1]

DB2, MySQL, Oracle, and PostgreSQL

Use the [bookmark: idx-CHP-2-0053]SUBSTR function in the ORDER BY clause:

	select ename,job

	 from emp

	 order by substr(job,length(job)-2)

[bookmark: sqlckbk-CHP-2-SECT-3.2.2]

SQL Server

Use the [bookmark: idx-CHP-2-0054]SUBSTRING function in the ORDER BY clause:

	select ename,job

	 from emp

	 order by substring(job,len(job)-2,2)

[bookmark: sqlckbk-CHP-2-SECT-3.3]

Discussion

Using your DBMS's substring function, you can easily sort by any part of a string. To sort by the last two characters of a string, find the end of the string (which is the length of the string) and subtract 2. The start position will be the second to last character in the string. You then take all characters after that start position. Because SQL Server requires a third parameter in SUBSTRING to specify the number of characters to take. In this example, any number greater than or equal to 2 will work.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-4]

Recipe 2.4. Sorting Mixed Alphanumeric Data

[bookmark: idx-CHP-2-0055]

[bookmark: idx-CHP-2-0056]

[bookmark: sqlckbk-CHP-2-SECT-4.1]

Problem

You have mixed [bookmark: idx-CHP-2-0057]alphanumeric data and want to sort by either the numeric or character portion of the data. Consider this view:

	

	create view V

	as

	select ename||' '||deptno as data

	 from emp

	select * from V

	DATA

	SMITH 20

	ALLEN 30

	WARD 30

	JONES 20

	MARTIN 30

	BLAKE 30

	CLARK 10

	SCOTT 20

	KING 10

	TURNER 30

	ADAMS 20

	JAMES 30

	FORD 20

	MILLER 10

You want to sort the results by DEPTNO or ENAME. Sorting by DEPTNO produces the following result set:

	DATA

	CLARK 10

	KING 10

	MILLER 10

	SMITH 20

	ADAMS 20

	FORD 20

	SCOTT 20

	JONES 20

	ALLEN 30

	BLAKE 30

	MARTIN 30

	JAMES 30

	TURNER 30

	WARD 30

[bookmark: idx-CHP-2-0058]Sorting by ENAME produces the following result set:

	DATA

	ADAMS 20

	ALLEN 30

	BLAKE 30

	CLARK 10

	FORD 20

	JAMES 30

	JONES 20

	KING 10

	MARTIN 30

	MILLER 10

	SCOTT 20

	SMITH 20

	TURNER 30

	WARD 30

[bookmark: sqlckbk-CHP-2-SECT-4.2]

Solution

[bookmark: sqlckbk-CHP-2-SECT-4.2.1]

Oracle and PostgreSQL

Use the functions [bookmark: idx-CHP-2-0059]REPLACE and TRANSLATE to modify the string for sorting:

	/* ORDER BY DEPTNO */

	1 select data

	2 from V

	3 order by replace(data,

	4 replace(

	5 translate(data,'0123456789','##########'),'#',''),'')

	/* ORDER BY ENAME */

	1 select data

	2 from emp

	3 order by replace(

	4 translate(data,'0123456789','##########'),'#','')

[bookmark: sqlckbk-CHP-2-SECT-4.2.2]

DB2

Implicit type conversion is more strict in DB2 than in Oracle or PostgreSQL, so you will need to cast DEPTNO to a CHAR for view V to be valid. Rather than recreate view V, this solution will simply use an inline view. The solution uses REPLACE and TRANSLATE in the same way as the Oracle and PostrgreSQL solution, but the order of arguments for TRANSLATE is slightly different for DB2:

	/* ORDER BY DEPTNO */

	1 select *

	2 from (

	3 select ename||' '||cast(deptno as char(2)) as data

	4 from emp

	5) v

	6 order by replace(data,

	7 replace(

	8 translate(data,'##########','0123456789'),'#',''),'')

	/* ORDER BY ENAME */

	1 select *

	2 from (

	3 select ename||' '||cast(deptno as char(2)) as data

	4 from emp

	5) v

	6 order by replace(

	7 translate(data,'##########','0123456789'),'#','')

[bookmark: sqlckbk-CHP-2-SECT-4.2.3]

MySQL and SQL Server

The [bookmark: idx-CHP-2-0060]TRANSLATE function is not currently supported by these platforms, thus a solution for this problem will not be provided.

[bookmark: sqlckbk-CHP-2-SECT-4.3]

Discussion

The TRANSLATE and REPLACE functions remove either the numbers or characters from each row, allowing you to easily sort by one or the other. The values passed to ORDER BY are shown in the following query results (using the Oracle solution as the example, as the same technique applies to all three vendors; only the order of parameters passed to TRANSLATE is what sets DB2 apart):

	

	select data,

	 replace(data,

	 replace(

	 translate(data,'0123456789','##########'),'#',''),'') nums,

	 replace(

	 translate(data,'0123456789','##########'),'#','') chars

	 from V

	DATA NUMS CHARS

	------------ ------ ----------

	SMITH 20 20 SMITH

	ALLEN 30 30 ALLEN

	WARD 30 30 WARD

	JONES 20 20 JONES

	MARTIN 30 30 MARTIN

	BLAKE 30 30 BLAKE

	CLARK 10 10 CLARK

	SCOTT 20 20 SCOTT

	KING 10 10 KING

	TURNER 30 30 TURNER

	ADAMS 20 20 ADAMS

	JAMES 30 30 JAMES

	FORD 20 20 FORD

	MILLER 10 10 MILLER

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-5]

Recipe 2.5. Dealing with Nulls when Sorting

[bookmark: idx-CHP-2-0061]

[bookmark: idx-CHP-2-0062]

[bookmark: sqlckbk-CHP-2-SECT-5.1]

Problem

You want to sort results from EMP by COMM, but the field is nullable. You need a way to specify whether nulls sort last:

	ENAME SAL COMM

	---------- ---------- ----------

	TURNER 1500 0

	ALLEN 1600 300

	WARD 1250 500

	MARTIN 1250 1400

	SMITH 800

	JONES 2975

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

or whether they sort first:

	ENAME SAL COMM

	---------- ---------- ----------

	SMITH 800

	JONES 2975

	CLARK 2450

	BLAKE 2850

	SCOTT 3000

	KING 5000

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	MARTIN 1250 1400

	WARD 1250 500

	ALLEN 1600 300

	TURNER 1500 0

[bookmark: sqlckbk-CHP-2-SECT-5.2]

Solution

Depending on how you want the data to look ([bookmark: idx-CHP-2-0063]and how your particular RDBMS sorts NULL values), you can sort the nullable column in ascending or descending order:

	1 select ename,sal,comm

	2 from emp

	3 order by 3

	1 select ename,sal,comm

	2 from emp

	3 order by 3 desc

This solution puts you in a position such that if the nullable column contains non-NULL values, they will be sorted in ascending or descending order as well, according to what you ask for; this may or may not what you have in mind. If instead you would like to sort NULL values differently than non-NULL values, for example, you want to sort non-NULL values in ascending or descending order and all NULL values last, you can use a CASE expression to conditionally sort the column.

[bookmark: sqlckbk-CHP-2-SECT-5.2.1]

DB2, MySQL, PostgreSQL, and SQL Server

Use a CASE expression to "flag" when a value is NULL. The idea is to have a flag with two values: one to represent [bookmark: idx-CHP-2-0064]NULLs, the other to represent non-NULLs. Once you have that, simply add this flag column to the ORDER BY clause. You'll easily be able to control whether NULL values are sorted first or last without interfering with non-NULL values:

	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

	

	1 select ename,sal,comm

	2 from (

	3 select ename,sal,comm,

	4 case when comm is null then 0 else 1 end as is_null

	5 from emp

	6) x

	7 order by is_null desc,comm

	ENAME SAL COMM

	------ ----- ----------

	TURNER 1500 0

	ALLEN 1600 300

	WARD 1250 500

	MARTIN 1250 1400

	SMITH 800

	JONES 2975

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

	/* NON-NULL COMM SORTED DESCENDING, ALL [bookmark: idx-CHP-2-0065]NULLS LAST */

	

	1 select ename,sal,comm

	2 from (

	3 select ename,sal,comm,

	4 case when comm is null then 0 else 1 end as is_null

	5 from emp

	6) x

	7 order by is_null desc,comm desc

	ENAME SAL COMM

	------ ----- ----------

	MARTIN 1250 1400

	WARD 1250 500

	ALLEN 1600 300

	TURNER 1500 0

	SMITH 800

	JONES 2975

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS FIRST */

	

	1 select ename,sal,comm

	2 from (

	3 select ename,sal,comm,

	4 case when comm is null then 0 else 1 end as is_null

	5 from emp

	6) x

	7 order by is_null,comm

	ENAME SAL COMM

	------ ----- ----------

	SMITH 800

	JONES 2975

	CLARK 2450

	BLAKE 2850

	SCOTT 3000

	KING 5000

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	TURNER 1500 0

	ALLEN 1600 300

	WARD 1250 500

	MARTIN 1250 1400

	/* NON-NULL COMM SORTED DESCENDING, ALL [bookmark: idx-CHP-2-0066]NULLS FIRST */

	

	1 select ename,sal,comm

	2 from (

	3 select ename,sal,comm,

	4 case when comm is null then 0 else 1 end as is_null

	5 from emp

	6) x

	7 order by is_null,comm desc

	ENAME SAL COMM

	------ ----- ----------

	SMITH 800

	JONES 2975

	CLARK 2450

	BLAKE 2850

	SCOTT 3000

	KING 5000

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	MARTIN 1250 1400

	WARD 1250 500

	ALLEN 1600 300

	TURNER 1500 0

[bookmark: sqlckbk-CHP-2-SECT-5.2.2]

Oracle

Users on Oracle8i Database [bookmark: idx-CHP-2-0067]and earlier can use the solution for the other platforms. Users on Oracle9i Database and later can use the NULLS FIRST and NULLS LAST extension to the ORDER BYclause to ensure NULLs are sorted first or last regardless of how non-NULL values are sorted:

	/* NON-NULL COMM SORTED ASCENDING, ALL NULLS LAST */

	

	1 select ename,sal,comm

	2 from emp

	3 order by comm nulls last

	ENAME SAL COMM

	------ ----- ---------

	TURNER 1500 0

	ALLEN 1600 300

	WARD 1250 500

	MARTIN 1250 1400

	SMITH 800

	JONES 2975

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

	/* NON-NULL COMM SORTED ASCENDING, ALL [bookmark: idx-CHP-2-0068]NULLS FIRST */

	

	

	1 select ename,sal,comm

	2 from emp

	3 order by comm nulls first

	ENAME SAL COMM

	------ ----- ----------

	SMITH 800

	JONES 2975

	CLARK 2450

	BLAKE 2850

	SCOTT 3000

	KING 5000

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	TURNER 1500 0

	ALLEN 1600 300

	WARD 1250 500

	MARTIN 1250 1400

	/* NON-NULL COMM SORTED DESCENDING, ALL [bookmark: idx-CHP-2-0069]NULLS FIRST */

	

	1 select ename,sal,comm

	2 from emp

	3 order by comm desc nulls first

	ENAME SAL COMM

	------ ----- ----------

	SMITH 800

	JONES 2975

	CLARK 2450

	BLAKE 2850

	SCOTT 3000

	KING 5000

	JAMES 950

	MILLER 1300

	FORD 3000

	ADAMS 1100

	MARTIN 1250 1400

	WARD 1250 500

	ALLEN 1600 300

	TURNER 1500 0

[bookmark: sqlckbk-CHP-2-SECT-5.3]

Discussion

Unless your RDBMS provides you with a way to easily sort NULL values first or last without modifying non-NULL values in the same column (such as Oracle does), you'll need an auxiliary column.

						[image:]			

As of the time of this writing, DB2 users can use NULLS FIRST [bookmark: idx-CHP-2-0070]and NULLS LAST in the ORDER BY subclause of the [bookmark: idx-CHP-2-0071]OVER clause in window functions but not in the ORDER BY clause for the entire result set.

The purpose of this extra column (in the query only, not in the table) is to allow you to identify NULL values and sort them altogether, first or last. The following query returns the result set for inline view X for the non-Oracle solution:

	

	select ename,sal,comm,

	 case when comm is null then 0 else 1 end as is_null

	 from emp

	ENAME SAL COMM IS_NULL

	------ ----- ---------- ----------

	SMITH 800 0

	ALLEN 1600 300 1

	WARD 1250 500 1

	[bookmark: idx-CHP-2-0072]

	JONES 2975 0

	MARTIN 1250 1400 1

	BLAKE 2850 0

	CLARK 2450 0

	SCOTT 3000 0

	KING 5000 0

	TURNER 1500 0 1

	ADAMS 1100 0

	JAMES 950 0

	FORD 3000 0

	MILLER 1300 0

By using the values returned by IS_NULL, you can easily sort [bookmark: idx-CHP-2-0073]NULLS first or last without interfering with the [bookmark: idx-CHP-2-0074]sorting of COMM.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2-SECT-6]

Recipe 2.6. Sorting on a Data Dependent Key

[bookmark: idx-CHP-2-0075]

[bookmark: idx-CHP-2-0076]

[bookmark: sqlckbk-CHP-2-SECT-6.1]

Problem

You want to sort based on some conditional logic. For example: if JOB is "SALESMAN" you want to sort on COMM; otherwise, you want to sort by SAL. You want to return the following result set:

	ENAME SAL JOB COMM

	---------- ---------- --------- ----------

	TURNER 1500 SALESMAN 0

	ALLEN 1600 SALESMAN 300

	WARD 1250 SALESMAN 500

	SMITH 800 CLERK

	JAMES 950 CLERK

	ADAMS 1100 CLERK

	MARTIN 1250 SALESMAN 1300

	MILLER 1300 CLERK

	CLARK 2450 MANAGER

	BLAKE 2850 MANAGER

	JONES 2975 MANAGER

	SCOTT 3000 ANALYST

	FORD 3000 ANALYST

	KING 5000 PRESIDENT

[bookmark: sqlckbk-CHP-2-SECT-6.2]

Solution

Use a CASE expression in the ORDER BY clause:

	1 select ename,sal,job,comm

	2 from emp

	3 order by case when job = 'SALESMAN' then comm else sal end

[bookmark: sqlckbk-CHP-2-SECT-6.3]

Discussion

You can use the CASE expression to dynamically change how results are sorted. The values passed to the ORDER BY look as follows:

	

	select ename,sal,job,comm,

	 case when job = 'SALESMAN' then comm else sal end as ordered

	 from emp

	 order by 5

	ENAME SAL JOB COMM ORDERED

	---------- ---------- --------- ---------- ----------

	TURNER 1500 SALESMAN 0 0

	ALLEN 1600 SALESMAN 300 300

	WARD1 250 SALESMAN 500 500

	SMITH 800 CLERK 800

	JAMES 950 CLERK 950

	ADAMS 1100 CLERK 1100

	MARTIN 1250 SALESMAN 1300 1300

	MILLER 1300 CLERK 1300

	CLARK2 450 MANAGER 2450

	BLAKE2 850 MANAGER 2850

	JONES2 975 MANAGER 2975

	SCOTT 3000 ANALYST 3000

	FORD 3000 ANALYST 3000

	KING 5000 PRESIDENT 5000

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-2]

Chapter 2. Sorting Query Results

[bookmark: idx-CHP-2-0043]

This chapter focuses [bookmark: idx-CHP-2-0044]on customizing how your query results look. By understanding how you can control and modify your result sets, you can provide more readable and meaningful data.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-1]

Recipe 3.1. Stacking One Rowset atop Another

[bookmark: sqlckbk-CHP-3-SECT-1.1]

Problem

You want to return data stored in more than one table, conceptually stacking one result set atop the other. The tables do not necessarily have a common key, but their [bookmark: idx-CHP-3-0079]columns do have the same data types. For example, you want to display the name and department number of the employees in department 10 in table EMP, along with the name and department number of each department in table DEPT. You want the result set to look like the following:

	ENAME_AND_DNAME DEPTNO

	--------------- ----------

	CLARK 10

	KING 10

	MILLER 10

	ACCOUNTING 10

	RESEARCH 20

	SALES 30

	OPERATIONS 40

[bookmark: sqlckbk-CHP-3-SECT-1.2]

Solution

Use the set operation [bookmark: idx-CHP-3-0080]UNION ALL to combine rows from multiple tables:

	1 select ename as ename_and_dname, deptno

	2 from emp

	3 where deptno = 10

	4 union all

	5 select '----------', null

	6 from t1

	7 [bookmark: idx-CHP-3-0081]union all

	8 select dname, deptno

	9 from dept

[bookmark: sqlckbk-CHP-3-SECT-1.3]

Discussion

UNION ALL combines rows from multiple row sources [bookmark: idx-CHP-3-0082]into one result set. As with all [bookmark: idx-CHP-3-0083]set operations, the items in all the SELECT lists must match in number and [bookmark: idx-CHP-3-0084]data type. For example, both of the following queries will fail:

	select deptno | select deptno, dname

	 from dept | from dept

	 union all | union

	select ename | select deptno

	 from emp | from emp

It is important to note, UNION ALL will include duplicates if they exist. If you wish to filter out duplicates, use the UNION operator. For example, a UNION between EMP.DEPTNO and DEPT.DEPTNO returns only four rows:

	

	select deptno

	 from emp

	 union

	select deptno

	 from dept

	 DEPTNO

	 10

	 20

	 30

	 40

Specifying UNION rather than UNION ALL will most likely result in a sort operation in order to eliminate duplicates. Keep this in mind when working with large result sets. Using UNION is roughly equivalent to the following query, which applies DISTINCT to the output from a UNION ALL:

	

	select distinct deptno

	 from (

	select deptno

	 from emp

	 union all

	select deptno

	 from dept

)

	 DEPTNO

	 10

	 20

	 30

	 40

You wouldn't use DISTINCT in a query unless you had to, and the same rule applies for [bookmark: idx-CHP-3-0085]UNION; don't use it instead of UNION ALL unless you have to.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-10]

Recipe 3.10. Performing Outer Joins when Using Aggregates

[bookmark: idx-CHP-3-0148]

[bookmark: idx-CHP-3-0149]

[bookmark: sqlckbk-CHP-3-SECT-10.1]

Problem

Begin with the same problem as in 3.9, but modify table EMP_BONUS such that the difference in this case is not all employees in department 10 have been given bonuses. Consider the EMP_BONUS table and a query to (ostensibly) find both the sum of all salaries for department 10 and the sum of all bonuses for all employees in department 10:

	

	select * from emp_bonus

	 EMPNO RECEIVED TYPE

	---------- ----------- ----------

	 7934 17-MAR-2005 1

	 7934 15-FEB-2005 2

	

	select deptno,

	 sum(sal) as total_sal,

	 sum(bonus) as total_bonus

	 from (

	select e.empno,

	 e.ename,

	 e.sal,

	 e.deptno,

	 e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3 end as bonus

	 from emp e, emp_bonus eb

	 where e.empno = eb.empno

	 and e.deptno = 10

)

	 group by deptno

	 DEPTNO TOTAL_SAL TOTAL_BONUS

	 ------ ---------- -----------

	 10 2600 390

The result for TOTAL_BONUS is correct, but the value returned for TOTAL_SAL does not represent the sum of all salaries in department 10. The following query shows why the TOTAL_SAL is incorrect:

	

	select e.empno,

	 e.ename,

	 e.sal,

	 e.deptno,

	 e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3 end as bonus

	 from emp e, emp_bonus eb

	 where e.empno = eb.empno

	 and e.deptno = 10

	 EMPNO ENAME SAL DEPTNO BONUS

	--------- --------- ------- ---------- ----------

	 7934 MILLER 1300 10 130

	 7934 MILLER 1300 10 260

Rather than sum all salaries in department 10, only the salary for "MILLER" is summed and it is erroneously summed twice. Ultimately, you would like to return the following result set:

	DEPTNO TOTAL_SAL TOTAL_BONUS

	------ --------- -----------

	 10 8750 390

[bookmark: sqlckbk-CHP-3-SECT-10.2]

Solution

The solution is similar to that of 3.9, but here you [bookmark: idx-CHP-3-0150]

outer join to EMP_BONUS to ensure all employees from department 10 are included.

[bookmark: sqlckbk-CHP-3-SECT-10.2.1]

DB2, MySQL, PostgreSQL, SQL Server

Outer join to EMP_BONUS, then perform the sum on only distinct salaries from department 10:

	 1 select deptno,

	 2 sum(distinct sal) as total_sal,

	 3 sum(bonus) as total_bonus

	 4 from (

	 5 select e.empno,

	 6 e.ename,

	 7 e.sal,

	 8 e.deptno,

	 9 e.sal*case when eb.type is null then 0

	10 when eb.type = 1 then .1

	11 when eb.type = 2 then .2

	12 else .3 end as bonus

	13 from emp e left outer join emp_bonus eb

	14 on (e.empno = eb.empno)

	15 where e.deptno = 10

	16)

	17 group by deptno

You can also use the window function SUM OVER:

	 1 select distinct deptno,total_sal,total_bonus

	 2 from (

	 3 select e.empno,

	 4 e.ename,

	 5 sum(distinct e.sal) over

	 6 (partition by e.deptno) as total_sal,

	 7 e.deptno,

	 8 sum(e.sal*case when eb.type is null then 0

	 9 when eb.type = 1 then .1

	10 when eb.type = 2 then .2

	11 else .3

	12 end) over

	13 (partition by deptno) as total_bonus

	14 from emp e left outer join emp_bonus eb

	15 on (e.empno = eb.empno)

	16 where e.deptno = 10

	17) x

[bookmark: sqlckbk-CHP-3-SECT-10.2.2]

Oracle

[bookmark: idx-CHP-3-0151]

If you are using Oracle9i [bookmark: idx-CHP-3-0152]Database or later you can use the preceding solution. Alternatively, you can use the proprietary Oracle outer-join syntax, which is mandatory for users on Oracle8i Database and earlier:

	 1 select deptno,

	 2 sum(distinct sal) as total_sal,

	 3 sum(bonus) as total_bonus

	 4 from (

	 5 select e.empno,

	 6 e.ename,

	 7 e.sal,

	 8 e.deptno,

	 9 e.sal*case when eb.type is null then 0

	10 when eb.type = 1 then .1

	11 when eb.type = 2 then .2

	12 else .3 end as bonus

	13 from emp e, emp_bonus eb

	14 where e.empno = eb.empno (+)

	15 and e.deptno = 10

	16)

	17 group by deptno

Oracle 8i Database users can also use the [bookmark: idx-CHP-3-0153]SUM OVER syntaxshown for DB2 and the other databases, but must modify it to use the proprietary Oracle [bookmark: idx-CHP-3-0154]

outer-join syntax shown in the preceding query.

[bookmark: sqlckbk-CHP-3-SECT-10.3]

Discussion

The second query in the "Problem" section of this recipe joins table EMP and table EMP_BONUS and returns only rows for employee "MILLER", which is what causes the error on the sum of EMP.SAL (the other employees in DEPTNO 10 do not have bonuses and their salaries are not included in the sum). The solution is to outer join table EMP to table EMP_BONUS so even employees without a bonus will be included in the result. If an employee does not have a bonus, NULL will be returned for EMP_BONUS.TYPE. It is important to keep this in mind as the CASE statement has been modified and is slightly different from solution 3.9. If EMP_BONUS.TYPE is NULL, the CASE expression returns zero, which has no effect on the sum.

The following query is an alternative solution. The sum of all salaries in department 10 is computed first, then joined to table EMP, which is then joined to table EMP_BONUS (thus avoiding the outer join). The following query works for all DBMSs:

	

	select d.deptno,

	 d.total_sal,

	 sum(e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3 end) as total_bonus

	 from emp e,

	 emp_bonus eb,

	 (

	select deptno, sum(sal) as total_sal

	 from emp

	 where deptno = 10

	 group by deptno

) d

	 where e.deptno = d.deptno

	 and e.empno = eb.empno

	 group by d.deptno,d.total_sal

	 DEPTNO TOTAL_SAL TOTAL_BONUS

	--------- ---------- -----------

	 10 8750 390

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-11]

Recipe 3.11. Returning Missing Data from Multiple Tables

[bookmark: idx-CHP-3-0155]

[bookmark: idx-CHP-3-0156]

[bookmark: sqlckbk-CHP-3-SECT-11.1]

Problem

You want to return [bookmark: idx-CHP-3-0157]missing data from multiple tables simultaneously. Returning rows from table DEPT that do not exist in table EMP (any departments that have no employees) requires an outer join. Consider the following query, which returns all DEPTNOs and DNAMEs from DEPT along with the names of all the employees in each department (if there is an employee in a particular department):

	

	select d.deptno,d.dname,e.ename

	 from dept d left outer join emp e

	 on (d.deptno=e.deptno)

	 DEPTNO DNAME ENAME

	--------- -------------- ----------

	 20 RESEARCH SMITH

	 30 SALES ALLEN

	 30 SALES WARD

	 20 RESEARCH JONES

	 30 SALES MARTIN

	 30 SALES BLAKE

	 10 ACCOUNTING CLARK

	 20 RESEARCH SCOTT

	 10 ACCOUNTING KING

	 30 SALES TURNER

	 20 RESEARCH ADAMS

	 30 SALES JAMES

	 20 RESEARCH FORD

	 10 ACCOUNTING MILLER

	 40 OPERATIONS

The last row, the OPERATIONS department, is returned despite that department not having any employees, because table EMP was outer joined to table DEPT. Now, suppose there was an employee without a department. How would you return the above result set along with a row for the employee having no department? In other words, you want to outer join to both table EMP and table DEPT, and in the same query. After creating the new employee, a first attempt may look like this:

	insert into emp (empno,ename,job,mgr,hiredate,sal,comm,deptno)

	select 1111,'YODA','JEDI',null,hiredate,sal,comm,null

	 from emp

	 where ename = 'KING'

	

	select d.deptno,d.dname,e.ename

	 from dept d right outer join emp e

	 on (d.deptno=e.deptno)

	 DEPTNO DNAME ENAME

	---------- ------------ ----------

	 10 ACCOUNTING MILLER

	 10 ACCOUNTING KING

	 10 ACCOUNTING CLARK

	 20 RESEARCH FORD

	 20 RESEARCH ADAMS

	 20 RESEARCH SCOTT

	 20 RESEARCH JONES

	 20 RESEARCH SMITH

	 30 SALES JAMES

	 30 SALES TURNER

	 30 SALES BLAKE

	 30 SALES MARTIN

	 30 SALES WARD

	 30 SALES ALLEN

	 YODA

This outer join manages to return the new employee but lost the OPERATIONS department from the original result set. The final result set should return a row for YODA as well as OPERATIONS, such as the following:

	 DEPTNO DNAME ENAME

	---------- ------------ --------

	 10 ACCOUNTING CLARK

	 10 ACCOUNTING KING

	 10 ACCOUNTING MILLER

	 20 RESEARCH ADAMS

	 20 RESEARCH FORD

	 20 RESEARCH JONES

	 20 RESEARCH SCOTT

	 20 RESEARCH SMITH

	 30 SALES ALLEN

	 30 SALES BLAKE

	 30 SALES JAMES

	 30 SALES MARTIN

	 30 SALES TURNER

	 30 SALES WARD

	 40 OPERATIONS

	 YODA

[bookmark: sqlckbk-CHP-3-SECT-11.2]

Solution

Use a full outer join to return [bookmark: idx-CHP-3-0158]missing [bookmark: idx-CHP-3-0159]data from both tables based on a common value.

[bookmark: sqlckbk-CHP-3-SECT-11.2.1]

DB2, MySQL, PostgreSQL, SQL Server

Use the explicit FULL OUTER JOIN command to return missing rows from both tables along with matching rows:

	1 select d.deptno,d.dname,e.ename

	2 from dept d full outer join emp e

	3 on (d.deptno=e.deptno)

Alternatively, union the results of two different outer joins:

	1 select d.deptno,d.dname,e.ename

	2 from dept d right outer join emp e

	3 on (d.deptno=e.deptno)

	4 union

	5 select d.deptno,d.dname,e.ename

	6 from dept d left outer join emp e

	7 on (d.deptno=e.deptno)

[bookmark: sqlckbk-CHP-3-SECT-11.2.2]

Oracle

[bookmark: idx-CHP-3-0160]

If you are on Oracle9i [bookmark: idx-CHP-3-0161]Database or later, you can use either of the preceding solutions. Alternatively, you can use Oracle's proprietary outer join syntax, which is the only choice for users on Oracle8i Database and earlier:

	1 select d.deptno,d.dname,e.ename

	2 from dept d, emp e

	3 where d.deptno = e.deptno(+)

	4 union

	5 select d.deptno,d.dname,e.ename

	6 from dept d, emp e

	7 where d.deptno(+) = e.deptno

[bookmark: sqlckbk-CHP-3-SECT-11.3]

Discussion

The full outer join is simply the combination of [bookmark: idx-CHP-3-0162]outer joins on both tables. To see how a full outer join works "under the covers," simply run each outer join, then union the results. The following query returns rows from table DEPT and any matching rows from table EMP (if any).

	

	select d.deptno,d.dname,e.ename

	 from dept d left outer join emp e

	 on (d.deptno = e.deptno)

	 DEPTNO DNAME ENAME

	 ------ -------------- ----------

	 20 RESEARCH SMITH

	 30 SALES ALLEN

	 30 SALES WARD

	 20 RESEARCH JONES

	 30 SALES MARTIN

	 30 SALES BLAKE

	 10 ACCOUNTING CLARK

	 20 RESEARCH SCOTT

	 10 ACCOUNTING KING

	 30 SALES TURNER

	 20 RESEARCH ADAMS

	 30 SALES JAMES

	 20 RESEARCH FORD

	 10 ACCOUNTING MILLER

	 40 OPERATIONS

This next query returns rows from table EMP and any matching rows from table DEPT (if any):

	

	select d.deptno,d.dname,e.ename

	 from dept d right outer join emp e

	 on (d.deptno = e.deptno)

	 DEPTNO DNAME ENAME

	 ------ -------------- ----------

	 10 ACCOUNTING MILLER

	 10 ACCOUNTING KING

	 10 ACCOUNTING CLARK

	 20 RESEARCH FORD

	 20 RESEARCH ADAMS

	 20 RESEARCH SCOTT

	 20 RESEARCH JONES

	 20 RESEARCH SMITH

	 30 SALES JAMES

	 30 SALES TURNER

	 30 SALES BLAKE

	 30 SALES MARTIN

	 30 SALES WARD

	 30 SALES ALLEN

	 YODA

The results from these two queries are unioned to provide the final result set.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-12]

Recipe 3.12. Using NULLs in Operations and Comparisons

[bookmark: idx-CHP-3-0163]

[bookmark: sqlckbk-CHP-3-SECT-12.1]

Problem

NULL is never equal to or not equal to any value, not even itself, but you want to evaluate values returned by a nullable column like you would evaluate real values. For example, you want to find all employees in EMP whose commission (COMM) is less than the commission of employee "WARD". Employees with a NULL commission should be included as well.

[bookmark: sqlckbk-CHP-3-SECT-12.2]

Solution

Use a function such as COALESCE to transform the NULL value into a real value that can be used in standard evaluation:

	1 select ename,comm

	2 from emp

	3 where coalesce(comm,0) < (select comm

	4 from emp

	5 where ename = 'WARD')

[bookmark: sqlckbk-CHP-3-SECT-12.3]

Discussion

The [bookmark: idx-CHP-3-0164]COALESCE function will return the first non-NULL value from the list of values passed to it. When a NULL value is encountered it is replaced by zero, which is then compared with Ward's commission. This can be seen by putting the COALESCE function in the SELECT list:

	

	select ename,comm,coalesce(comm,0)

	 from emp

	 where coalesce(comm,0) < (select comm

	 from emp

	 where ename = 'WARD')

	 ENAME COMM COALESCE(COMM,0)

	 ---------- ---------- ----------------

	 SMITH 0

	 ALLEN 300 300

	 JONES 0

	 BLAKE 0

	 CLARK 0

	 SCOTT 0

	 KING 0

	 TURNER 0 0

	 ADAMS 0

	 JAMES 0

	 FORD 0

	 MILLER 0

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-2]

Recipe 3.2. Combining Related Rows

[bookmark: idx-CHP-3-0086]

[bookmark: sqlckbk-CHP-3-SECT-2.1]

Problem

You want to return rows from multiple tables by joining on a known common column or joining on columns that share common values. For example, you want to display the names of all employees in department 10 along with the location of each employee's department, but that data is stored in two separate tables. You want the result set to be the following:

	ENAME LOC

	---------- ----------

	CLARK NEW YORK

	KING NEW YORK

	MILLER NEW YORK

[bookmark: sqlckbk-CHP-3-SECT-2.2]

Solution

Join table EMP to table DEPT on DEPTNO:

	1 select e.ename, d.loc

	2 from emp e, dept d

	3 where e.deptno = d.deptno

	4 and e.deptno = 10

[bookmark: sqlckbk-CHP-3-SECT-2.3]

Discussion

The solution is an example of a join, or more accurately an [bookmark: idx-CHP-3-0087]equi-join, which is a type of [bookmark: idx-CHP-3-0088]inner join. A join is an operation that combines rows from two tables into one. An [bookmark: idx-CHP-3-0089]equi-join is one in which the join condition is based on an equality condition (e.g., where one department number equals another). An [bookmark: idx-CHP-3-0090]inner join is the original type of join; each row returned contains [bookmark: idx-CHP-3-0091]data from each table.

Conceptually, the result set from a join is produced by first creating a Cartesian product (all possible combinations of rows) from the tables listed in the FROM clause, as seen below:

	

	select e.ename, d.loc,

	 e.deptno as emp_deptno,

	 d.deptno as dept_deptno

	 from emp e, dept d

	 where e.deptno = 10

	ENAME LOC EMP_DEPTNO DEPT_DEPTNO

	---------- ------------- ---------- -----------

	CLARK NEW YORK 10 10

	KING NEW YORK 10 10

	MILLER NEW YORK 10 10

	CLARK DALLAS 10 20

	 [bookmark: idx-CHP-3-0092]

	KING DALLAS 10 20

	MILLER DALLAS 10 20

	CLARK CHICAGO 10 30

	KING CHICAGO 10 30

	MILLER CHICAGO 10 30

	CLARK BOSTON 10 40

	KING BOSTON 10 40

	MILLER BOSTON 10 40

Every employee in table EMP (in department 10) is returned along with every department in the table DEPT. Then, the expression in the WHERE clause involving e.deptno and d.deptno (the join) restricts the result set such that the only rows returned are the ones where EMP.DEPTNO and DEPT.DEPTNO are equal:

	

	select e.ename, d.loc,

	 e.deptno as emp_deptno,

	 d.deptno as dept_deptno

	 from emp e, dept d

	 where e.deptno = d.deptno

	 and e.deptno = 10

	ENAME LOC EMP_DEPTNO DEPT_DEPTNO

	---------- -------------- ---------- -----------

	CLARK NEW YORK 10 10

	KING NEW YORK 10 10

	MILLER NEW YORK 10 10

An alternative solution makes use of an explicit JOIN clause (the "INNER" keyword is optional):

	select e.ename, d.loc

	 from emp e inner join dept d

	 on (e.deptno = d.deptno)

	 where e.deptno = 10

Use the JOIN clause if you prefer to have the join logic in the FROM clause rather than the WHERE clause. Both styles are ANSI compliant and work on all the latest versions of the RDBMSs in this book.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-3]

Recipe 3.3. Finding Rows in Common Between Two Tables

[bookmark: idx-CHP-3-0093]

[bookmark: sqlckbk-CHP-3-SECT-3.1]

Problem

You want to find common rows between two tables but there are multiple columns on which you can join. For example, consider the following view V:

	

	create view V

	as

	select ename,job,sal

	 from emp

	 where job = 'CLERK'

	select * from V

	ENAME JOB SAL

	---------- --------- ----------

	SMITH CLERK 800

	ADAMS CLERK 1100

	JAMES CLERK 950

	MILLER CLERK 1300

Only clerks are returned from view V. However, the view does not show all possible EMP columns. You want to return the EMPNO, ENAME, JOB, SAL, and DEPTNO of all employees in EMP that match the rows from view V. You want the result set to be the following:

	 EMPNO ENAME JOB SAL DEPTNO

	-------- ---------- --------- ---------- ---------

	 7369 SMITH CLERK 800 20

	 7876 ADAMS CLERK 1100 20

	 7900 JAMES CLERK 950 30

	 7934 MILLER CLERK 1300 10

[bookmark: sqlckbk-CHP-3-SECT-3.2]

Solution

Join the tables on all the columns necessary to return the correct result. Alternatively, use the set operation [bookmark: idx-CHP-3-0094]INTERSECT to avoid performing a join and instead return the intersection (common rows) of the two tables.

[bookmark: sqlckbk-CHP-3-SECT-3.2.1]

MySQL and SQL Server

Join table EMP to view V using multiple join conditions:

	1 select e.empno,e.ename,e.job,e.sal,e.deptno

	2 from emp e, V

	3 where e.ename = v.ename

	4 and e.job = v.job

	5 and e.sal = v.sal

Alternatively, you can perform the same join via the JOIN clause:

	1 select e.empno,e.ename,e.job,e.sal,e.deptno

	2 from emp e join V

	3 on (e.ename = v.ename

	4 and e.job = v.job

	5 and e.sal = v.sal)

[bookmark: sqlckbk-CHP-3-SECT-3.2.2]

DB2, Oracle, and PostgreSQL

The MySQL and SQL Server solution also works for DB2, Oracle, and PostgreSQL. It's the solution you should use if you need to return values from view V.

If you do not actually need to return columns from view V, you may use the set operation INTERSECT along with an IN predicate:

	1 select empno,ename,job,sal,deptno

	2 from emp

	3 where (ename,job,sal) in (

	4 select ename,job,sal from emp

	5 [bookmark: idx-CHP-3-0095]intersect

	6 select ename,job,sal from V

	7)

[bookmark: sqlckbk-CHP-3-SECT-3.3]

Discussion

When performing joins, you must consider the proper [bookmark: idx-CHP-3-0096]columns to join on in order to return correct results. This is especially important when rows can have common [bookmark: idx-CHP-3-0097]values for some columns while having different values for others.

The [bookmark: idx-CHP-3-0098]set operation INTERSECT will return rows common to both row sources. When using INTERSECT, you are required to compare the same number of items, having the same data type, from two tables. When working with [bookmark: idx-CHP-3-0099]set operations keep in mind that, by default, duplicate rows will not be returned.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-4]

Recipe 3.4. Retrieving Values from One Table That Do Not Exist in Another

[bookmark: idx-CHP-3-0100]

[bookmark: sqlckbk-CHP-3-SECT-4.1]

Problem

You wish to find those values in one table, call it the source table, that do not also exist in some target table. For example, you want to find which departments (if any) in table DEPT do not exist in table EMP. In the example data, DEPTNO 40 from table DEPT does not exist in table EMP, so the result set should be the following:

	 DEPTNO

	 40

[bookmark: sqlckbk-CHP-3-SECT-4.2]

Solution

Having functions that perform set difference is particularly useful for this problem. DB2, PostgreSQL, and Oracle support set difference operations. If your DBMS does not support a set difference function, use a subquery as shown for MySQL and SQL Server.

[bookmark: sqlckbk-CHP-3-SECT-4.2.1]

DB2 and PostgreSQL

Use the set operation [bookmark: idx-CHP-3-0101]EXCEPT:

	1 select deptno from dept

	2 except

	3 select deptno from emp

[bookmark: sqlckbk-CHP-3-SECT-4.2.2]

Oracle

Use the set operation MINUS:

	1 select deptno from dept

	2 minus

	3 select deptno from emp

[bookmark: sqlckbk-CHP-3-SECT-4.2.3]

MySQL and SQL Server

Use a subquery to return all DEPTNOs from table EMP into an outer query that searches table DEPT [bookmark: idx-CHP-3-0102]for rows that are not amongst the rows returned from the subquery:

	1 select deptno

	2 from dept

	3 where deptno not in (select deptno from emp)

[bookmark: sqlckbk-CHP-3-SECT-4.3]

Discussion

[bookmark: sqlckbk-CHP-3-SECT-4.3.1]

DB2 and PostgreSQL

The built-in functions provided by DB2 and PostgreSQL make this operation quite easy. The [bookmark: idx-CHP-3-0103]EXCEPT operator takes the first result set and removes from it all rows found in the second result set. The operation is very much like a subtraction.

There are restrictions on the use of set operators, including EXCEPT. [bookmark: idx-CHP-3-0104]Data types and number of [bookmark: idx-CHP-3-0105]values to compare must match in both SELECT lists. Additionally, EXCEPT will not return duplicates and, unlike a subquery using NOT IN, NULLs do not present a problem (see the discussion for MySQL and SQL Server). The EXCEPT operator will return rows from the upper query (the query before the EXCEPT) that do not exist in the lower query (the query after the EXCEPT).

[bookmark: sqlckbk-CHP-3-SECT-4.3.2]

Oracle

The Oracle solution is identical to that for DB2 and PostgreSQL, except that Oracle calls its set difference operator [bookmark: idx-CHP-3-0106]MINUS rather than EXCEPT. Otherwise, the preceding explanation applies to Oracle as well.

[bookmark: sqlckbk-CHP-3-SECT-4.3.3]

MySQL and SQL Server

The subquery will return all DEPTNOs from table EMP. The outer query returns all DEPTNOs from table DEPT that are "not in" or "not included in" the result set returned from the subquery.

Duplicate elimination is something you'll want to consider when using the MySQL and SQL Server solutions. The EXCEPT- and MINUS-based solutions used for the other platforms eliminate duplicate rows from the result set, ensuring that each DEPTNO is reported only one time. Of course, that can only be the case anyway, as DEPTNO is a key field in my example data. Were DEPTNO not a key field, you could use DISTINCT as follows to ensure that each DEPTNO value missing from EMP is reported only once:

	select distinct deptno

	 from dept

	 where deptno not in (select deptno from emp)

Be mindful of NULLs when using [bookmark: idx-CHP-3-0107]NOT IN. Consider the following table, NEW_ DEPT:

	create table new_dept(deptno integer)

	insert into new_dept [bookmark: idx-CHP-3-0108]values (10)

	insert into new_dept values (50)

	insert into new_dept values (null)

If you try to find the DEPTNOs in table DEPT that do not exist in table NEW_DEPT and use a subquery with NOT IN, you'll find that the query returns no rows:

	select *

	 from dept

	 where deptno not in (select deptno from new_dept)

DEPTNOs 20, 30, and 40 are not in table NEW_DEPT, yet were not returned by the query. The reason is the NULL value present in table NEW_DEPT. Three rows are returned by the subquery, with DEPTNOs of 10, 50, and NULL. IN and NOT IN are essentially OR operations, and will yield different results because of how NULL values are treated by logical OR evaluations. Consider the following example using IN and its equivalent using OR:

	

	select deptno

	 from dept

	 where deptno in (10,50,null)

	 DEPTNO

	 10

	

	select deptno

	 from dept

	 where (deptno=10 or deptno=50 or deptno=null)

	 DEPTNO

	 10

Now consider the same example using NOT IN and NOT OR:

	

	select deptno

	 from dept

	 where deptno not in (10,50,null)

	(no rows)

	select deptno

	 from dept

	 where not (deptno=10 or deptno=50 or deptno=null)

	(no rows)

As you can see, the condition DEPTNO NOT IN (10, 50, NULL) equates to:

	not (deptno=10 [bookmark: idx-CHP-3-0109]or deptno=50 or deptno=null)

In the case where DEPTNO is 50, here's how this expression plays out:

	not (deptno=10 or deptno=50 or deptno=null)

	(false or false or null)

	(false or null)

	null

In SQL, "TRUE or NULL" is TRUE, but "FALSE or NULL" is NULL! And once you have a NULL result, you'll continue to have NULL result (unless you specifically test for NULL using a technique like that shown in Recipe 1.11). You must keep this in mind when using IN predicates and when performing logical OR evaluations, and NULL [bookmark: idx-CHP-3-0110]values are involved.

To avoid the problem with NOT IN and NULLs, use a [bookmark: idx-CHP-3-0111]correlated subquery in conjunction with NOT EXISTS. The term "[bookmark: idx-CHP-3-0112]correlated subquery" is used because rows from the outer query are referenced in the subquery. The following example is an alternative solution that will not be affected by NULL rows (going back to the original query from the "Problem" section):

	

	select d.deptno

	 from dept d

	 where not exists (select null

	 from emp e

	 where d.deptno = e.deptno)

	 DEPTNO

	 40

Conceptually, the outer query in this solution considers each row in the DEPT table. For each DEPT row, the following happens:

			The subquery is executed to see whether the department number exists in the EMP table. Note the condition D.DEPTNO = E.DEPTNO, which brings together the department numbers from the two tables.

			If the subquery returns results, then EXISTS (…) evaluates to true and NOT EXISTS (…) thus evaluates to FALSE, and the row being considered by the outer query is discarded.

			If the subquery returns no results, then NOT EXISTS (…) evaluates to TRUE, and the row being considered by the outer query is returned (because it is for a department not represented in the EMP table).

The items in the SELECT list of the subquery are unimportant when using a correlated subquery with EXISTS/NOT EXISTS, which is why I chose to select NULL, to force you to focus on the join in the subquery rather than the items in the SELECT list.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-5]

Recipe 3.5. Retrieving Rows from One Table That Do Not Correspond to Rows in Another

[bookmark: idx-CHP-3-0113]

[bookmark: idx-CHP-3-0114]

[bookmark: sqlckbk-CHP-3-SECT-5.1]

Problem

You want to find rows that are in one table that do not have a match in another table, for two tables that have common keys. For example, you want to find which departments have no employees. The result set should be the following:

	 DEPTNO DNAME LOC

	 ---------- -------------- -------------

	 40 OPERATIONS BOSTON

Finding the department each employee works in requires an [bookmark: idx-CHP-3-0115]equi-join on DEPTNO from EMP to DEPT. The DEPTNO column represents the common value between tables. Unfortunately, an [bookmark: idx-CHP-3-0116]equi-join will not show you which department has no employees. That's because by equi-joining EMP and DEPT you are returning all rows that satisfy the join condition. Instead you want only those rows from DEPT that do not satisfy the join condition.

This is a subtly different problem than in the preceding recipe, though at first glance they may seem the same. The difference is that the preceding recipe yields only a list of department numbers not represented in table EMP. Using this recipe, however, you can easily return other columns from the DEPT table; you can return more than just department numbers.

[bookmark: sqlckbk-CHP-3-SECT-5.2]

Solution

Return all rows from one table along with rows from another that may or may not have a match on the common column. Then, keep only those rows with no match.

[bookmark: sqlckbk-CHP-3-SECT-5.2.1]

DB2, MySQL, PostgreSQL, SQL Server

Use an outer join and filter for NULLs (keyword OUTER is optional):

	1 select d.*

	2 from dept d left outer join emp e

	3 on (d.deptno = e.deptno)

	4 where e.deptno is null

[bookmark: sqlckbk-CHP-3-SECT-5.2.2]

Oracle

[bookmark: idx-CHP-3-0117]

For users on Oracle9i Database and later, the preceding solution will work. Alternatively, you can use the proprietary Oracle outer-join syntax:

	1 select d.*

	2 from dept d, emp e

	3 where d.deptno = e.deptno (+)

	4 and e.deptno is null

This proprietary syntax (note the use of the "+" in parens) is the only outer-join syntax available in Oracle8i Database and earlier.

[bookmark: sqlckbk-CHP-3-SECT-5.3]

Discussion

This solution works by outer joining and then keeping only rows that have no match. This sort of operation is sometimes called an [bookmark: idx-CHP-3-0118]anti-join. To get a better idea of how an anti-join works, first examine the result set without filtering for NULLs:

	

	select e.ename, e.deptno as emp_deptno, d.*

	 from dept d left join emp e

	 on (d.deptno = e.deptno)

	ENAME EMP_DEPTNO DEPTNO DNAME LOC

	---------- ---------- ---------- -------------- -------------

	SMITH 20 20 RESEARCH DALLAS

	ALLEN 30 30 SALES CHICAGO

	WARD 30 30 SALES CHICAGO

	JONES 20 20 RESEARCH DALLAS

	MARTIN 30 30 SALES CHICAGO

	BLAKE 30 30 SALES CHICAGO

	CLARK 10 10 ACCOUNTING NEW YORK

	SCOTT 20 20 RESEARCH DALLAS

	KING 10 10 ACCOUNTING NEW YORK

	TURNER 30 30 SALES CHICAGO

	ADAMS 20 20 RESEARCH DALLAS

	JAMES 30 30 SALES CHICAGO

	FORD 20 20 RESEARCH DALLAS

	MILLER 10 10 ACCOUNTING NEW YORK

	 40 OPERATIONS BOSTON

Notice, the last row has a NULL value for EMP.ENAME and EMP_DEPTNO. That's because no employees work in department 40. The solution uses the WHERE clause to keep only rows where EMP_DEPTNO is NULL (thus keeping only rows from DEPT that have no match in EMP).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-6]

Recipe 3.6. Adding Joins to a Query Without Interfering with Other Joins

[bookmark: idx-CHP-3-0119]

[bookmark: sqlckbk-CHP-3-SECT-6.1]

Problem

You have a query that returns the results you want. You need additional information, but when trying to get it, you lose [bookmark: idx-CHP-3-0120]data from the original result set. For example, you want to return all employees, the location of the department in which they work, and the date they received a bonus. For this problem, the EMP_BONUS table contains the following data:

	

	select * from emp_bonus

	 EMPNO RECEIVED TYPE

	 ---------- ----------- ----------

	 7369 14-MAR-2005 1

	 7900 14-MAR-2005 2

	 7788 14-MAR-2005 3

The query you start with looks like this:

	

	select e.ename, d.loc

	 from emp e, dept d

	 where e.deptno=d.deptno

	 ENAME LOC

	 ---------- -------------

	 SMITH DALLAS

	 ALLEN CHICAGO

	 WARD CHICAGO

	 JONES DALLAS

	 MARTIN CHICAGO

	 BLAKE CHICAGO

	 CLARK NEW YORK

	 SCOTT DALLAS

	 KING NEW YORK

	 TURNER CHICAGO

	 ADAMS DALLAS

	 JAMES CHICAGO

	 FORD DALLAS

	 MILLER NEW YORK

You want to add to these results the date a bonus was given to an employee, but joining to the EMP_BONUS table returns fewer rows than you wish because not every employee has a bonus:

	

	select e.ename, d.loc,eb.received

	 from emp e, dept d, emp_bonus eb

	 where e.deptno=d.deptno

	 and e.empno=eb.empno

	ENAME LOC RECEIVED

	---------- ------------- -----------

	SCOTT DALLAS 14-MAR-2005

	SMITH DALLAS 14-MAR-2005

	JAMES CHICAGO 14-MAR-2005

Your desired result set is the following:

	ENAME LOC RECEIVED

	---------- ------------- -----------

	ALLEN CHICAGO

	WARD CHICAGO

	MARTIN CHICAGO

	JAMES CHICAGO 14-MAR-2005

	TURNER CHICAGO

	BLAKE CHICAGO

	SMITH DALLAS 14-MAR-2005

	FORD DALLAS

	ADAMS DALLAS

	JONES DALLAS

	SCOTT DALLAS 14-MAR-2005

	CLARK NEW YORK

	KING NEW YORK

	MILLER NEW YORK

[bookmark: sqlckbk-CHP-3-SECT-6.2]

Solution

You can use an outer join to obtain the additional information without losing the [bookmark: idx-CHP-3-0121]data from the original query. First join table EMP to table DEPT to get all employees [bookmark: idx-CHP-3-0122]and the location of the department they work, then outer join to table EMP_ BONUS to return the date of the bonus if there is one. Following is the DB2, MySQL, PostgreSQL, and SQL Server syntax:

	1 select e.ename, d.loc, eb.received

	2 from emp e join dept d

	3 on (e.deptno=d.deptno)

	4 left join emp_bonus eb

	5 on (e.empno=eb.empno)

	6 order by 2

If you are using Oracle9i Database or later, the preceding solution will work for you. Alternatively, you can use Oracle's proprietary outer-join syntax, which is your only choice when using Oracle8i Database and earlier:

	1 select e.ename, d.loc, eb.received

	2 from emp e, dept d, emp_bonus eb

	3 where e.deptno=d.deptno

	4 and e.empno=eb.empno (+)

	5 order by 2

You can also use a scalar subquery (a subquery placed in the SELECT list) to mimic an outer join:

	1 select e.ename, d.loc,

	2 (select eb.received from emp_bonus eb

	3 where eb.empno=e.empno) as received

	4 from emp e, dept d

	5 where e.deptno=d.deptno

	6 order by 2

The scalar subquery solution will work across all platforms.

[bookmark: sqlckbk-CHP-3-SECT-6.3]

Discussion

An outer join will return all rows from one table and matching rows from another. See the previous recipe for another example of such a join. The reason an outer join works to solve this problem is that it does not result in any rows being eliminated that would otherwise be returned. The query will return all the rows it would return without the outer join. And it also returns the received date, if one exists.

Use of a scalar subquery is also a convenient technique for this sort of problem, as it does not require you to modify already correct [bookmark: idx-CHP-3-0123]joins in your main query. Using a scalar subquery is an easy way to tack on extra [bookmark: idx-CHP-3-0124]data to a query without compromising the current result set. When working with [bookmark: idx-CHP-3-0125]scalar subqueries, you must ensure they return a scalar (single) value. If a subquery in the SELECT list returns more than one row, you will receive an error.

[bookmark: sqlckbk-CHP-3-SECT-6.4]

See Also

See "Converting a Scalar Subquery to a Composite Subquery in Oracle" in Chapter 14 for a workaround to the problem of not being able to return multiple rows from a SELECT-list subquery.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-7]

Recipe 3.7. Determining Whether Two Tables Have the Same Data

[bookmark: sqlckbk-CHP-3-SECT-7.1]

Problem

You want to know if two tables or views have the same data (cardinality and values). Consider the following view:

	

	create view V

	as

	select * from emp where deptno != 10

	 union all

	select * from emp where ename = 'WARD'

	select * from V

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

	----- ---------- --------- ----- ----------- ----- ----- ------

	 7369 SMITH CLERK 7902 17-DEC-1980 800 20

	 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30

	 7566 JONES MANAGER 7839 02-APR-1981 2975 20

	 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1300 30

	 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30

	 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20

	 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30

	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

	 7900 JAMES CLERK 7698 03-DEC-1981 950 30

	 7902 FORD ANALYST 7566 03-DEC-1981 3000 20

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30

You want to determine whether or not this view has exactly the same data as table EMP. The row for employee "WARD" is duplicated to show that the solution will reveal not only different data but duplicates as well. Based on the rows in table EMP the difference will be the three rows for employees in department 10 and the two rows for employee "WARD". You want to return the following result set:

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT

	----- ---------- --------- ----- ----------- ----- ----- ------ ---

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2

	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1

	 7839 KING PRESIDENT 17-NOV-1981 5000 10 1

	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

[bookmark: sqlckbk-CHP-3-SECT-7.2]

Solution

Functions that perform SET difference ([bookmark: idx-CHP-3-0126]MINUS or [bookmark: idx-CHP-3-0127]EXCEPT, depending on your DBMS) make the problem of [bookmark: idx-CHP-3-0128]comparing tables a relatively easy one to solve. If your DBMS does not offer such functions, you can use a correlated subquery.

[bookmark: sqlckbk-CHP-3-SECT-7.2.1]

DB2 and PostgreSQL

Use the set operations EXCEPT and [bookmark: idx-CHP-3-0129]UNION ALL to find the difference between view V and table EMP combined with the difference between table EMP and view V:

	 1 (

	 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 3 count(*) as cnt

	 4 from V

	 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	 6 except

	 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 8 count(*) as cnt

	 9 from emp

	10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	11)

	12 union all

	13 (

	14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	15 count(*) as cnt

	16 from emp

	17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	18 except

	19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	20 count(*) as cnt

	21 from v

	22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	23)

[bookmark: sqlckbk-CHP-3-SECT-7.2.2]

Oracle

Use the set operations MINUS and UNION ALL to find the difference between view V and table EMP combined with the difference between table EMP and view V:

	 1 (

	 2 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 3 count(*) as cnt

	 4 from V

	 5 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	 6 minus

	 7 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 8 count(*) as cnt

	 9 from emp

	10 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	11)

	12 union all

	13 (

	14 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	15 count(*) as cnt

	16 from emp

	17 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	18 minus

	19 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	20 count(*) as cnt

	21 from v

	22 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	23)

[bookmark: sqlckbk-CHP-3-SECT-7.2.3]

MySQL and SQL Server

Use a correlated subquery and UNION ALL to find the rows in view V and not in table EMP combined with the rows in table EMP and not in view V:

	 1 select *

	 2 from (

	 3 select e.empno,e.ename,e.job,e.mgr,e.hiredate,

	 4 e.sal,e.comm,e.deptno, count(*) as cnt

	 5 from emp e

	 6 group by empno,ename,job,mgr,hiredate,

	 7 sal,comm,deptno

	 8) e

	 9 where not exists (

	10 select null

	11 from (

	12 select v.empno,v.ename,v.job,v.mgr,v.hiredate,

	13 v.sal,v.comm,v.deptno, count(*) as cnt

	14 from v

	15 group by empno,ename,job,mgr,hiredate,

	16 sal,comm,deptno

	17) v

	18 where v.empno = e.empno

	19 and v.ename = e.ename

	20 and v.job = e.job

	21 and v.mgr = e.mgr

	22 and v.hiredate = e.hiredate

	23 and v.sal = e.sal

	24 and v.deptno = e.deptno

	25 and v.cnt = e.cnt

	26 and coalesce(v.comm,0) = coalesce(e.comm,0)

	27)

	28 union all

	29 select *

	30 from (

	31 select v.empno,v.ename,v.job,v.mgr,v.hiredate,

	32 v.sal,v.comm,v.deptno, count(*) as cnt

	33 from v

	34 group by empno,ename,job,mgr,hiredate,

	35 sal,comm,deptno

	36) v

	37 where not exists (

	38 select null

	39 from (

	40 select e.empno,e.ename,e.job,e.mgr,e.hiredate,

	41 e.sal,e.comm,e.deptno, count(*) as cnt

	42 from emp e

	43 group by empno,ename,job,mgr,hiredate,

	44 sal,comm,deptno

	45) e

	46 where v.empno = e.empno

	47 and v.ename = e.ename

	48 and v.job = e.job

	49 and v.mgr = e.mgr

	50 and v.hiredate = e.hiredate

	51 and v.sal = e.sal

	52 and v.deptno = e.deptno

	53 and v.cnt = e.cnt

	54 and coalesce(v.comm,0) = coalesce(e.comm,0)

	55)

[bookmark: sqlckbk-CHP-3-SECT-7.3]

Discussion

Despite using different techniques, the concept is the same for all solutions:

			First, find rows in table EMP that do not exist in view V.

			Then combine (UNION ALL) those rows with rows from view V that do not exist in table EMP.

If the tables in question are equal, then no rows are returned. If the tables are different, the rows causing the difference are returned. As an easy first step when [bookmark: idx-CHP-3-0130]comparing tables, you can compare the cardinalities alone rather than including them with the [bookmark: idx-CHP-3-0131]data comparison. The following query is a simple example of this and will work on all DBMSs:

	

	select count(*)

	 from emp

	 union

	select count(*)

	 from dept

	COUNT(*)

	 4

	 14

Because [bookmark: idx-CHP-3-0132]UNION will filter out duplicates, only one row will be returned if the tables' cardinalities are the same. Because two rows are returned in this example, you know that the tables do not contain identical rowsets.

[bookmark: sqlckbk-CHP-3-SECT-7.3.1]

DB2, Oracle, and PostgreSQL

[bookmark: idx-CHP-3-0133]MINUS and [bookmark: idx-CHP-3-0134]EXCEPT work in the same way, so I will use EXCEPT for this discussion. The queries before and after the UNION ALL are very similar. So, to understand how the solution works, simply execute the query prior to the UNION ALL by itself. The following result set is produced by executing lines 111 in the solution section:

	

	(

	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 count(*) as cnt

	 from V

	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	 except

	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 count(*) as cnt

	 from emp

	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

)

	 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT

	 ----- ---------- --------- ----- ----------- ----- ----- ------ ---

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2

The result set represents a row found in view V that is either not in table EMP or has a different cardinality than that same row in table EMP. In this case, the duplicate row for employee "WARD" is found and returned. If you're still having trouble understanding how the result set is produced, run each query on either side of EXCEPT individually. You'll notice the only difference between the two result sets is the CNT for employee "WARD" returned by view V.

The portion of the query after the UNION ALL does the opposite of the query preceding UNION ALL. The query returns rows in table EMP not in view V:

	

	(

	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 count(*) as cnt

	 from emp

	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

	 minus

	 select empno,ename,job,mgr,hiredate,sal,comm,deptno,

	 count(*) as cnt

	 from v

	 group by empno,ename,job,mgr,hiredate,sal,comm,deptno

)

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT

	----- ---------- --------- ----- ----------- ----- ----- ------ ---

	7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1

	7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1

	7839 KING PRESIDENT 17-NOV-1981 5000 10 1

	7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

The results are then combined by UNION ALL to produce the final result set.

[bookmark: sqlckbk-CHP-3-SECT-7.3.2]

MySQL and SQL Server

The queries before and after the UNION ALL are very similar. To understand how the subquery-based solution works, simply execute the query prior to the UNION ALL by itself. The query below is from lines 127 in the solution:

	

	select *

	 from (

	 select e.empno,e.ename,e.job,e.mgr,e.hiredate,

	 e.sal,e.comm,e.deptno, count(*) as cnt

	 from emp e

	 group by empno,ename,job,mgr,hiredate,

	 sal,comm,deptno

) e

	 where not exists (

	select null

	 from (

	select v.empno,v.ename,v.job,v.mgr,v.hiredate,

	 v.sal,v.comm,v.deptno, count(*) as cnt

	 from v

	 group by empno,ename,job,mgr,hiredate,

	 sal,comm,deptno

) v

	 where v.empno = e.empno

	 and v.ename = e.ename

	 and v.job = e.job

	 and v.mgr = e.mgr

	 and v.hiredate = e.hiredate

	 and v.sal = e.sal

	 and v.deptno = e.deptno

	 and v.cnt = e.cnt

	 and coalesce(v.comm,0) = coalesce(e.comm,0)

)

	 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT

	 ----- ---------- --------- ----- ----------- ----- ----- ------ ---

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 1

	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10 1

	 7839 KING PRESIDENT 17-NOV-1981 5000 10 1

	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10 1

Notice that the comparison is not between table EMP and view V, but rather between inline view E and inline view V. The cardinality for each row is found and returned as an attribute for that row. You are [bookmark: idx-CHP-3-0135]comparing each row and its occurrence count. If you are having trouble understanding how the comparison works, run the subqueries independently. The next step is to find all rows (including CNT) in inline view E that do not exist in inline view V. The comparison uses a correlated subquery and NOT EXISTS. The joins will determine which rows are the same, and the result will be all rows from inline view E that are not the rows returned by the join. The query after the UNION ALL does the opposite; it finds all rows in inline view V that do not exist in inline view E:

	

	select *

	 from (

	select v.empno,v.ename,v.job,v.mgr,v.hiredate,

	 v.sal,v.comm,v.deptno, count(*) as cnt

	 from v

	 group by empno,ename,job,mgr,hiredate,

	 sal,comm,deptno

) v

	 where not exists (

	select null

	 from (

	 select e.empno,e.ename,e.job,e.mgr,e.hiredate,

	 e.sal,e.comm,e.deptno, count(*) as cnt

	 from emp e

	 group by empno,ename,job,mgr,hiredate,

	 sal,comm,deptno

) e

	 where v.empno = e.empno

	 and v.ename = e.ename

	 and v.job = e.job

	 and v.mgr = e.mgr

	 and v.hiredate = e.hiredate

	 and v.sal = e.sal

	 and v.deptno = e.deptno

	 and v.cnt = e.cnt

	 and coalesce(v.comm,0) = coalesce(e.comm,0)

)

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO CNT

	----- ---------- --------- ----- ----------- ----- ----- ------ ---

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30 2

The results are then combined by UNION ALL to produce the final result set.

						[image:]			

Ales Spectic and Jonathan Gennick give an alternate solution in their book Transact-SQL Cookbook (O'Reilly). See the section "[bookmark: idx-CHP-3-0136]Comparing Two Sets for Equality" in Chapter 2.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-8]

Recipe 3.8. Identifying and Avoiding Cartesian Products

[bookmark: idx-CHP-3-0137]

[bookmark: sqlckbk-CHP-3-SECT-8.1]

Problem

You want to return the name of each employee in department 10 along with the location of the department. The following query is returning incorrect [bookmark: idx-CHP-3-0138]data:

	

	select e.ename, d.loc

	 from emp e, dept d

	 where e.deptno = 10

	ENAME LOC

	---------- -------------

	CLARK NEW YORK

	CLARK DALLAS

	CLARK CHICAGO

	CLARK BOSTON

	KING NEW YORK

	KING DALLAS

	KING CHICAGO

	KING BOSTON

	MILLER NEW YORK

	MILLER DALLAS

	MILLER CHICAGO

	MILLER BOSTON

The correct result set is the following:

	ENAME LOC

	---------- ---------

	CLARK NEW YORK

	KING NEW YORK

	MILLER NEW YORK

[bookmark: sqlckbk-CHP-3-SECT-8.2]

Solution

Use a join between the tables in the FROM clause to return the correct result set:

	1 select e.ename, d.loc

	2 from emp e, dept d

	3 where e.deptno = 10

	4 and d.deptno = e.deptno

[bookmark: sqlckbk-CHP-3-SECT-8.3]

Discussion

Looking at the [bookmark: idx-CHP-3-0139]data in the DEPT table:

	

	select * from dept

	 DEPTNO DNAME LOC

	---------- -------------- -------------

	 10 ACCOUNTING NEW YORK

	 20 RESEARCH DALLAS

	 30 SALES CHICAGO

	 40 OPERATIONS BOSTON

You can see that department 10 is in New York, and thus you can know that returning employees with any location other than New York is incorrect. The number of rows returned by the incorrect query is the product of the cardinalities of the two tables in the FROM clause. In the original query, the filter on EMP for department 10 will result in three rows. Because there is no filter for DEPT, all four rows from DEPT are returned. Three multiplied by four is twelve, so the incorrect query returns twelve rows. Generally, to avoid a Cartesian product you would apply the n1 rule where n represents the number of tables in the FROM clause and n1 represents the minimum number of joins necessary to avoid a Cartesian product. Depending on what the keys and join columns in your tables are, you may very well need more than n1 joins, but n1 is a good place to start when writing queries.

						[image:]			

When used properly, Cartesian products can be very useful. The recipe, , uses a Cartesian product and is used by many other queries. Common uses of Cartesian products include transposing or pivoting (and unpivoting) a result set, generating a sequence of values, and mimicking a loop.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3-SECT-9]

Recipe 3.9. Performing Joins when Using Aggregates

[bookmark: idx-CHP-3-0140]

[bookmark: sqlckbk-CHP-3-SECT-9.1]

Problem

You want to perform an aggregation but your query involves [bookmark: idx-CHP-3-0141]multiple tables. You want to ensure that joins do not disrupt the aggregation. For example, you want to find the sum of the salaries for employees in department 10 along with the sum of their bonuses. Some employees have more than one bonus and the join between table EMP and table EMP_BONUS is causing incorrect values to be returned by the aggregate function SUM. For this problem, table EMP_BONUS contains the following [bookmark: idx-CHP-3-0142]data:

	

	select * from emp_bonus

	EMPNO RECEIVED TYPE

	----- ----------- ----------

	 7934 17-MAR-2005 1

	 7934 15-FEB-2005 2

	 7839 15-FEB-2005 3

	 7782 15-FEB-2005 1

Now, consider the following query that returns the salary and bonus for all employees in department 10. Table BONUS.TYPE determines the amount of the bonus. A type 1 bonus is 10% of an employee's salary, type 2 is 20%, and type 3 is 30%.

	

	select e.empno,

	 e.ename,

	 e.sal,

	 e.deptno,

	 e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3

	 end as bonus

	 from emp e, emp_bonus eb

	where e.empno = eb.empno

	 and e.deptno = 10

	 EMPNO ENAME SAL DEPTNO BONUS

	------- ---------- ---------- ---------- ---------

	 7934 MILLER 1300 10 130

	 7934 MILLER 1300 10 260

	 7839 KING 5000 10 1500

	 7782 CLARK 2450 10 245

So far, so good. However, things go awry when you attempt a join to the EMP_ BONUS table in order to sum the bonus amounts:

	

	select deptno,

	 sum(sal) as total_sal,

	 sum(bonus) as total_bonus

	 from (

	select e.empno,

	 e.ename,

	 e.sal,

	 e.deptno,

	 e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3

	 end as bonus

	 from emp e, emp_bonus eb

	 where e.empno = eb.empno

	 and e.deptno = 10

) x

	 group by deptno

	DEPTNO TOTAL_SAL TOTAL_BONUS

	------ ----------- -----------

	 10 10050 2135

While the TOTAL_BONUS is correct, the TOTAL_SAL is incorrect. The sum of all salaries in department 10 is 8750, as the following query shows:

	

	select sum(sal) from emp where deptno=10

	 SUM(SAL)

	 8750

Why is TOTAL_SAL incorrect? The reason is the duplicate rows in the SAL column created by the join. Consider the following query, which [bookmark: idx-CHP-3-0143]joins table EMP and EMP_ BONUS:

	

	select e.ename,

	 e.sal

	 from emp e, emp_bonus eb

	 where e.empno = eb.empno

	 and e.deptno = 10

	ENAME SAL

	---------- ----------

	CLARK 2450

	KING 5000

	MILLER 1300

	MILLER 1300

Now it is easy to see why the value [bookmark: idx-CHP-3-0144]for TOTAL_SAL is incorrect: MILLER's salary is counted twice. The final result set that you are really after is:

	DEPTNO TOTAL_SAL TOTAL_BONUS

	------ --------- -----------

	 10 8750 2135

[bookmark: sqlckbk-CHP-3-SECT-9.2]

Solution

You have to be careful when computing aggregates across [bookmark: idx-CHP-3-0145]joins. Typically when duplicates are returned due to a join, you can avoid miscalculations by aggregate functions in two ways: you can simply use the keyword DISTINCT in the call to the aggregate function, so only unique instances of each value are used in the computation; or you can perform the aggregation first (in an inline view) prior to joining, thus avoiding the incorrect computation by the aggregate function because the aggregate will already be computed before you even join, thus avoiding the problem altogether. The solutions that follow use DISTINCT. The "Discussion" section will discuss the technique of using an inline view to perform the aggregation prior to joining.

[bookmark: sqlckbk-CHP-3-SECT-9.2.1]

MySQL and PostgreSQL

Perform a sum of only the DISTINCT salaries:

	 1 select deptno,

	 2 sum(distinct sal) as total_sal,

	 3 sum(bonus) as total_bonus

	 4 from (

	 5 select e.empno,

	 6 e.ename,

	 7 e.sal,

	 8 e.deptno,

	 9 e.sal*case when eb.type = 1 then .1

	10 when eb.type = 2 then .2

	11 else .3

	12 end as bonus

	13 from emp e, emp_bonus eb

	14 where e.empno = eb.empno

	15 and e.deptno = 10

	16) x

	17 group by deptno

[bookmark: sqlckbk-CHP-3-SECT-9.2.2]

DB2, Oracle, and SQL Server

These platforms support the preceding solution, but they also support an alternative solution using the window function SUM OVER:

	 1 select distinct deptno,total_sal,total_bonus

	 2 from (

	 3 select e.empno,

	 4 e.ename,

	 5 sum(distinct e.sal) over

	 6 (partition by e.deptno) as total_sal,

	 7 e.deptno,

	 8 sum(e.sal*case when eb.type = 1 then .1

	 9 when eb.type = 2 then .2

	10 else .3 end) over

	11 (partition by deptno) as total_bonus

	12 from emp e, emp_bonus eb

	13 where e.empno = eb.empno

	14 and e.deptno = 10

	15) x

[bookmark: sqlckbk-CHP-3-SECT-9.3]

Discussion

[bookmark: sqlckbk-CHP-3-SECT-9.3.1]

MySQL and PostgreSQL

The second query in the "Problem" section of this recipe [bookmark: idx-CHP-3-0146]joins table EMP and table EMP_BONUS and returns two rows for employee "MILLER", which is what causes the error on the sum of EMP.SAL (the salary is added twice). The solution is to simply sum the distinct EMP.SAL values that are returned by the query. The following query is an alternative solution. The sum of all salaries in department 10 is computed first and that row is then joined to table EMP, which is then joined to table EMP_BONUS. The following query works for all DBMSs:

	

	select d.deptno,

	 d.total_sal,

	 sum(e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3 end) as total_bonus

	 from emp e,

	 emp_bonus eb,

	 (

	select deptno, sum(sal) as total_sal

	 from emp

	 where deptno = 10

	 group by deptno

) d

	 where e.deptno = d.deptno

	 and e.empno = eb.empno

	 group by d.deptno,d.total_sal

	 DEPTNO TOTAL_SAL TOTAL_BONUS

	--------- ---------- ------------

	 10 8750 2135

[bookmark: sqlckbk-CHP-3-SECT-9.3.2]

DB2, Oracle, and SQL Server

This alternative solution takes advantage of the window function [bookmark: idx-CHP-3-0147]SUM OVER. The following query is taken from lines 314 in "Solution" and returns the following result set:

	

	select e.empno,

	 e.ename,

	 sum(distinct e.sal) over

	 (partition by e.deptno) as total_sal,

	 e.deptno,

	 sum(e.sal*case when eb.type = 1 then .1

	 when eb.type = 2 then .2

	 else .3 end) over

	 (partition by deptno) as total_bonus

	 from emp e, emp_bonus eb

	 where e.empno = eb.empno

	 and e.deptno = 10

	EMPNO ENAME TOTAL_SAL DEPTNO TOTAL_BONUS

	----- ---------- ---------- ------ -----------

	 7934 MILLER 8750 10 2135

	 7934 MILLER 8750 10 2135

	 7782 CLARK 8750 10 2135

	 7839 KING 8750 10 2135

The windowing function, SUM OVER, is called twice, first to compute the sum of the distinct salaries for the defined partition or group. In this case, the partition is DEPTNO 10 and the sum of the distinct salaries for DEPTNO 10 is 8750. The next call to SUM OVER computes the sum of the bonuses for the same defined partition. The final result set is produced by taking the distinct values for TOTAL_SAL, DEPTNO, and TOTAL_BONUS.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-3]

Chapter 3. Working with Multiple Tables

This chapter introduces the use of joins and [bookmark: idx-CHP-3-0077]set operations to combine [bookmark: idx-CHP-3-0078]data from multiple tables. Joins are the foundation of SQL. Set operations are also very important. If you want to master the complex queries found in the later chapters of this book, you must start here, with joins and set operations.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-1]

Recipe 4.1. Inserting a New Record

[bookmark: idx-CHP-4-0166]

[bookmark: sqlckbk-CHP-4-SECT-1.1]

Problem

You want to insert a new record into a table. For example, you want to insert a new record into the DEPT table. The value for DEPTNO should be 50, DNAME should be "PROGRAMMING", and LOC should be "BALTIMORE".

[bookmark: sqlckbk-CHP-4-SECT-1.2]

Solution

Use the [bookmark: idx-CHP-4-0167]INSERT statement [bookmark: idx-CHP-4-0168]with the [bookmark: idx-CHP-4-0169]VALUES clause to insert one row at a time:

	insert into dept (deptno,dname,loc)

	values (50,'PROGRAMMING','BALTIMORE')

For DB2 and MySQL you have the option of inserting one row at a time or multiple rows at a time by including multiple VALUES lists:

	/* multi row insert */

	insert into dept (deptno,dname,loc)

	values (1,'A','B'),

	 (2,'B','C')

[bookmark: sqlckbk-CHP-4-SECT-1.3]

Discussion

The INSERT statement allows you to create new rows in database tables. The syntax for inserting a single row is consistent across all database brands.

As a shortcut, you can omit the column list in an INSERT statement:

	insert into dept

	values (50,'PROGRAMMING','BALTIMORE')

However, if you do not list your target columns, you must insert into all of the columns in the table, and be mindful of the order of the values in the VALUES list; you must supply values in the same order in which the database displays columns in response to a SELECT * query.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-10]

Recipe 4.10. Updating with Values from Another Table

[bookmark: idx-CHP-4-0191]

[bookmark: sqlckbk-CHP-4-SECT-10.1]

Problem

You wish to update rows in one table using values from another. For example, you have a table called NEW_SAL, which holds the new salaries for certain employees. The contents of table NEW_SAL are:

	

	select *

	 from new_sal

	DEPTNO SAL

	------ ----------

	 10 4000

Column DEPTNO is the primary key of table NEW_SAL. You want to update the salaries and commission of certain employees in table EMP using [bookmark: idx-CHP-4-0192]values table NEW_SAL if there is a match between EMP.DEPTNO and NEW_SAL.DEPTNO, update EMP.SAL to NEW_SAL.SAL, and update EMP.COMM to 50% of NEW_SAL.SAL. The rows in EMP are as follows:

	

	select deptno,ename,sal,comm

	 from emp

	 order by 1

	DEPTNO ENAME SAL COMM

	------ ---------- ---------- ----------

	 10 CLARK 2450

	 10 KING 5000

	 10 MILLER 1300

	 20 SMITH 800

	 20 ADAMS 1100

	 20 FORD 3000

	 20 SCOTT 3000

	 20 JONES 2975

	 30 ALLEN 1600 300

	 30 BLAKE 2850

	 30 MARTIN 1250 1400

	 30 JAMES 950

	 30 TURNER 1500 0

	 30 WARD 1250 500

[bookmark: sqlckbk-CHP-4-SECT-10.2]

Solution

Use a join between NEW_SAL and EMP to find and return the new COMM values to the [bookmark: idx-CHP-4-0193]UPDATE statement. It is quite common for updates such as this one to be performed via correlated subquery. Another technique involves creating a view (traditional or inline, depending on what your database supports), then updating that view.

[bookmark: sqlckbk-CHP-4-SECT-10.2.1]

DB2 and MySQL

Use a correlated subquery to set new SAL and COMM values in EMP. Also use a correlated subquery to identify which rows from EMP should be updated:

	1 update emp e set (e.sal,e.comm) = (select ns.sal, ns.sal/2

	2 from new_sal ns

	3 where ns.deptno=e.deptno)

	4 where exists (select null

	5 from new_sal ns

	6 where ns.deptno = e.deptno)

[bookmark: sqlckbk-CHP-4-SECT-10.2.2]

Oracle

The method for the DB2 solution will certainly work for Oracle, but as an alternative, you can update an inline view:

	1 update (

	2 select e.sal as emp_sal, e.comm as emp_comm,

	3 ns.sal as ns_sal, ns.sal/2 as ns_comm

	4 from emp e, new_sal ns

	5 where e.deptno = ns.deptno

	6) set emp_sal = ns_sal, emp_comm = ns_comm

[bookmark: sqlckbk-CHP-4-SECT-10.2.3]

PostgreSQL

The method used for the DB2 solution will work for PostgreSQL, but as an alternative you can (quite conveniently) join directly in the [bookmark: idx-CHP-4-0194]UPDATE statement:

	1 update emp

	2 set sal = ns.sal,

	3 comm = ns.sal/2

	4 from new_sal ns

	5 where ns.deptno = emp.deptno

[bookmark: sqlckbk-CHP-4-SECT-10.2.4]

SQL Server

The method used for the DB2 solution will work for SQL Server, but as an alternative you can (similarly to the PostgreSQL solution) join directly in the UPDATE statement:

	1 update e

	2 set e.sal = ns.sal,

	3 e.comm = ns.sal/2

	4 from emp e,

	5 new_sal ns

	6 where ns.deptno = e.deptno

[bookmark: sqlckbk-CHP-4-SECT-10.3]

Discussion

Before discussing the different solutions, I'd like to mention something important regarding updates that use [bookmark: idx-CHP-4-0195]queries to supply new values. A WHERE clause in the subquery of a correlated update is not the same as the WHERE clause of the table being updated. If you look at the UPDATE statement in the "Problem" section, the join on DEPTNO between EMP and NEW_SAL is done and returns rows to the SET clause of the UPDATE statement. For employees in DEPTNO 10, valid values are returned because there is a match DEPTNO in table NEW_SAL. But what about employees in the other departments? NEW_SAL does not have any other departments, so the SAL and COMM for employees in DEPTNOs 20 and 30 are set to NULL. Unless you are doing so via LIMIT or TOP or whatever mechanism your vendor supplies for limiting the number of rows returned in a result set, the only way to restrict rows from a table in SQL is to use a WHERE clause. To correctly perform this UPDATE, use a WHERE clause on the table being updated along [bookmark: idx-CHP-4-0196]with a WHERE clause in the correlated subquery.

[bookmark: sqlckbk-CHP-4-SECT-10.3.1]

DB2 and MySQL

To ensure you do not update every row in table EMP, remember to include a correlated subquery in the WHERE clause of the UPDATE. Performing the join (the correlated subquery) in the SET clause is not enough. By using a WHERE clause in the UPDATE, you ensure that only rows in EMP that match on DEPTNO to table NEW_SAL are updated. This holds true for all RDBMSs.

[bookmark: sqlckbk-CHP-4-SECT-10.3.2]

Oracle

In the Oracle solution using the update join view, you are using equi-joins to determine which rows will be updated. You can confirm which rows are being updated by executing the query independently. To be able to successfully use this type of UPDATE, you must first understand the concept of key-preservation. The DEPTNO column of the table NEW_SAL is the primary key of that table, thus its values are unique [bookmark: idx-CHP-4-0197]within the table. When joining between EMP and NEW_SAL, however, NEW_SAL.DEPTNO is not unique in the result set, as can be seen below:

	

	select e.empno, e.deptno e_dept, ns.sal, ns.deptno ns_deptno

	 from emp e, new_sal ns

	 where e.deptno = ns.deptno

	EMPNO E_DEPT SAL NS_DEPTNO

	----- ---------- ---------- ----------

	 7782 10 4000 10

	 7839 10 4000 10

	 7934 10 4000 10

To enable Oracle to update this join, one of the tables must be key-preserved, meaning that if its values are not unique in the result set, it should at least be unique in the table it comes from. In this case NEW_SAL has a primary key on DEPTNO, which makes it unique in the table. Because it is unique in its table, it may appear multiple times in the result set and will still be considered key-preserved, thus allowing the update to complete successfully.

[bookmark: sqlckbk-CHP-4-SECT-10.3.3]

PostgreSQL and SQL Server

The syntax is a bit different between these two platforms, but the technique is the same. Being able to join directly in the [bookmark: idx-CHP-4-0198]UPDATE statement is extremely convenient. Since you specify which table to update (the table listed after the UPDATE keyword) there's no confusion as to which table's rows are modified. Additionally, because you are using joins in the update (since there is an explicit WHERE clause), you can avoid some of the pitfalls when coding correlated subquery updates; in particular, if you missed a join here, it would be very obvious you'd have a problem.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-11]

Recipe 4.11. Merging Records

[bookmark: idx-CHP-4-0199]

[bookmark: sqlckbk-CHP-4-SECT-11.1]

Problem

You want to conditionally insert, update, or delete records in a table depending on whether or not corresponding records exist. (If a record exists, then update; if not,then insert; if after updating a row fails to meet a certain condition, delete it.) For example, you want to modify table EMP_COMMISSION such that:

			If any employee in EMP_COMMISSION also exists in table EMP, then update their commission (COMM) to 1000.

			For all employees who will potentially have their COMM updated to 1000, if their SAL is less than 2000, delete them (they should not be exist in EMP_COMMISSION).

			Otherwise, insert the EMPNO, ENAME, and DEPTNO values from table EMP into table EMP_COMMISSION.

Essentially, you wish to execute either an UPDATE or an INSERT depending on whether a given row from EMP has a match in EMP_COMMISSION. Then you wish to execute a DELETE if the result of an UPDATE causes a commission that's too high.

The following rows are currently in tables EMP and EMP_COMMISSION, respectively:

	

	select deptno,empno,ename,comm

	 from emp

	 order by 1

	DEPTNO EMPNO ENAME COMM

	------ ---------- ------ ----------

	 10 7782 CLARK

	 10 7839 KING

	 10 7934 MILLER

	 20 7369 SMITH

	 20 7876 ADAMS

	 20 7902 FORD

	 20 7788 SCOTT

	 20 7566 JONES

	 30 7499 ALLEN 300

	 30 7698 BLAKE

	 30 7654 MARTIN 1400

	 30 7900 JAMES

	 30 7844 TURNER 0

	 30 7521 WARD 500

	

	select deptno,empno,ename,comm

	 from emp_commission

	 order by 1

	 DEPTNO EMPNO ENAME COMM

	---------- ---------- ---------- ----------

	 10 7782 CLARK

	 10 7839 KING

	 10 7934 MILLER

[bookmark: sqlckbk-CHP-4-SECT-11.2]

Solution

Oracle is currently the only RDBMS with a statement designed to solve this problem. That statement is the [bookmark: idx-CHP-4-0200]MERGE statement, and it can perform either an UPDATE or an INSERT, as needed. For example:

	1 merge into emp_commission ec

	2 using (select * from emp) emp

	3 on (ec.empno=emp.empno)

	4 when matched then

	5 update set ec.comm = 1000

	6 delete where (sal < 2000)

	7 when not matched then

	8 insert (ec.empno,ec.ename,ec.deptno,ec.comm)

	9 values (emp.empno,emp.ename,emp.deptno,emp.comm)

[bookmark: sqlckbk-CHP-4-SECT-11.3]

Discussion

The join on line 3 of the solution determines what rows already exist and will be updated. The join is between EMP_COMMISSION (aliased as EC) and the subquery (aliased as emp). When the join succeeds, the two rows are considered "matched" and the UPDATE specified in the WHEN MATCHED clause is executed. Otherwise, no match is found and the INSERT in WHEN NOT MATCHED is executed. Thus, rows from table EMP that do not have corresponding rows based on EMPNO in table EMP_COMMISSION will be inserted into EMP_COMMISSION. Of [bookmark: idx-CHP-4-0201]all the employees in table EMP only those in DEPTNO 10 should have their COMM updated in EMP_COMMISSION, while the rest of the employees are inserted. Additionally, since MILLER is in DEPTNO 10 he is a candidate to have his COMM updated, but because his SAL is less than 2000 it is deleted from EMP_COMMISSION.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-12]

Recipe 4.12. Deleting All Records from a Table

[bookmark: idx-CHP-4-0202]

[bookmark: sqlckbk-CHP-4-SECT-12.1]

Problem

You want to delete all the records from a table.

[bookmark: sqlckbk-CHP-4-SECT-12.2]

Solution

Use the [bookmark: idx-CHP-4-0203]DELETE command to delete records from a table. For example, to delete all records from EMP:

	delete from emp

[bookmark: sqlckbk-CHP-4-SECT-12.3]

Discussion

When using the DELETE command without a WHERE clause, you will delete all rows from the table specified.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-13]

Recipe 4.13. Deleting Specific Records

[bookmark: idx-CHP-4-0204]

[bookmark: sqlckbk-CHP-4-SECT-13.1]

Problem

You wish to delete records meeting a specific criterion from a table.

[bookmark: sqlckbk-CHP-4-SECT-13.2]

Solution

Use the [bookmark: idx-CHP-4-0205]DELETE command with a WHERE clause specifying which rows to delete. For example, to delete all employees in department 10:

	delete from emp where deptno = 10

[bookmark: sqlckbk-CHP-4-SECT-13.3]

Discussion

By using a WHERE clause with the DELETE command, you can delete a subset of rows in a table rather than all the rows.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-14]

Recipe 4.14. Deleting a Single Record

[bookmark: idx-CHP-4-0206]

[bookmark: sqlckbk-CHP-4-SECT-14.1]

Problem

You wish to delete a single record from a table.

[bookmark: sqlckbk-CHP-4-SECT-14.2]

Solution

This is a special case of "Deleting Specific Records." The key is to ensure that your selection criterion is narrow enough to specify only the one record that you wish to delete. Often you will want to delete based on the primary key. For example, to delete employee CLARK (EMPNO 7782):

	delete from emp where empno = 7782

[bookmark: sqlckbk-CHP-4-SECT-14.3]

Discussion

Deleting is always about identifying the rows to be deleted, and the impact of a DELETE always comes down to its WHERE clause. Omit the WHERE clause and the scope of a DELETE is the entire table. By writing conditions in the WHERE clause, you can narrow the scope to a group of records, or to a single record. When deleting a single record, you should typically be identifying that record based on its primary key or on one of its unique keys.

						[image:]			

If your deletion criterion is based on a primary or unique key, then you can be sure of deleting only one record. (This is because your RDBMS will not allow two rows to contain the same primary or unique key values.) Otherwise, you may want to check first, to be sure you aren't about to inadvertently delete more records than you intend.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-15]

Recipe 4.15. Deleting Referential Integrity Violations

[bookmark: idx-CHP-4-0207]

[bookmark: idx-CHP-4-0208]

[bookmark: idx-CHP-4-0209]

[bookmark: sqlckbk-CHP-4-SECT-15.1]

Problem

You wish to delete records from a table when those records refer to nonexistent records in some other table. Example: some employees are assigned to departments [bookmark: idx-CHP-4-0210]that do not exist. You wish to delete those employees.

[bookmark: sqlckbk-CHP-4-SECT-15.2]

Solution

Use the [bookmark: idx-CHP-4-0211]NOT EXISTS predicate with a subquery to test the validity of department numbers:

	delete from emp

	 where not exists (

	 select * from dept

	 where dept.deptno = emp.deptno

)

Alternatively, you can write the query using a NOT IN predicate:

	delete from emp

	where deptno not in (select deptno from dept)

[bookmark: sqlckbk-CHP-4-SECT-15.3]

Discussion

Deleting is really all about selecting: the real work lies in writing WHERE clause conditions to correctly describe those records that you wish to delete.

The NOT EXISTS solution uses a correlated subquery to test for the existence of a record in DEPT having a DEPTNO matching that in a given EMP record. If such a record exists, then the EMP record is retained. Otherwise, it is deleted. Each EMP record is checked in this manner.

The IN solution uses a subquery to retrieve a list of valid department numbers. DEPTNOs from each EMP record are then checked against that list. When an EMP record is found with a DEPTNO not in the list, the EMP record is deleted.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-16]

Recipe 4.16. Deleting Duplicate Records

[bookmark: idx-CHP-4-0212]

[bookmark: sqlckbk-CHP-4-SECT-16.1]

Problem

You want to delete duplicate records from a table. Consider the following table:

	

	create table dupes (id integer, name varchar(10))

	insert into dupes values (1, 'NAPOLEON')

	insert into dupes values (2, 'DYNAMITE')

	insert into dupes values (3, 'DYNAMITE')

	insert into dupes values (4, 'SHE SELLS')

	insert into dupes values (5, 'SEA SHELLS')

	insert into dupes values (6, 'SEA SHELLS')

	insert into dupes values (7, 'SEA SHELLS')

	

	select * from dupes order by 1

	 ID NAME

	---------- ----------

	 1 NAPOLEON

	 2 DYNAMITE

	 3 DYNAMITE

	 4 SHE SELLS

	 5 SEA SHELLS

	 6 SEA SHELLS

	 7 SEA SHELLS

For each group of duplicate names, such as "SEA SHELLS", you wish to arbitrarily retain one ID and delete the rest. In the case of "SEA SHELLS" you don't care whether you delete 5 and 6, or 5 and 7, or 6 and 7, but in the end you want just one record for "SEA SHELLS".

[bookmark: sqlckbk-CHP-4-SECT-16.2]

Solution

Use a subquery with an aggregate function such as MIN to arbitrarily choose the ID to retain (in this case only the NAME with the smallest value for ID is not deleted):

	1 delete from dupes

	2 where id not in (select min(id)

	3 from dupes

	4 group by name)

[bookmark: sqlckbk-CHP-4-SECT-16.3]

Discussion

The first thing to do when deleting duplicates is to define exactly what it means for two rows to be considered "duplicates" of each other. For my example in this recipe, the definition of "duplicate" is that two records contain the same value in their NAME column. Having that definition in place, you can look to some other column to discriminate among each set of duplicates, to identify those records to retain. It's best if this discriminating column (or columns) is a primary key. I used the ID column, which is a good choice because no two records have the same ID.

The key to the solution is that you group by the values that are duplicated (by NAME in this case), and then use an aggregate function to pick off just one key value to retain. The subquery in the "Solution" example will return the smallest ID for each NAME, which represents the row you will not delete:

	

	select min(id)

	 from dupes

	 group by name

	 MIN(ID)

	 2

	 1

	 5

	 4

The DELETE then deletes any ID in the table that is not returned by the subquery (in this case IDs 3, 6, and 7). If you are having trouble seeing how this works, run the subquery first and include the NAME in the SELECT list:

	

	select name, min(id)

	 from dupes

	 group by name

	NAME MIN(ID)

	---------- ----------

	DYNAMITE 2

	NAPOLEON 1

	SEA SHELLS 5

	SHE SELLS 4

The rows returned by the subquery represent those to be retained. The NOT IN predicate in the DELETE statement causes all other rows to be deleted.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-17]

Recipe 4.17. Deleting Records Referenced from Another Table

[bookmark: idx-CHP-4-0213]

[bookmark: sqlckbk-CHP-4-SECT-17.1]

Problem

You want to delete records from one table when those records are referenced from some other table. Consider the following table, named DEPT_ACCIDENTS, which contains one row for each accident that occurs in a manufacturing business. Each row records the department in which an accident occurred and also the type of accident.

	

	create table dept_accidents

	(deptno integer,

	 accident_name varchar(20))

	insert into dept_accidents values (10,'BROKEN FOOT')

	insert into dept_accidents values (10,'FLESH WOUND')

	insert into dept_accidents values (20,'FIRE')

	insert into dept_accidents values (20,'FIRE')

	insert into dept_accidents values (20,'FLOOD')

	insert into dept_accidents values (30,'BRUISED GLUTE')

	select * from dept_accidents

	 DEPTNO ACCIDENT_NAME

	---------- --------------------

	 10 BROKEN FOOT

	 10 FLESH WOUND

	 20 FIRE

	 20 FIRE

	 20 FLOOD

	 30 BRUISED GLUTE

You want to delete from EMP the records for those employees working at a department that has three or more accidents.

[bookmark: sqlckbk-CHP-4-SECT-17.2]

Solution

Use a subquery and the aggregate function COUNT to find the departments with three or more accidents. Then delete all employees working in those departments:

	1 delete from emp

	2 where deptno in (select deptno

	3 from dept_accidents

	4 group by deptno

	5 having count(*) >= 3)

[bookmark: sqlckbk-CHP-4-SECT-17.3]

Discussion

The subquery will identify which departments have three or more accidents:

	

	select deptno

	 from dept_accidents

	 group by deptno

	having count(*) >= 3

	 DEPTNO

	 20

The DELETE will then delete any employees in the departments returned by the subquery (in this case, only in department 20).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-2]

Recipe 4.2. Inserting Default Values

[bookmark: sqlckbk-CHP-4-SECT-2.1]

Problem

A table can be defined to take default values for specific columns. You want to insert a row of default values without having to specify those values. Consider the following table:

	create table D (id integer default 0)

You want to insert zero without explicitly specifying zero in the values list of an INSERT statement. You want to explicitly insert the default, whatever that default is.

[bookmark: sqlckbk-CHP-4-SECT-2.2]

Solution

All brands support use of the [bookmark: idx-CHP-4-0170]DEFAULT keyword as a way of explicitly specifying the default value for a column. Some brands provide additional ways to solve the problem.

The following example illustrates the use of the [bookmark: idx-CHP-4-0171]DEFAULT keyword:

	insert into D values (default)

You may also explicitly specify the column name, which you'll need to do anytime you are not inserting into all columns of a table:

	insert into D (id) values (default)

Oracle8i Database and prior versions do not support the DEFAULT keyword. Prior to Oracle9i Database, there was no way to explicitly insert a default column value.

MySQL allows you to specify an empty values list if all columns have a default value defined:

	insert into D values ()

In this case, all columns will be set to their default values.

PostgreSQL and SQL Server support a [bookmark: idx-CHP-4-0172]DEFAULT VALUES clause:

	insert into D default values

The DEFAULT VALUES clause causes all columns to take on their default values.

[bookmark: sqlckbk-CHP-4-SECT-2.3]

Discussion

The DEFAULT keyword in the values list will insert the value that was specified as the default for a particular column during table creation. The keyword is available for all DBMSs.

MySQL, PostgreSQL, and SQL Server users have another option available if all columns in the table are defined with a default value (as table D is in this case). You may use an empty VALUES list (MySQL) or specify the DEFAULT VALUES clause (PostgreSQL and SQL Server) to create a new row with all default values; otherwise, you need to specify DEFAULT for each column in the table.

For tables with a mix of default and non-default columns, inserting default values for a column is as easy as excluding the column from the insert list; you do not need to use the DEFAULT keyword. Say that table D had an additional column that was not defined with a default value:

	create table D (id integer default 0, foo varchar(10))

You can insert a default for ID by listing only FOO in the insert list:

	insert into D (name) values ('Bar')

This statement will result in a row in which ID is 0 and FOO is "Bar". ID takes on its default value because no other value is specified.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-3]

Recipe 4.3. Overriding a Default Value with NULL

[bookmark: idx-CHP-4-0173]

[bookmark: sqlckbk-CHP-4-SECT-3.1]

Problem

You are inserting into a column having a default value, and you wish to override that default value by setting the column to NULL. Consider the following table:

	create table D (id integer default 0, foo VARCHAR(10))

You wish to insert a row with a NULL value for ID.

[bookmark: sqlckbk-CHP-4-SECT-3.2]

Solution

You can explicitly specify NULL in your values list:

	insert into d (id, foo) values (null, 'Brighten')

[bookmark: sqlckbk-CHP-4-SECT-3.3]

Discussion

Not everyone realizes that you can explicitly specify NULL in the values list of an [bookmark: idx-CHP-4-0174]INSERT statement. Typically, when you do not wish to specify a value for a column, you leave that column out of your column and values lists:

	insert into d (foo) values ('Brighten')

Here, no value for ID is specified. Many would expect the column to taken on the null value, but, alas, a default value was specified at table creation time, so the result of the preceding INSERT is that ID takes on the value 0 (the default). By specifying NULL as the value for a column, you can set the column to NULL despite any default value.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-4]

Recipe 4.4. Copying Rows from One Table into Another

[bookmark: idx-CHP-4-0175]

[bookmark: sqlckbk-CHP-4-SECT-4.1]

Problem

You want to copy rows from one table to another by using a query. The query may be complex or simple, but ultimately you want the result to be inserted into another table. For example, you want to copy rows from the DEPT table to the DEPT_EAST table. The DEPT_EAST table has already been created with the same structure (same columns and data types) as DEPT and is currently empty.

[bookmark: sqlckbk-CHP-4-SECT-4.2]

Solution

Use the INSERT statement followed by a query to produce the rows you want:

	1 insert into dept_east (deptno,dname,loc)

	2 select deptno,dname,loc

	3 from dept

	4 where loc in ('NEW YORK','BOSTON')

[bookmark: sqlckbk-CHP-4-SECT-4.3]

Discussion

Simply follow the INSERT statement with a query that returns the desired rows. If you want to copy all rows from the source table, exclude the WHERE clause from the query. Like a regular insert, you do not have to explicitly specify which columns you are inserting into. But if you do not specify your target columns, you must insert into all of the table's columns, [bookmark: idx-CHP-4-0176]and you must be mindful of the order of the values in the SELECT list as described earlier in "Inserting a New Record."

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-5]

Recipe 4.5. Copying a Table Definition

[bookmark: sqlckbk-CHP-4-SECT-5.1]

Problem

You want to create a new table having the same set of columns as an existing table. For example, you want to create a copy of the DEPT table and call it DEPT_2. You do not want to copy the rows, only the column structure of the table.

[bookmark: sqlckbk-CHP-4-SECT-5.2]

Solution

[bookmark: sqlckbk-CHP-4-SECT-5.2.1]

DB2

Use the LIKE clause with the [bookmark: idx-CHP-4-0177]CREATE TABLE command:

	create table dept_2 like dept

[bookmark: sqlckbk-CHP-4-SECT-5.2.2]

Oracle, MySQL, and PostgreSQL

Use the CREATE TABLE command with a subquery that returns no rows:

	1 create table dept_2

	2 as

	3 select *

	4 from dept

	5 where 1 = 0

[bookmark: sqlckbk-CHP-4-SECT-5.2.3]

SQL Server

Use the INTO clause with a subquery that returns no rows:

	1 select *

	2 into dept_2

	3 from dept

	4 where 1 = 0

[bookmark: sqlckbk-CHP-4-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-4-SECT-5.3.1]

DB2

DB2's [bookmark: idx-CHP-4-0178]CREATE TABLE…LIKE command allows you to easily use one table as the pattern for creating another. Simply specify your pattern table's name following the LIKE keyword.

[bookmark: sqlckbk-CHP-4-SECT-5.3.2]

Oracle, MySQL, and PostgreSQL

When using Create Table As Select (CTAS), all rows from your query will be used to populate the new table you are creating unless you specify a false condition in the WHERE clause. In the solution provided, the expression "1 = 0" in the WHERE clause of the query causes no rows to be returned. Thus the result of the CTAS statement is an empty table based on the columns in the SELECT clause of the query.

[bookmark: sqlckbk-CHP-4-SECT-5.3.3]

SQL Server

When using INTO to copy a table, all rows from your query will be used to populate the new table you are creating unless you specify a false condition in the WHERE clause of your query. In the solution provided, the expression "1 = 0" in the predicate of the query causes no rows to be returned. The result is an empty table based on the columns in the SELECT clause of the query.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-6]

Recipe 4.6. Inserting into Multiple Tables at Once

[bookmark: idx-CHP-4-0179]

[bookmark: idx-CHP-4-0180]

[bookmark: sqlckbk-CHP-4-SECT-6.1]

Problem

You want to take rows returned by a query and insert those rows into multiple target tables. For example, you want to insert rows from DEPT into tables DEPT_EAST, DEPT_WEST, and DEPT_MID. All three tables have the same structure (same columns and data types) as DEPT and are currently empty.

[bookmark: sqlckbk-CHP-4-SECT-6.2]

Solution

The solution is to insert the result of a query into the target tables. The difference from "Copying Rows from One Table into Another" is that for this problem you have multiple target tables.

[bookmark: sqlckbk-CHP-4-SECT-6.2.1]

Oracle

Use either the [bookmark: idx-CHP-4-0181]INSERT ALL or [bookmark: idx-CHP-4-0182]INSERT FIRST statement. Both share the same syntax except for the choice between the ALL and FIRST keywords. The following statement uses INSERT ALL to cause all possible target tables to be considered:

	1 insert all

	2 when loc in ('NEW YORK','BOSTON') then

	3 [bookmark: idx-CHP-4-0183]into dept_east (deptno,dname,loc) values (deptno,dname,loc)

	4 when loc = 'CHICAGO' then

	5 into dept_mid (deptno,dname,loc) values (deptno,dname,loc)

	6 else

	7 into dept_west (deptno,dname,loc) values (deptno,dname,loc)

	8 select deptno,dname,loc

	9 from dept

[bookmark: sqlckbk-CHP-4-SECT-6.2.2]

DB2

Insert into an inline view that performs a UNION ALL on the tables to be inserted. You must also be sure to place constraints on the tables that will ensure each row goes into the correct table:

	create table dept_east

	(deptno integer,

	 dname varchar(10),

	 loc varchar(10) check (loc in ('NEW YORK','BOSTON')))

	create table dept_mid

	(deptno integer,

	 dname varchar(10),

	 loc varchar(10) check (loc = 'CHICAGO'))

	create table dept_west

	(deptno integer,

	 dname varchar(10),

	 loc varchar(10) check (loc = 'DALLAS'))

	1 insert into (

	2 select * from dept_west union all

	3 select * from dept_east union all

	4 select * from dept_mid

	5) select * from dept

[bookmark: sqlckbk-CHP-4-SECT-6.2.3]

MySQL, PostgreSQL, and SQL Server

As of the time of this writing, these vendors do not support multi-table inserts.

[bookmark: sqlckbk-CHP-4-SECT-6.3]

Discussion

[bookmark: sqlckbk-CHP-4-SECT-6.3.1]

Oracle

Oracle's multi-table insert uses WHEN-THEN-ELSE clauses to evaluate the rows from the nested SELECT and insert them accordingly. In this recipe's example, INSERT ALL and INSERT FIRST would produce the same result, but there is a difference between the two. INSERT FIRST will break out of the WHEN-THEN-ELSE evaluation as soon as it encounters a condition evaluating to true; INSERT ALL will evaluate all conditions even if prior tests evaluate to true. Thus, you can use INSERT ALL to insert the same row [bookmark: idx-CHP-4-0184]into more than one table.

[bookmark: sqlckbk-CHP-4-SECT-6.3.2]

DB2

My DB2 solution is a bit of a hack. It requires that the tables to be inserted into have constraints defined to ensure that each row evaluated from the subquery will go into the correct table. The technique is to insert into a view that is defined as the UNION ALL of the tables. If the check constraints are not unique amongst the tables in the INSERT (i.e., multiple tables have the same check constraint), the INSERT statement will not know where to put the rows and it will fail.

[bookmark: sqlckbk-CHP-4-SECT-6.3.3]

MySQL, PostgreSQL, and SQL Server

As of the time of this writing, only Oracle and DB2 currently provide mechanisms to insert rows returned by a query into one or more of several tables within the same statement.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-7]

Recipe 4.7. Blocking Inserts to Certain Columns

[bookmark: idx-CHP-4-0185]

[bookmark: sqlckbk-CHP-4-SECT-7.1]

Problem

You wish to prevent users, or an errant software application, from [bookmark: idx-CHP-4-0186]inserting values into certain table columns. For example, you wish to allow a program to insert into EMP, but only into the EMPNO, ENAME, and JOB columns.

[bookmark: sqlckbk-CHP-4-SECT-7.2]

Solution

Create a view on the table exposing only those columns you wish to expose. Then force all inserts to go through that view.

For example, to create a view exposing the three columns in EMP:

	create view new_emps as

	select empno, ename, job

	 from emp

Grant access to this view to those users and programs allowed to populate only the three fields in the view. Do not grant those users insert access to the EMP table. Users may then create new EMP records by inserting into the NEW_EMPS view, but they will not be able to provide values for columns other than the three that are specified in the view definition.

[bookmark: sqlckbk-CHP-4-SECT-7.3]

Discussion

When you insert into a simple view such as in the solution, your database server will translate that insert into the underlying table. For example, the following insert:

	insert into new_emps

	 (empno ename, job)

	 values (1, 'Jonathan', 'Editor')

will be translated behind the scenes into:

	insert into emp

	 (empno ename, job)

	 values (1, 'Jonathan', 'Editor')

It is also possible, but perhaps less useful, to insert into an inline view (currently only supported by Oracle):

	insert into

	 (select empno, ename, job

	 from emp)

	values (1, 'Jonathan', 'Editor')

View insertion is a complex topic. The rules become very complicated very quickly for all but the simplest of views. If you plan to make use of the ability to insert into views, it is imperative that you consult and fully understand your vendor documentation on the matter.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-8]

Recipe 4.8. Modifying Records in a Table

[bookmark: sqlckbk-CHP-4-SECT-8.1]

Problem

You want to modify values for some or all [bookmark: idx-CHP-4-0187]rows in a table. For example, you might want to increase the salaries of everyone in department 20 by 10%. The following result set shows the DEPTNO, ENAME, and SAL for employees in that department:

	

	select deptno,ename,sal

	 from emp

	 where deptno = 20

	 order by 1,3

	DEPTNO ENAME SAL

	------ ---------- ----------

	 20 SMITH 800

	 20 ADAMS 1100

	 20 JONES 2975

	 20 SCOTT 3000

	 20 FORD 3000

You want to bump all the SAL values by 10%.

[bookmark: sqlckbk-CHP-4-SECT-8.2]

Solution

Use the [bookmark: idx-CHP-4-0188]UPDATE statement to modify existing rows in a database table. For example:

	1 update emp

	2 set sal = sal*1.10

	3 where deptno = 20

[bookmark: sqlckbk-CHP-4-SECT-8.3]

Discussion

Use the UPDATE statement along with a WHERE clause to specify which rows to update; if you exclude a WHERE clause, then all rows are updated. The expression SAL*1.10 in this solution returns the salary increased by 10%.

When preparing for a mass update, you may wish to preview the results. You can do that by issuing a SELECT statement that includes the expressions you plan to put into your SET clauses. The following SELECT shows the result of a 10% salary increase:

	

	select deptno,

	 ename,

	 sal as orig_sal,

	 sal*.10 as amt_to_add,

	 sal*1.10 as new_sal

	 from emp

	 where deptno=20

	 order by 1,5

	DEPTNO ENAME ORIG_SAL AMT_TO_ADD NEW_SAL

	------ ------ -------- ---------- -------

	 20 SMITH 800 80 880

	 20 ADAMS 1100 110 1210

	 20 JONES 2975 298 3273

	 20 SCOTT 3000 300 3300

	 20 FORD 3000 300 3300

The salary increase is broken down into two columns: one to show the increase over the old salary, and the other to show the new salary.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4-SECT-9]

Recipe 4.9. Updating when Corresponding Rows Exist

[bookmark: idx-CHP-4-0189]

[bookmark: sqlckbk-CHP-4-SECT-9.1]

Problem

You want to update rows in one table when corresponding rows exist in another. For example, if an employee appears in table EMP_BONUS, you want to increase that employee's salary (in table EMP) by 20 percent. The following result set represents the data currently in table EMP_BONUS:

	

	select empno, ename

	 from emp_bonus

	 EMPNO ENAME

	---------- ---------

	 7369 SMITH

	 7900 JAMES

	 7934 MILLER

[bookmark: sqlckbk-CHP-4-SECT-9.2]

Solution

Use a subquery in your [bookmark: idx-CHP-4-0190]UPDATE statement's WHERE clause to find employees in table EMP that are also in table EMP_BONUS. Your UPDATE will then act only on those rows, enabling you to increase their salary by 20 percent:

	1 update emp

	2 set sal=sal*1.20

	3 where empno in (select empno from emp_bonus)

[bookmark: sqlckbk-CHP-4-SECT-9.3]

Discussion

The results from the subquery represent the rows that will be updated in table EMP. The IN predicate tests values of EMPNO from the EMP table to see whether they are in the list of EMPNO values returned by the subquery. When they are, the corresponding SAL values are updated.

Alternatively, you can use EXISTS instead of IN:

	update emp

	 set sal = sal*1.20

	 where exists (select null

	 from emp_bonus

	 where emp.empno=emp_bonus.empno)

You may be surprised to see NULL in the SELECT list of the EXISTS subquery. Fear not, that NULL does not have an adverse effect on the update. In my opinion it increases readability as it reinforces the fact that, unlike the solution using a subquery with an IN operator, what will drive the update (i.e., which rows will be updated) will be controlled by the WHERE clause of the subquery, not the values returned as a result of the subquery's SELECT list.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-4]

Chapter 4. Inserting, Updating, Deleting

The past few chapters have focused on basic query techniques, all centered around the task of getting data out of a database. This chapter turns the tables, and focuses on the following three topic areas:

			Inserting new records into your database

			Updating existing records

			Deleting records that you no longer want

For ease in finding them when you need them, recipes in this chapter have been grouped by topic: all the insertion recipes come first, followed by the update recipes, and finally recipes for deleting data.

Inserting is usually a straightforward task. It begins with the simple problem of inserting a single row. Many times, however, it is more efficient to use a set-based approach to create new rows. To that end, you'll also find techniques for inserting many rows at a time.

Likewise, updating and deleting start out as simple tasks. You can update one record, and you can delete one record. But you can also update whole sets of records at once, and in very powerful ways. And there are many handy ways to delete records. For example, you can delete rows in one table depending on whether or not they exist in another table.

SQL even has a way, a relatively new addition to the standard, by which you can insert, update, and delete all at once. That may not sound like too useful a thing now, but the [bookmark: idx-CHP-4-0165]MERGE statement represents a very powerful way to bring a database table into sync with an external source of data (such as a flat file feed from a remote system). Check out Section in this chapter for details.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-1]

Recipe 5.1. Listing Tables in a Schema

[bookmark: idx-CHP-5-0215]

[bookmark: sqlckbk-CHP-5-SECT-1.1]

Problem

You want to see a list all the tables you've created in a given schema.

[bookmark: sqlckbk-CHP-5-SECT-1.2]

Solution

The solutions that follow all assume you are working with the SMEAGOL schema. The basic approach to a solution is the same for all RDBMSs: you query a system table (or view) containing a row for each table in the database.

[bookmark: sqlckbk-CHP-5-SECT-1.2.1]

DB2

Query SYSCAT.TABLES:

	1 select tabname

	2 from syscat.tables

	3 where tabschema = 'SMEAGOL'

[bookmark: sqlckbk-CHP-5-SECT-1.2.2]

Oracle

Query SYS.ALL_TABLES:

	select table_name

	 from all_tables

	 where owner = 'SMEAGOL'

[bookmark: sqlckbk-CHP-5-SECT-1.2.3]

PostgreSQL, MySQL, and SQL Server

Query [bookmark: idx-CHP-5-0216]INFORMATION_SCHEMA.TABLES:

	1 select table_name

	2 from information_schema.tables

	3 where table_schema = 'SMEAGOL'

[bookmark: sqlckbk-CHP-5-SECT-1.3]

Discussion

In a delightfully circular manner, databases expose information about themselves through the very mechanisms that you create for your own applications: tables and views. Oracle, for example, maintains an extensive catalog of system views, such as ALL_TABLES, that you can query for information about tables, indexes, grants, and any other database object.

						[image:]			

Oracle's catalog views are just that, views. They are based on an underlying set of tables that contain the information in a very user-unfriendly form. The views put a very usable face on Oracle's catalog data.

Oracle's system views and DB2's system tables are each vendor-specific. PostgreSQL, MySQL, and SQL Server, on the other hand, support something called the information schema, which is a set of views defined by the ISO SQL standard. That's why the same query can work for all three of those databases.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-2]

Recipe 5.2. Listing a Table's Columns

[bookmark: sqlckbk-CHP-5-SECT-2.1]

Problem

You want to list the [bookmark: idx-CHP-5-0217]columns in a table, along with their data types, and their position in the table they are in.

[bookmark: sqlckbk-CHP-5-SECT-2.2]

Solution

The following solutions assume that you wish to list columns, their data types, and their numeric position in the table named EMP in the schema SMEAGOL.

[bookmark: sqlckbk-CHP-5-SECT-2.2.1]

DB2

Query SYSCAT.COLUMNS:

	[bookmark: idx-CHP-5-0218]

	1 select colname, typename, colno

	2 from syscat.columns

	3 where tabname = 'EMP'

	4 and tabschema = 'SMEAGOL'

[bookmark: sqlckbk-CHP-5-SECT-2.2.2]

Oracle

Query ALL_TAB_COLUMNS:

	1 select column_name, data_type, column_id

	2 from all_tab_columns

	3 where owner = 'SMEAGOL'

	4 and table_name = 'EMP'

[bookmark: sqlckbk-CHP-5-SECT-2.2.3]

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.COLUMNS:

	1 select column_name, data_type, ordinal_position

	2 from information_schema.columns

	3 where table_schema = 'SMEAGOL'

	4 and table_name = 'EMP'

[bookmark: sqlckbk-CHP-5-SECT-2.3]

Discussion

Each vendor provides ways for you to get detailed information about your column data. In the examples above only the column name, data type, and position are returned. Additional useful items of information include length, nullability, and default values.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-3]

Recipe 5.3. Listing Indexed Columns for a Table

[bookmark: idx-CHP-5-0219]

[bookmark: sqlckbk-CHP-5-SECT-3.1]

Problem

You want list indexes, their columns, and the column position (if available) in the index for a given table.

[bookmark: sqlckbk-CHP-5-SECT-3.2]

Solution

The vendor-specific solutions that follow all assume that you are listing indexes for the table EMP in the SMEAGOL schema.

[bookmark: sqlckbk-CHP-5-SECT-3.2.1]

DB2

Query SYSCAT.INDEXES:

	1 select a.tabname, b.indname, b.colname, b.colseq

	2 from syscat.indexes a,

	3 syscat.indexcoluse b

	3 where a.tabname = 'EMP'

	4 and a.tabschema = 'SMEAGOL'

	5 and a.indschema = b.indschema

	6 and a.indname = b.indname

[bookmark: sqlckbk-CHP-5-SECT-3.2.2]

Oracle

Query SYS.ALL_IND_COLUMNS:

	select table_name, index_name, column_name, column_position

	 from sys.all_ind_columns

	 where table_name = 'EMP'

	 and table_owner = 'SMEAGOL'

[bookmark: sqlckbk-CHP-5-SECT-3.2.3]

PostgreSQL

Query PG_CATALOG.PG_INDEXES and INFORMATION_SCHEMA.COLUMNS:

	1 select a.tablename,a.indexname,b.column_name

	2 from pg_catalog.pg_indexes a,

	3 information_schema.columns b

	4 where a.schemaname = 'SMEAGOL'

	5 and a.tablename = b.table_name

[bookmark: sqlckbk-CHP-5-SECT-3.2.4]

MySQL

Use the SHOW INDEX command:

	show index from emp

[bookmark: sqlckbk-CHP-5-SECT-3.2.5]

SQL Server

Query SYS.TABLES, SYS.INDEXES, SYS.INDEX_COLUMNS, and SYS.COLUMNS:

	 1 select a.name table_name,

	 2 b.name index_name,

	 3 d.name column_name,

	 4 c.index_column_id

	 5 from sys.tables a,

	 6 sys.indexes b,

	 7 sys.index_columns c,

	 8 sys.columns d

	 9 where a.object_id = b.object_id

	10 and b.object_id = c.object_id

	11 and b.index_id = c.index_id

	12 and c.object_id = d.object_id

	13 and c.column_id = d.column_id

	14 and a.name = 'EMP'

[bookmark: sqlckbk-CHP-5-SECT-3.3]

Discussion

When it comes to queries, it's important to know what columns are/aren't indexed. Indexes can provide good performance for queries against columns that are frequently used in filters and that are fairly selective. Indexes are also useful when joining between tables. By knowing what columns are indexed, you are already one step ahead of performance problems if they should occur. Additionally, you might want to find information about the indexes themselves: how many levels deep they are, how many distinct keys, how many leaf blocks, and so forth. Such information is also available from the views/tables queried in this recipe's solutions.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-4]

Recipe 5.4. Listing Constraints on a Table

[bookmark: idx-CHP-5-0220]

[bookmark: idx-CHP-5-0221]

[bookmark: sqlckbk-CHP-5-SECT-4.1]

Problem

You want to list the constraints defined for a table in some schema and the columns they are defined on. For example, you want to find the constraints and the columns they are on for table EMP.

[bookmark: sqlckbk-CHP-5-SECT-4.2]

Solution

[bookmark: sqlckbk-CHP-5-SECT-4.2.1]

DB2

Query SYSCAT.TABCONST and SYSCAT.COLUMNS:

	1 select a.tabname, a.constname, b.colname, a.type

	2 from syscat.tabconst a,

	3 syscat.columns b

	4 where a.tabname = 'EMP'

	5 and a.tabschema = 'SMEAGOL'

	6 and a.tabname = b.tabname

	7 and a.tabschema = b.tabschema

[bookmark: sqlckbk-CHP-5-SECT-4.2.2]

Oracle

Query SYS.ALL_CONSTRAINTS and SYS.ALL_CONS_COLUMNS:

	 1 select a.table_name,

	 2 a.constraint_name,

	 3 b.column_name,

	 4 a.constraint_type

	 5 from all_constraints a,

	 6 all_cons_columns b

	 7 where a.table_name = 'EMP'

	 8 and a.owner = 'SMEAGOL'

	 9 and a.table_name = b.table_name

	10 and a.owner = b.owner

	11 and a.constraint_name = b.constraint_name

[bookmark: sqlckbk-CHP-5-SECT-4.2.3]

PostgreSQL, MySQL, and SQL Server

Query INFORMATION_SCHEMA.TABLE_CONSTRAINTS and INFORMATION_ SCHEMA.KEY_COLUMN_USAGE:

	 1 select a.table_name,

	 2 a.constraint_name,

	 3 b.column_name,

	 4 a.constraint_type

	 5 from information_schema.table_constraints a,

	 6 information_schema.key_column_usage b

	 7 where a.table_name = 'EMP'

	 8 and a.table_schema = 'SMEAGOL'

	 9 and a.table_name = b.table_name

	10 and a.table_schema = b.table_schema

	11 and a.constraint_name = b.constraint_name

[bookmark: sqlckbk-CHP-5-SECT-4.3]

Discussion

Constraints are such a critical part of relational databases that it should go without saying why you need to know what constraints are on your tables. Listing the constraints on tables is useful for a variety of reasons: you may want to find tables missing a primary key, you may want to find which columns should be [bookmark: idx-CHP-5-0222]foreign keys but are not (i.e., child tables have data different from the parent tables and you want to know how that happened), or you may want to know about check constraints (Are columns nullable? Do they have to satisfy a specific condition? etc.).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-5]

Recipe 5.5. Listing Foreign Keys Without Corresponding Indexes

[bookmark: idx-CHP-5-0223]

[bookmark: sqlckbk-CHP-5-SECT-5.1]

Problem

You want to list tables that have foreign key columns that are not indexed. For example, you want to determine if the [bookmark: idx-CHP-5-0224]foreign keys on table EMP are indexed.

[bookmark: sqlckbk-CHP-5-SECT-5.2]

Solution

[bookmark: sqlckbk-CHP-5-SECT-5.2.1]

DB2

Query SYSCAT.TABCONST, SYSCAT.KEYCOLUSE, SYSCAT.INDEXES, and SYSCAT.INDEXCOLUSE:

	 1 select fkeys.tabname,

	 2 fkeys.constname,

	 3 fkeys.colname,

	 4 ind_cols.indname

	 5 from (

	 6 select a.tabschema, a.tabname, a.constname, b.colname

	 7 from syscat.tabconst a,

	 8 syscat.keycoluse b

	 9 where a.tabname = 'EMP'

	10 and a.tabschema = 'SMEAGOL'

	11 and a.type = 'F'

	12 and a.tabname = b.tabname

	13 and a.tabschema = b.tabschema

	14) fkeys

	15 left join

	16 (

	17 select a.tabschema,

	18 a.tabname,

	19 a.indname,

	20 b.colname

	21 from syscat.indexes a,

	22 syscat.indexcoluse b

	23 where a.indschema = b.indschema

	24 and a.indname = b.indname

	25) ind_cols

	26 on ([bookmark: idx-CHP-5-0225]fkeys.tabschema = ind_cols.tabschema

	27 and fkeys.tabname = ind_cols.tabname

	28 and fkeys.colname = ind_cols.colname)

	29 where ind_cols.indname is null

[bookmark: sqlckbk-CHP-5-SECT-5.2.2]

Oracle

Query SYS.ALL_CONS_COLUMNS, SYS.ALL_CONSTRAINTS, and SYS.ALL_ IND_COLUMNS:

	 1 select a.table_name,

	 2 a.constraint_name,

	 3 a.column_name,

	 4 c.index_name

	 5 from all_cons_columns a,

	 6 all_constraints b,

	 7 all_ind_columns c

	 8 where a.table_name = 'EMP'

	 9 and a.owner = 'SMEAGOL'

	10 and b.constraint_type = 'R'

	11 and a.owner = b.owner

	12 and a.table_name = b.table_name

	13 and a.constraint_name = b.constraint_name

	14 and a.owner = c.table_owner (+)

	15 and a.table_name = c.table_name (+)

	16 and a.column_name = c.column_name (+)

	17 and c.index_name is null

[bookmark: sqlckbk-CHP-5-SECT-5.2.3]

PostgreSQL

Query INFORMATION_SCHEMA.KEY_COLUMN_USAGE, INFORMATION_ SCHEMA.REFERENTIAL_CONSTRAINTS, INFORMATION_SCHEMA.COL-UMNS, and PG_CATALOG.PG_INDEXES:

	 1 select fkeys.table_name,

	 2 fkeys.constraint_name,

	 3 fkeys.column_name,

	 4 ind_cols.indexname

	 5 from (

	 6 select a.constraint_schema,

	 7 a.table_name,

	 8 a.constraint_name,

	 9 a.column_name

	10 from information_schema.key_column_usage a,

	11 information_schema.referential_constraints b

	12 where a.constraint_name = b.constraint_name

	13 and a.constraint_schema = b.constraint_schema

	14 and a.constraint_schema = 'SMEAGOL'

	15 and a.table_name = 'EMP'

	16) fkeys

	17 left join

	18 (

	19 select a.schemaname, a.tablename, a.indexname, b.column_name

	20 from pg_catalog.pg_indexes a,

	21 information_schema.columns b

	22 where a.tablename = b.table_name

	23 and a.schemaname = b.table_schema

	24) ind_cols

	25 on (fkeys.constraint_schema = ind_cols.schemaname

	26 and fkeys.table_name = ind_cols.tablename

	27 and fkeys.column_name = ind_cols.column_name)

	28 where ind_cols.indexname is null

[bookmark: sqlckbk-CHP-5-SECT-5.2.4]

MySQL

You can use the SHOW INDEX command to retrieve index information such as index name, columns in the index, and ordinal position of the columns in the index. Additionally, you can query INFORMATION_SCHEMA.KEY_COLUMN_USAGE to list the [bookmark: idx-CHP-5-0226]foreign keys for a given table. In MySQL 5, [bookmark: idx-CHP-5-0227]foreign keys are said to be indexed automatically, but can in fact be dropped. To determine whether a foreign key column's index has been dropped you can execute SHOW INDEX for a particular table and compare the output with that of INFORMATION_SCHEMA.KEY_ COLUMN_USAGE.COLUMN_NAME for the same table. If the COLUMN_NAME is listed in KEY_COLUMN_USAGE but is not returned by SHOW INDEX, you know that column is not indexed.

[bookmark: sqlckbk-CHP-5-SECT-5.2.5]

SQL Server

Query SYS.TABLES, SYS.FOREIGN_KEYS, SYS.COLUMNS, SYS.INDEXES, and SYS.INDEX_COLUMNS:

	 1 select fkeys.table_name,

	 2 fkeys.constraint_name,

	 3 fkeys.column_name,

	 4 ind_cols.index_name

	 5 from (

	 6 select a.object_id,

	 7 d.column_id,

	 8 a.name table_name,

	 9 b.name constraint_name,

	10 d.name column_name

	11 from sys.tables a

	12 join

	13 sys.foreign_keys b

	14 on (a.name = 'EMP'

	15 and a.object_id = b.parent_object_id

	16)

	17 join

	18 sys.[bookmark: idx-CHP-5-0228]foreign_key_columns c

	19 on (b.object_id = c.constraint_object_id)

	20 join

	21 sys.columns d

	22 on (c.constraint_column_id = d.column_id

	23 and a.object_id = d.object_id

	24)

	25) fkeys

	26 left join

	27 (

	28 select a.name index_name,

	29 b.object_id,

	30 b.column_id

	31 from sys.indexes a,

	32 sys.index_columns b

	33 where a.index_id = b.index_id

	34) ind_cols

	35 on (fkeys.object_id = ind_cols.object_id

	36 and fkeys.column_id = ind_cols.column_id)

	37 where ind_cols.index_name is null

[bookmark: sqlckbk-CHP-5-SECT-5.3]

Discussion

Each vendor uses its own locking mechanism when modifying rows. In cases where there is a parent-child relationship enforced via [bookmark: idx-CHP-5-0229]foreign key, having indexes on the child column(s) can reducing locking (see your specific RDBMS documentation for details). In other cases, it is common that a child table is joined to a parent table on the foreign key column, so an index may help improve performance in that scenario as well.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-6]

Recipe 5.6. Using SQL to Generate SQL

[bookmark: idx-CHP-5-0230]

[bookmark: sqlckbk-CHP-5-SECT-6.1]

Problem

You want to create [bookmark: idx-CHP-5-0231]dynamic SQL statements, perhaps to automate maintenance tasks. You want to accomplish three tasks in particular: count the number of rows in your tables, disable foreign key constraints defined on your tables, and generate insert [bookmark: idx-CHP-5-0232]scripts from the data in your tables.

[bookmark: sqlckbk-CHP-5-SECT-6.2]

Solution

The concept is to use strings to build SQL statements, and the values that need to be filled in (such as the object name the command acts upon) will be supplied by data from the tables you are selecting from. Keep in mind, the queries only generate the statements; you must then run these statements via script, manually, or however you execute your SQL statements. The examples below are queries that would work on an Oracle system. For other RDBMSs the technique is exactly the same, the only difference being things like the names of the data dictionary tables and date formatting. The output shown from the queries below are a portion of the rows returned from an instance of Oracle on my laptop. Your result sets will of course vary.

	/* generate SQL to count all the rows in all your tables */

	

	select 'select count(*) from '||table_name||';' cnts

	 from user_tables;

	CNTS

	--

	select count(*) from ANT;

	select count(*) from BONUS;

	select count(*) from DEMO1;

	select count(*) from DEMO2;

	select count(*) from DEPT;

	select count(*) from DUMMY;

	select count(*) from EMP;

	select count(*) from EMP_SALES;

	select count(*) from EMP_SCORE;

	select count(*) from PROFESSOR;

	select count(*) from T;

	select count(*) from T1;

	select count(*) from T2;

	select count(*) from T3;

	select count(*) from TEACH;

	select count(*) from TEST;

	select count(*) from TRX_LOG;

	select count(*) from X;

	/* disable foreign keys from all tables */

	

	select 'alter table '||table_name||

	 ' disable constraint '||constraint_name||';' cons

	 from user_constraints

	 where constraint_type = 'R';

	CONS

	--

	alter table ANT disable constraint ANT_FK;

	alter table BONUS disable constraint BONUS_FK;

	alter table DEMO1 disable constraint DEMO1_FK;

	alter table DEMO2 disable constraint DEMO2_FK;

	alter table DEPT disable constraint DEPT_FK;

	alter table DUMMY disable constraint DUMMY_FK;

	alter table EMP disable constraint EMP_FK;

	alter table EMP_SALES disable constraint EMP_SALES_FK;

	alter table EMP_SCORE disable constraint EMP_SCORE_FK;

	alter table PROFESSOR disable constraint PROFESSOR_FK;

	/* generate an insert script from some columns in table EMP */

	

	select 'insert into emp(empno,ename,hiredate) '||chr(10)||

	 'values('||empno||','||''''||ename

	 ||''',to_date('||''''||hiredate||'''));' inserts

	 from emp

	 where deptno = 10;

	INSERTS

	--

	insert into emp(empno,ename,hiredate)

	values(7782,'CLARK',to_date('09-JUN-1981 00:00:00'));

	insert into emp(empno,ename,hiredate)

	values(7839,'KING',to_date('17-NOV-1981 00:00:00'));

	insert into emp(empno,ename,hiredate)

	values(7934,'MILLER',to_date('23-JAN-1982 00:00:00'));

[bookmark: sqlckbk-CHP-5-SECT-6.3]

Discussion

Using SQL to generate SQL is particularly useful for creating portable scripts such as you might use when testing on multiple environments. Additionally, as can be seen by the examples above, using SQL to generate SQL is useful for performing batch maintenance, and for easily finding out information about multiple objects in one go. Generating SQL with SQL is an extremely simple operation, and the more you experiment with it the easier it will become. The examples provided should give you a nice base on how to build your own "dynamic" SQL scripts because, quite frankly, there's not much to it. Work on it and you'll get it.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5-SECT-7]

Recipe 5.7. Describing the Data Dictionary Views in an Oracle Database

[bookmark: idx-CHP-5-0233]

[bookmark: sqlckbk-CHP-5-SECT-7.1]

Problem

You are using Oracle. You can't remember what [bookmark: idx-CHP-5-0234]data dictionary views are available to you, nor can you remember their column definitions. Worse yet, you do not have convenient access to vendor documentation.

[bookmark: sqlckbk-CHP-5-SECT-7.2]

Solution

This is an Oracle-specific recipe. Oracle not only maintains a robust set of data dictionary views, but there are even data dictionary views to document the data dictionary views. It's all so wonderfully circular.

Query the view named DICTIONARY to list data dictionary views and their purposes:

	select table_name, comments

	 from dictionary

	 order by table_name;

	TABLE_NAME COMMENTS

	------------------------------ --

	ALL_ALL_TABLES Description of all object and relational

	 tables accessible to the user

	ALL_APPLY Details about each apply process that

	 dequeues from the queue visible to the

	 current user

	…

Query DICT_COLUMNS to describe the columns in given a data dictionary view:

	select column_name, comments

	 from dict_columns

	 where table_name = 'ALL_TAB_COLUMNS';

	COLUMN_NAME COMMENTS

	------------------------------- --

	OWNER

	TABLE_NAME Table, view or cluster name

	COLUMN_NAME Column name

	DATA_TYPE Datatype of the column

	DATA_TYPE_MOD Datatype modifier of the column

	DATA_TYPE_OWNER Owner of the datatype of the column

	DATA_LENGTH Length of the column in bytes

	DATA_PRECISION Length: decimal digits (NUMBER) or binary

	 digits (FLOAT)

[bookmark: sqlckbk-CHP-5-SECT-7.3]

Discussion

Back in the day when Oracle's documentation set wasn't so freely available on the Web, it was incredibly convenient that Oracle made the DICTIONARY and DICT_ COLUMNS views available. Knowing just those two views, you could bootstrap to learning about all the other views, and from thence to learning about your entire database.

Even today, it's convenient to know about DICTIONARY and DICT_COLUMNS. Often, if you aren't quite certain which view describes a given object type, you can issue a wildcard query to find out. For example, to get a handle on what views might describe tables in your schema:

	select table_name, comments

	 from dictionary

	 where table_name LIKE '%TABLE%'

	 order by table_name;

This query returns all data dictionary view names that include the term "TABLE". This approach takes advantage of Oracle's fairly consistent data dictionary view naming conventions. Views describing tables are all likely to contain "TABLE" in their name. (Sometimes, as in the case of ALL_TAB_COLUMNS, TABLE is abbreviated TAB.)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-5]

Chapter 5. Metadata Queries

[bookmark: idx-CHP-5-0214]

This chapter presents recipes that allow you to find information about a given schema. For example, you may wish to know what tables you've created or which foreign keys are not indexed. All of the RDBMSs in this book provide tables and views for obtaining such data. The recipes in this chapter will get you started on gleaning information from those tables and views. There is, however, far more information available than the recipes in this chapter can show. Consult your RDBMSs documentation for the complete list of catalog or data dictionary tables/views.

						[image:]			

For purposes of demonstration, all the recipes in this chapter assume the schema name SMEAGOL.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-1]

Recipe 6.1. Walking a String

[bookmark: sqlckbk-CHP-6-SECT-1.1]

Problem

You want to traverse a string to return each character as a row, but SQL lacks a loop operation. For example, you want to display the ENAME "KING" from table EMP as four rows, where each row contains just characters from "KING".

[bookmark: sqlckbk-CHP-6-SECT-1.2]

Solution

Use a Cartesian product to generate the number of rows needed to return each character of a string on its own line. Then use your DBMS's built-in string parsing function to extract the characters you are interested in (SQL Server users will use SUBSTRING instead of SUBSTR):

	

	1 select substr(e.ename,iter.pos,1) as C

	2 from (select ename from emp where ename = 'KING') e,

	3 (select id as pos from t10) iter

	4 where iter.pos <= length(e.ename)

	

	C

	-

	K

	I

	N

	G

[bookmark: sqlckbk-CHP-6-SECT-1.3]

Discussion

The key to iterating through a string's characters is to join against a table that has enough rows to produce the required number of iterations. This example uses table T10, which contains 10 rows (it has one column, ID, holding the values 1 through 10). The maximum number of rows that can be returned from this query is 10.

The following example shows the Cartesian product between E and ITER (i.e., between the specific name and the 10 rows from T10) without parsing ENAME:

	

	select ename, iter.pos

	 from (select ename from emp where ename = 'KING') e,

	 (select id as pos from t10) iter

	

	ENAME POS

	---------- ----------

	KING 1

	KING 2

	KING 3

	KING 4

	KING 5

	KING 6

	KING 7

	KING 8

	KING 9

	KING 10

The cardinality of inline view E is 1, and the cardinality of inline view ITER is 10. The Cartesian product is then 10 rows. Generating such a product is the first step in mimicking a loop in SQL.

						[image:]			

It is common practice to refer to table T10 as a "pivot" table.

The solution uses a WHERE clause to break out of the loop after four rows have been returned. To restrict the result set to the same number of rows as there are characters in the name, that WHERE clause specifies ITER.POS <= LENGTH(E. ENAME) as the condition:

	

	select ename, iter.pos

	 from (select ename from emp where ename = 'KING') e,

	 (select id as pos from t10) iter

	 where iter.pos <= length(e.ename)

	

	ENAME POS

	---------- ----------

	KING 1

	KING 2

	KING 3

	KING 4

	Now that you have one row for each character in E.ENAME, you can use ITER.POS as a parameter to SUBSTR, allowing you to navigate through the characters in the string. ITER.POS increments with each row, and thus each row can be made to return a successive character from E.ENAME. This is how the solution example works.

Depending on what you are trying to accomplish you may or may not need to generate a row for every single character in a string. The following query is an example of walking E.ENAME and exposing different portions (more than a single character) of the string:

	select substr(e.ename,iter.pos) a,

	 substr(e.ename,length(e.ename)-iter.pos+1) b

	 from (select ename from emp where ename = 'KING') e,

	 (select id pos from t10) iter

	 where iter.pos <= length(e.ename)

	A B

	---------- ------

	KING G

	ING NG

	NG ING

	G KING

The most common scenarios for the recipes in this chapter involve walking the whole string to generate a row for each character in the string, or walking the string such that the number of rows generated reflects the number of particular characters or delimiters that are present in the string.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-10]

Recipe 6.10. Creating a Delimited List from Table Rows

[bookmark: idx-CHP-6-0274]

[bookmark: sqlckbk-CHP-6-SECT-10.1]

Problem

You want to return table rows as values in a delimited list, perhaps delimited [bookmark: idx-CHP-6-0275]by commas, rather than in vertical columns as they normally appear. You want to convert a result set from this:

	DEPTNO EMPS

	------ ----------

	 10 CLARK

	 10 KING

	 10 MILLER

	 20 SMITH

	 20 ADAMS

	 20 FORD

	 20 SCOTT

	 20 JONES

	 30 ALLEN

	 30 BLAKE

	 30 MARTIN

	 30 JAMES

	 30 TURNER

	 30 WARD

to this:

	 DEPTNO EMPS

	------- ------------------------------------

	 10 CLARK,KING,MILLER

	 20 SMITH,JONES,SCOTT,ADAMS,FORD

	 30 ALLEN,WARD,MARTIN,BLAKE,TURNER,JAMES

[bookmark: sqlckbk-CHP-6-SECT-10.2]

Solution

Each DBMS requires a different approach to this problem. The key is to take advantage of the built-in functions provided by your DBMS. Understanding what is available to you will allow you to exploit your DBMS's functionality and come up with creative solutions for a problem that is typically not solved in SQL.

[bookmark: sqlckbk-CHP-6-SECT-10.2.1]

DB2

Use recursive WITH to build the [bookmark: idx-CHP-6-0276]delimited list:

	 1 with x (deptno, cnt, list, empno, len)

	 2 as (

	 3 select deptno, count(*) over (partition by deptno),

	 4 cast(ename as varchar(100)), empno, 1

	 5 from emp

	 6 union all

	 7 select x.deptno, x.cnt, x.list ||','|| e.ename, e.empno, x.len+1

	 8 from emp e, x

	 9 where e.deptno = x.deptno

	10 and e.empno > x. empno

	11)

	12 select deptno,list

	13 from x

	14 where len = cnt

[bookmark: sqlckbk-CHP-6-SECT-10.2.2]

MySQL

Use the built-in function GROUP_CONCAT to build the delimited list:

	1 select deptno,

	2 group_concat(ename order by empno separator, ',') as emps

	3 from emp

	4 group by deptno

[bookmark: sqlckbk-CHP-6-SECT-10.2.3]

Oracle

Use the built-in function SYS_CONNECT_BY_PATH to build the delimited list:

	 1 select deptno,

	 2 ltrim(sys_connect_by_path(ename,','),',') emps

	 3 from (

	 4 select deptno,

	 5 ename,

	 6 row_number() over

	 7 (partition by deptno order by empno) rn,

	 8 count(*) over

	 9 (partition by deptno) cnt

	10 from emp

	11)

	12 where level = cnt

	13 start with rn = 1

	14 connect by prior deptno = deptno and prior rn = rn-1

[bookmark: sqlckbk-CHP-6-SECT-10.2.4]

PostgreSQL

PostgreSQL does not offer a standard built-in function for creating a [bookmark: idx-CHP-6-0277]delimited list, so it is necessary to know how many values will be in the list in advance. Once you know the size of the largest list, you can determine the number of values to append to create your list by using standard transposition and concatenation:

	 1 select deptno,

	 2 rtrim(

	 3 max(case when pos=1 then emps else '' end)||

	 4 max(case when pos=2 then emps else '' end)||

	 5 max(case when pos=3 then emps else '' end)||

	 6 max(case when pos=4 then emps else '' end)||

	 7 max(case when pos=5 then emps else '' end)||

	 8 max(case when pos=6 then emps else '' end),','

	 9) as emps

	10 from (

	11 select a.deptno,

	12 a.ename||',' as emps,

	13 d.cnt,

	14 (select count(*) from emp b

	15 where a.deptno=b.deptno and b.empno <= a.empno) as pos

	16 from emp a,

	17 (select deptno, count(ename) as cnt

	18 from emp

	19 group by deptno) d

	20 where d.deptno=a.deptno

	21) x

	22 group by deptno

	23 order by 1

[bookmark: sqlckbk-CHP-6-SECT-10.2.5]

SQL Server

Use recursive WITH to build the delimited list:

	 1 with x (deptno, cnt, list, empno, len)

	 2 as (

	 3 select deptno, count(*) over (partition by deptno),

	 4 cast(ename as varchar(100)),

	 5 empno,

	 6 1

	 7 from emp

	 9 union all

	 9 select x.deptno, x.cnt,

	10 cast(x.list + ',' + e.ename as varchar(100)),

	11 e.empno, x.len+1

	12 from emp e, x

	13 where e.deptno = x.deptno

	14 and e.empno > x. empno

	15)

	16 select deptno,list

	17 from x

	18 where len = cnt

	19 order by 1

[bookmark: sqlckbk-CHP-6-SECT-10.3]

Discussion

Being able to create [bookmark: idx-CHP-6-0278]delimited lists in SQL is useful because it is a common requirement. Yet each DBMS offers a unique method for building such a list in SQL. There's very little commonality between the vendor-specific solutions; the techniques vary from using recursion, to hierarchal functions, to classic transposition, to aggregation.

[bookmark: sqlckbk-CHP-6-SECT-10.3.1]

DB2 and SQL Server

The solution for these two databases differ slightly in syntax (the concatenation operators are "||" for DB2 and "+" for SQL Server), but the technique is the same. The first query in the WITH clause (upper portion of the UNION ALL) returns the following information about each employee: the department, the number of employees in that department, the name, the ID, and a constant 1 (which at this point doesn't do anything). Recursion takes place in the second query (lower half of the UNION ALL) to build the list. To understand how the list is built, examine the following excerpts from the solution: first, the third SELECT-list item from the second query in the union:

	x.list ||','|| e.ename

and then the WHERE clause from that same query:

	where e.deptno = x.deptno

	 and e.empno > x.empno

The solution works by first ensuring the employees are in the same department. Then, for every employee returned by the upper portion of the UNION ALL, append the name of the employees who have a greater EMPNO. By doing this, you ensure that no employee will have his own name appended. The expression

	x.len+1

increments LEN (which starts at 1) every time an employee has been evaluated. When the incremented value equals the number of employees in the department:

	where len = cnt

you know you have evaluated all the employees and have completed building the list. That is crucial to the query as it not only signals when the list is complete, but also stops the recursion from running longer than necessary.

[bookmark: sqlckbk-CHP-6-SECT-10.3.2]

MySQL

The function GROUP_CONCAT does all the work. It concatenates the values found in the column passed to it, in this case ENAME. It's an aggregate function, thus the need for GROUP BY in the query.

[bookmark: sqlckbk-CHP-6-SECT-10.3.3]

Oracle

The first step to understanding the Oracle query is to break it down. Running the inline view by itself (lines 410), you generate a result set that includes the following for each employee: her department, her name, a rank within her respective department that is derived by an ascending sort on EMPNO, and a count of all employees in her department. For example:

	

	select deptno,

	 ename,

	 row_number() over

	 (partition by deptno order by empno) rn,

	 count(*) over (partition by deptno) cnt

	 from emp

	DEPTNO ENAME RN CNT

	------ ---------- -- ---

	 10 CLARK 1 3

	 10 KING 2 3

	 10 MILLER 3 3

	 20 SMITH 1 5

	 20 JONES 2 5

	 20 SCOTT 3 5

	 20 ADAMS 4 5

	 20 FORD 5 5

	 30 ALLEN 1 6

	 30 WARD 2 6

	 30 MARTIN 3 6

	 30 BLAKE 4 6

	 30 TURNER 5 6

	 30 JAMES 6 6

The purpose of the rank (aliased RN in the query) is to allow you to walk the tree. Since the function ROW_NUMBER generates an enumeration starting from one with no duplicates or gaps, just subtract one (from the current value) to reference a prior (or parent) row. For example, the number prior to 3 is 3 minus 1, which equals 2. In this context, 2 is the parent of 3; you can observe this on line 12. Additionally, the lines

	start with rn = 1

	connect by prior deptno = deptno

identify the root for each DEPTNO as having RN equal to 1 and create a new list whenever a new department is encountered (whenever a new occurrence of 1 is found for RN).

At this point, it's important to stop and look at the ORDER BY portion of the ROW_NUMBER function. Keep in mind the names are ranked by EMPNO and the list will be created in that order. The number of employees per department is calculated (aliased CNT) and is used to ensure that the query returns only the list that has all the employee names for a department. This is done because SYS_CONNECT_ BY_PATH builds the list iteratively, and you do not want to end up with partial [bookmark: idx-CHP-6-0279]lists.

For heirarchical [bookmark: idx-CHP-6-0280]queries, the pseudocolumn LEVEL starts with 1 (for queries not using CONNECT BY, LEVEL is 0, unless you are on 10g and later when LEVEL is only available when using CONNECT BY) and increments by one after each employee in a department has been evaluated (for each level of depth in the hierarchy). Because of this, you know that once LEVEL reaches CNT, you have reached the last EMPNO and will have a complete list.

						[image:]			

The [bookmark: idx-CHP-6-0281]SYS_CONNECT_BY_PATH function prefixes the list with your chosen delimiter (in this case, a comma). You may or may not want that behavior. In this recipe's solution, the call to the function LTRIM removes the leading comma from the list.

[bookmark: sqlckbk-CHP-6-SECT-10.3.4]

PostgreSQL

PostgreSQL's solution requires you to know in advance the maximum number of employees in any one department. Running the inline view by itself (lines 1118) generates a result set that includes (for each employee) his department, his name with a comma appended, the number of employees in his department, and the number of employees who have an EMPNO that is less than his:

	deptno | emps | cnt | pos

	--------+----------+-----+-----

	 20 | SMITH, | 5 | 1

	 30 | ALLEN, | 6 | 1

	 30 | WARD, | 6 | 2

	 20 | JONES, | 5 | 2

	 30 | MARTIN, | 6 | 3

	 30 | BLAKE, | 6 | 4

	 10 | CLARK, | 3 | 1

	 20 | SCOTT, | 5 | 3

	 10 | KING, | 3 | 2

	 30 | TURNER, | 6 | 5

	 20 | ADAMS, | 5 | 4

	 30 | JAMES, | 6 | 6

	 20 | FORD, | 5 | 5

	 10 | MILLER, | 3 | 3

The scalar subquery, POS (lines 14-15), is used to rank each employee by EMPNO. For example, the line

	max(case when pos = 1 then ename else '' end)||

evaluates whether or not POS equals 1. The CASE expression returns the employee name when POS is 1, and otherwise returns NULL.

You must query your table first to find the largest number of values that could be in any one list. Based on the EMP table, the largest number of employees in any one department is six, so the largest number of items in a list is six.

The next step is to begin creating the list. Do this by performing some conditional logic (in the form of CASE expressions) on the rows returned from the inline view.

You must write as many CASE expressions as there are possible values to be concatenated together.

If POS equals one, the current name is added to the list. The second CASE expression evaluates whether or not POS equals two; if it does, then the second name is appended to the first. If there is no second name, then an additional comma is appended to the first name (this process is repeated for each distinct value of POS until the last one is reached).

The use of the MAX function is necessary because you want to build only one list per department (you can also use MIN; it makes no difference in this case, since POS returns only one value for each case evaluation). Whenever an aggregate function is used, any items in the SELECT list not acted upon by the aggregate must be specified in the GROUP BY clause. This guarantees you will have only one row per item in the SELECT list not acted upon by the aggregate function.

Notice that you also need the function RTRIM to remove trailing commas; the number of commas will always be equal to the maximum number of values that could potentially be in a list (in this case, six).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-11]

Recipe 6.11. Converting Delimited Data into a Multi-Valued IN-List

[bookmark: idx-CHP-6-0282]

[bookmark: sqlckbk-CHP-6-SECT-11.1]

Problem

You have [bookmark: idx-CHP-6-0283]delimited data that you want to pass to the IN-list iterator of a WHERE clause. Consider the following string:

	7654,7698,7782,7788

You would like to use the string in a WHERE clause but the following SQL fails because EMPNO is a numeric column:

	select ename,sal,deptno

	 from emp

	 where empno in ('7654,7698,7782,7788')

This SQL fails because, while EMPNO is a numeric column, the IN list is composed of a single string value. You want that string to be treated as a comma-delimited list of numeric values.

[bookmark: sqlckbk-CHP-6-SECT-11.2]

Solution

On the surface it may seem that SQL should do the work of treating a delimited string as a list of delimited values for you, but that is not the case. When a comma embedded within quotes is encountered, SQL can't possibly know that signals a multi-valued list. SQL must treat everything between the quotes as a single entity, as one string value. You must break the string up into individual EMPNOs. The key to this solution is to walk the string, but not into individual characters. You want to walk the string into valid EMPNO values.

[bookmark: sqlckbk-CHP-6-SECT-11.2.1]

DB2

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions ROW_NUMBER, LOCATE, and SUBSTR are particularly useful here:

	 1 select empno,ename,sal,deptno

	 2 from emp

	 3 where empno in (

	 4 select cast(substr(c,2,locate(',',c,2)-2) as integer) empno

	 5 from (

	 6 select substr(csv.emps,cast(iter.pos as integer)) as c

	 7 from (select ','||'7654,7698,7782,7788'||',' emps

	 8 from t1) csv,

	 9 (select id as pos

	10 from t100) iter

	11 where iter.pos <= length(csv.emps)

	12) x

	13 where length(c) > 1

	14 and substr(c,1,1) = ','

	15) y

[bookmark: sqlckbk-CHP-6-SECT-11.2.2]

MySQL

By walking the string passed to the IN-list, you can easily convert it to rows:

	 1 select empno, ename, sal, deptno	

	 2 from emp

	 3 where empno in

	 4 (

	 5 select substring_index(

	 6 substring_index(list.vals,',',iter.pos),',',-1) empno

	 6 from (select id pos from t10) as iter,

	 7 (select '7654,7698,7782,7788' as vals

	 8 from t1) list

	 9 where iter.pos <=

	10 (length(list.vals)-length(replace(list.vals,',','')))+1

	11) x

[bookmark: sqlckbk-CHP-6-SECT-11.2.3]

Oracle

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions ROWNUM, SUBSTR, and INSTR are particularly useful here:

	 1 select empno,ename,sal,deptno

	 2 from emp

	 3 where empno in (

	 4 select to_number(

	 5 rtrim(

	 6 substr(emps,

	 7 instr(emps,',',1,iter.pos)+1,

	 8 instr(emps,',',1,iter.pos+1)

	 9 instr(emps,',',1,iter.pos)),',')) emps

	10 from (select ','||'7654,7698,7782,7788'||',' emps from t1) csv,

	11 (select rownum pos from emp) iter

	12 where iter.pos <= ((length(csv.emps)-

	13 length(replace(csv.emps,',')))/length(','))-1

	14)

[bookmark: sqlckbk-CHP-6-SECT-11.2.4]

Postgres

By walking the string passed to the IN-list, you can easily convert it to rows. The function SPLIT_PART makes it easy to parse the string into individual numbers:

	 1 select ename,sal,deptno

	 2 from emp

	 3 where empno in (

	 4 select cast(empno as integer) as empno

	 5 from (

	 6 select split_part(list.vals,',',iter.pos) as empno

	 7 from (select id as pos from t10) iter,

	 8 (select ','||'7654,7698,7782,7788'||',' as vals

	 9 from t1) list

	10 where iter.pos <=

	11 length(list.vals)-length(replace(list.vals,',',''))

	12) z

	13 where length(empno) > 0

	14) x

[bookmark: sqlckbk-CHP-6-SECT-11.2.5]

SQL Server

By walking the string passed to the IN-list, you can you can easily convert it to rows. The functions ROW_NUMBER, CHARINDEX, and SUBSTRING are particularly useful here:

	 1 select empno,ename,sal,deptno

	 2 from emp

	 3 where empno in (select substring(c,2,charindex(',',c,2)-2) as empno

	 4 from (

	 5 select substring(csv.emps,iter.pos,len(csv.emps)) as c

	 6 from (select ','+'7654,7698,7782,7788'+',' as emps

	 7 from t1) csv,

	 8 (select id as pos

	 9 from t100) iter

	10 where iter.pos <= len(csv.emps)

	11) x

	12 where len(c) > 1

	13 and substring(c,1,1) = ','

	14) y

[bookmark: sqlckbk-CHP-6-SECT-11.3]

Discussion

The first and most important step in this solution is to walk the string. Once you've accomplished that, all that's left is to parse the string into individual, numeric values using your DBMS's provided functions.

[bookmark: sqlckbk-CHP-6-SECT-11.3.1]

DB2 and SQL Server

The inline view X (lines 611) walks the string. The idea in this solution is to "walk through" the string, so that each row has one less character than the one before it:

	,7654,7698,7782,7788,

	7654,7698,7782,7788,

	654,7698,7782,7788,

	54,7698,7782,7788,

	4,7698,7782,7788,

	,7698,7782,7788,

	7698,7782,7788,

	698,7782,7788,

	98,7782,7788,

	8,7782,7788,

	,7782,7788,

	7782,7788,

	782,7788,

	82,7788,

	2,7788,

	,7788,

	7788,

	788,

	88,

	8,

	,

Notice that by enclosing the string in commas (the delimiter), there's no need to make special checks as to where the beginning or end of the string is.

The next step is to keep only the values you want to use in the IN-list. The values to keep are the ones with leading commas, with the exception of the last row with its lone comma. Use [bookmark: idx-CHP-6-0284]SUBSTR or SUBSTRING to identify which rows have a leading comma, then keep all characters found before the next comma in that row. Once that's done, cast the string to a number so it can be properly evaluated against the numeric column EMPNO (lines 414):

	 EMPNO

	 7654

	 7698

	 7782

	 7788

The final step is to use the results in a subquery to return the desired rows.

[bookmark: sqlckbk-CHP-6-SECT-11.3.2]

MySQL

The inline view (lines 59) walks the string. The expression on line 10 determines how many values are in the string by finding the number of commas (the delimiter) and adding one. The function SUBSTRING_INDEX (line 6) returns all characters in the string before (to the left of) the nth occurrence of a comma (the delimiter):

	+---------------------+

	| empno |

	+---------------------+

	| 7654 |

	| 7654,7698 |

	| 7654,7698,7782 |

	| 7654,7698,7782,7788 |

	+---------------------+

Those rows are then passed to another call to SUBSTRING_INDEX (line 5); this time the nth occurrence of the [bookmark: idx-CHP-6-0285]delimited is 1, which causes all values to the right of the nth occurrence of the delimiter to be kept:

	+-------+

	| empno |

	+-------+

	| 7654 |

	| 7698 |

	| 7782 |

	| 7788 |

	+-------+

The final step is to plug the results into a subquery.

[bookmark: sqlckbk-CHP-6-SECT-11.3.3]

Oracle

The first step is to walk the string:

	

	select emps,pos

	 from (select ','||'7654,7698,7782,7788'||',' emps

	 from t1) csv,

	 (select rownum pos from emp) iter

	 where iter.pos <=

	 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

	EMPS POS

	--------------------- ----------

	,7654,7698,7782,7788, 1

	,7654,7698,7782,7788, 2

	,7654,7698,7782,7788, 3

	,7654,7698,7782,7788, 4

The number of rows returned represents the number of values in your list. The values for POS are crucial to the query as they are needed to parse the string into individual values. The strings are parsed using SUBSTR and INSTR. POS is used to locate the nth occurrence of the delimiter in each string. By enclosing the strings in commas, no special checks are necessary to determine the beginning or end of a string. The values passed to SUBSTR, INSTR (lines 79) locate the nth and nth+1 occurrence of the delimiter. By subtracting the value returned for the current comma (the location in the string where the current comma is) from the value returned bythe next comma (the location in the string where the next comma is) you can extract each value from the string:

	

	select substr(emps,

	 instr(emps,',',1,iter.pos)+1,

	 instr(emps,',',1,iter.pos+1)

	 instr(emps,',',1,iter.pos)) emps

	 from (select ','||'7654,7698,7782,7788'||',' emps

	 from t1) csv,

	 (select rownum pos from emp) iter

	 where iter.pos <=

	 ((length(csv.emps)-length(replace(csv.emps,',')))/length(','))-1

	 EMPS

	 7654,

	 7698,

	 7782,

	 7788,

The final step is to remove the trailing comma from each value, cast it to a number, and plug it into a subquery.

[bookmark: sqlckbk-CHP-6-SECT-11.3.4]

PostgreSQL

The inline view Z (lines 69) walks the string. The number of rows returned is determined by how many values are in the string. To find the number of values in the string, subtract the size of the string without the delimiter from the size of the string with the delimiter (line 9). The function SPLIT_PART does the work of parsing the string. It looks for the value that comes before the nth occurrence of the delimiter:

	

	select list.vals,

	 split_part(list.vals,',',iter.pos) as empno,

	 iter.pos

	 from (select id as pos from t10) iter,

	 (select ','||'7654,7698,7782,7788'||',' as vals

	 from t1) list

	 where iter.pos <=

	 length(list.vals)-length(replace(list.vals,',',''))

	 vals | empno | pos

	----------------------+-------+-----

	,7654,7698,7782,7788, | | 1

	,7654,7698,7782,7788, | 7654 | 2

	,7654,7698,7782,7788, | 7698 | 3

	,7654,7698,7782,7788, | 7782 | 4

	,7654,7698,7782,7788, | 7788 | 5

The final step is to cast the values (EMPNO) to a number and plug it into a subquery.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-12]

Recipe 6.12. Alphabetizing a String

[bookmark: idx-CHP-6-0286]

[bookmark: sqlckbk-CHP-6-SECT-12.1]

Problem

You want alphabetize the individual characters within strings in your tables. Consider the following result set:

	ENAME

	ADAMS

	ALLEN

	BLAKE

	CLARK

	FORD

	JAMES

	JONES

	KING

	MARTIN

	MILLER

	SCOTT

	SMITH

	TURNER

	WARD

You would like the result to be:

	OLD_NAME NEW_NAME

	---------- --------

	ADAMS AADMS

	ALLEN AELLN

	BLAKE ABEKL

	CLARK ACKLR

	FORD DFOR

	JAMES AEJMS

	JONES EJNOS

	KING GIKN

	MARTIN AIMNRT

	MILLER EILLMR

	SCOTT COSTT

	SMITH HIMST

	TURNER ENRRTU

	WARD ADRW

[bookmark: sqlckbk-CHP-6-SECT-12.2]

Solution

This problem is a perfect example of why it is crucial to understand your DBMS and what functionality is available to you. In situations where your DBMS does not provide built-in functions to facilitate this solution, you need to come up with something creative. Compare the MySQL solution with the rest.

[bookmark: sqlckbk-CHP-6-SECT-12.2.1]

DB2

To alphabetize rows of strings it is necessary to walk each string then order its characters:

	 1 select ename,

	 2 max(case when pos=1 then c else '' end)||

	 3 max(case when pos=2 then c else '' end)||

	 4 max(case when pos=3 then c else '' end)||

	 5 max(case when pos=4 then c else '' end)||

	 6 max(case when pos=5 then c else '' end)||

	 7 max(case when pos=6 then c else '' end)

	 8 from (

	 9 select e.ename,

	10 cast(substr(e.ename,iter.pos,1) as varchar(100)) c,

	11 cast(row_number()over(partition by e.ename

	12 order by substr(e.ename,iter.pos,1))

	13 as integer) pos

	14 from emp e,

	15 (select cast(row_number()over() as integer) pos

	16 from emp) iter

	17 where iter.pos <= length(e.ename)

	18) x

	19 group by ename

[bookmark: sqlckbk-CHP-6-SECT-12.2.2]

MySQL

The key here is the GROUP_CONCAT function, which allows you to not only concatenate the characters that make up each name but also order them:

	1 select ename, group_concat(c order by c separator '')

	2 from (

	3 select ename, substr(a.ename,iter.pos,1) c

	4 from emp a,

	5 (select id pos from t10) iter

	6 where iter.pos <= length(a.ename)

	7) x

	8 group by ename

[bookmark: sqlckbk-CHP-6-SECT-12.2.3]

Oracle

The function SYS_CONNECT_BY_PATH allows you to iteratively build a list:

	 1 select old_name, new_name

	 2 from (

	 3 select old_name, replace(sys_connect_by_path(c,' '),' ') new_name

	 4 from (

	 5 select e.ename old_name,

	 6 row_number() over(partition by e.ename

	 7 order by substr(e.ename,iter.pos,1)) rn,

	 8 substr(e.ename,iter.pos,1) c

	 9 from emp e,

	10 (select rownum pos from emp) iter

	11 where iter.pos <= length(e.ename)

	12 order by 1

	13) x

	14 start with rn = 1

	15 connect by prior rn = rn-1 and prior old_name = old_name

	16)

	17 where length(old_name) = length(new_name)

[bookmark: sqlckbk-CHP-6-SECT-12.2.4]

PostgreSQL

PostgreSQL does not offer any built-in functions to easily sort characters in a string, so it is necessary not only to walk through each string but also to know in advance the largest length of any one name. View V is used in this solution for readability:

	 create or replace view V as

	 select x.*

	 from (

	 select a.ename,

	 substr(a.ename,iter.pos,1) as c

	 from emp a,

	 (select id as pos from t10) iter

	 where iter.pos <= length(a.ename)

	 order by 1,2

) x

The following select statement leverages the view:

	 1 select ename,

	 2 max(case when pos=1 then

	 3 case when cnt=1 then c

	 4 else rpad(c,cast(cnt as integer),c)

	 5 end

	 6 else ''

	 7 end)||

	 8 max(case when pos=2 then

	 9 case when cnt=1 then c

	10 else rpad(c,cast(cnt as integer),c)

	11 end

	12 else ''

	13 end)||

	14 max(case when pos=3 then

	15 case when cnt=1 then c

	16 else rpad(c,cast(cnt as integer),c)

	17 end

	18 else ''

	19 end)||

	20 max(case when pos=4 then

	21 case when cnt=1 then c

	22 else rpad(c,cast(cnt as integer),c)

	23 end

	24 else ''

	25 end)||

	26 max(case when pos=5 then

	27 case when cnt=1 then c

	28 else rpad(c,cast(cnt as integer),c)

	29 end

	30 else ''

	31 end)||

	32 max(case when pos=6 then

	33 case when cnt=1 then c

	34 else rpad(c,cast(cnt as integer),c)

	35 end

	36 else ''

	37 end)

	38 from (

	39 select a.ename, a.c,

	40 (select count(*)

	41 from v b

	42 where a.ename=b.ename and a.c=b.c) as cnt,

	43 (select count(*)+1

	44 from v b

	45 where a.ename=b.ename and b.c<a.c) as pos

	46 from v a

	47) x

	48 group by ename

[bookmark: sqlckbk-CHP-6-SECT-12.2.5]

SQL Server

To alphabetize rows of strings it is necessary to walk each string, and then order their characters:

	 1 select ename,

	 2 max(case when pos=1 then c else '' end)+

	 3 max(case when pos=2 then c else '' end)+

	 4 max(case when pos=3 then c else '' end)+

	 5 max(case when pos=4 then c else '' end)+

	 6 max(case when pos=5 then c else '' end)+

	 7 max(case when pos=6 then c else '' end)

	 8 from (

	 9 select e.ename,

	10 substring(e.ename,iter.pos,1) as c,

	11 row_number() over (

	12 partition by e.ename

	13 order by substring(e.ename,iter.pos,1)) as pos

	14 from emp e,

	15 (select row_number()over(order by ename) as pos

	16 from emp) iter

	17 where iter.pos <= len(e.ename)

	18) x

	19 group by ename

[bookmark: sqlckbk-CHP-6-SECT-12.3]

Discussion

[bookmark: sqlckbk-CHP-6-SECT-12.3.1]

DB2 and SQL Server

The inline view X returns each character in each name as a row. The function SUBSTR or SUBSTRING extracts each character from each name, and the function ROW_NUMBER ranks each character alphabetically:

	ENAME C POS

	----- - ---

	ADAMS A 1

	ADAMS A 2

	ADAMS D 3

	ADAMS M 4

	ADAMS S 5

	…

To return each letter of a string as a row, you must walk the string. This is accomplished with inline view ITER.

Now that the letters in each name have been alphabetized, the last step is to put those letters back together, into a string, in the order they are ranked. Each letter's position is evaluated by the CASE statements (lines 27). If a character is found at a particular position it is then concatenated to the result of the next evaluation (the following CASE statement). Because the aggregate function MAX is used as well, only one character per position POS is returned, so that only one row per name is returned. The CASE evaluation goes up to the number 6, which is the maximum number of characters in any name in table EMP.

[bookmark: sqlckbk-CHP-6-SECT-12.3.2]

MySQL

The inline view X (lines 36) returns each character in each name as a row. The function SUBSTR extracts each character from each name:

	ENAME C

	----- -

	ADAMS A

	ADAMS A

	ADAMS D

	ADAMS M

	ADAMS S

	…

Inline view ITER is used to walk the string. From there, the rest of the work is done by the GROUP_CONCAT function. By specifying an order, the function not only concatenates each letter, it does so alphabetically.

[bookmark: sqlckbk-CHP-6-SECT-12.3.3]

Oracle

The real work is done by inline view X (lines 511), where the characters in each name are extracted and put into alphabetical order. This is accomplished by walking the string, then imposing order on those characters. The rest of the query merely glues the names back together.

The tearing apart of names can be seen by executing only inline view X:

	OLD_NAME RN C

	---------- --------- -

	ADAMS 1 A

	ADAMS 2 A

	ADAMS 3 D

	ADAMS 4 M

	ADAMS 5 S

	…

The next step is to take the alphabetized characters and rebuild each name. This is done with the function SYS_CONNECT_BY_PATH by appending each character to the ones before it:

	OLD_NAME NEW_NAME

	---------- ---------

	ADAMS A

	ADAMS AA

	ADAMS AAD

	ADAMS AADM

	ADAMS AADMS

	…

The final step is to keep only the strings that have the same length as the names they were built from.

[bookmark: sqlckbk-CHP-6-SECT-12.3.4]

PostgreSQL

For readability, view V is used in this solution to walk the string. The function SUBSTR, in the view definition, extracts each character from each name so that the view returns:

	ENAME C

	----- -

	ADAMS A

	ADAMS A

	ADAMS D

	ADAMS M

	ADAMS S

	…

The view also orders the results by ENAME and by each letter in each name. The inline view X (lines 1518) returns the names and characters from view V, the number of times each character occurs in each name, and its position (alphabetically):

	ename | c | cnt | pos

	------+---+-----+-----

	ADAMS | A | 2 | 1

	ADAMS | A | 2 | 1

	ADAMS | D | 1 | 3

	ADAMS | M | 1 | 4

	ADAMS | S | 1 | 5

The extra columns CNT and POS, returned by the inline view X, are crucial to the solution. POS is used to rank each character and CNT is used to determine the number of times the character exists in each name. The final step is to evaluate the position of each character and rebuild the name. You'll notice that each case statement is actually two case statements. This is to determine whether or not a character occursmore than once in a name; if it does, then rather than return that character, what is returned is that character appended to itself CNT times. The aggregate function, MAX, is used to ensure there is only one row per name.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-13]

Recipe 6.13. Identifying Strings That Can Be Treated as Numbers

[bookmark: sqlckbk-CHP-6-SECT-13.1]

Problem

You have a column that is defined to hold character data. Unfortunately, the rows contain mixed [bookmark: idx-CHP-6-0287]numeric and character data. Consider view V:

	create view V as

	select replace(mixed,' ','') as mixed

	 from (

	select substr(ename,1,2)||

	 cast(deptno as char(4))||

	 substr(ename,3,2) as mixed

	 from emp

	 where deptno = 10

	 union all

	select cast(empno as char(4)) as mixed

	 from emp

	 where deptno = 20

	 union all

	select ename as mixed

	 from emp

	 where deptno = 30

) x

	select * from v

	 MIXED

	 CL10AR

	 KI10NG

	 MI10LL

	 7369

	 7566

	 7788

	 7876

	 7902

	 ALLEN

	 WARD

	 MARTIN

	 BLAKE

	 TURNER

	 JAMES

You want to return rows that are numbers only, or that contain at least one number. If the numbers are mixed with character data, you want to remove the characters and return only the numbers. For the sample data above you want the following result set:

	 MIXED

	 10

	 10

	 10

	 7369

	 7566

	 7788

	 7876

	 7902

[bookmark: sqlckbk-CHP-6-SECT-13.2]

Solution

The functions [bookmark: idx-CHP-6-0288]REPLACE and TRANSLATE are extremely useful for manipulating strings and individual characters. The key is to convert all numbers to a single character, which then makes it easy to isolate and identify any number by referring to a single character.

[bookmark: sqlckbk-CHP-6-SECT-13.2.1]

DB2

Use functions TRANSLATE, REPLACE, and POSSTR to isolate the [bookmark: idx-CHP-6-0289]numeric characters in each row. The calls to CAST are necessary in view V; otherwise, the view will fail to be created due to type conversion errors. You'll need the function REPLACE to remove extraneous white space due to casting to the fixed length CHAR:

	 1 select mixed old,

	 2 cast(

	 3 case

	 4 when

	 5 replace(

	 6 translate(mixed,'9999999999','0123456789'),'9','') = ''

	 7 then

	 8 mixed

	 9 else replace(

	10 translate(mixed,

	11 repeat('#',length(mixed)),

	12 replace(

	13 translate(mixed,'9999999999','0123456789'),'9','')),

	14 '#','')

	15 end as integer) mixed

	16 from V

	17 where posstr(translate(mixed,'9999999999','0123456789'),'9') > 0

[bookmark: sqlckbk-CHP-6-SECT-13.2.2]

MySQL

The syntax for MySQL is slightly different and will define view V as:

	create view V as

	select concat(

	 substr(ename,1,2),

	 replace(cast(deptno as char(4)),' ',''),

	 substr(ename,3,2)

) as mixed

	 from emp

	 where deptno = 10

	 union all

	select replace(cast(empno as char(4)), ' ', '')

	 from emp where deptno = 20

	 union all

	select ename from emp where deptno = 30

Because MySQL does not support the TRANSLATE function, you must walk each row and evaluate it on a character-by-character basis.

	 1 select cast(group_concat(c order by pos separator '') as unsigned)

	 2 as MIXED1

	 3 from (

	 4 select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c

	 5 from V,

	 6 (select id pos from t10) iter

	 7 where iter.pos <= length(v.mixed)

	 8 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57

	 9) y

	10 group by mixed

	11 order by 1

[bookmark: sqlckbk-CHP-6-SECT-13.2.3]

Oracle

Use functions TRANSLATE, REPLACE, and INSTR to isolate the [bookmark: idx-CHP-6-0290]numeric characters in each row. The calls to CAST are not necessary in view V. Use the function REPLACE to remove extraneous white space due to casting to the fixed length CHAR. If you decide you would like to keep the explicit type conversion calls in the view definition, it is suggested you cast to VARCHAR2:

	 1 select to_number (

	 2 case

	 3 when

	 4 replace(translate(mixed,'0123456789','9999999999'),'9')

	 5 is not null

	 6 then

	 7 replace(

	 8 translate(mixed,

	 9 replace(

	10 translate(mixed,'0123456789','9999999999'),'9'),

	11 rpad('#',length(mixed),'#')),'#')

	12 else

	13 mixed

	14 end

	15) mixed

	16 from V

	17 where instr(translate(mixed,'0123456789','9999999999'),'9') > 0

[bookmark: sqlckbk-CHP-6-SECT-13.2.4]

PostgreSQL

Use functions TRANSLATE, REPLACE, and STRPOS to isolate the [bookmark: idx-CHP-6-0291]numeric characters in each row. The calls to CAST are not necessary in view V. Use the function REPLACE ito remove extraneous white space due to casting to the fixed length CHAR. If you decide you would like to keep the explicit type conversion calls in the view definition, it is suggested you cast to VARCHAR:

	 1 select cast(

	 2 case

	 3 when

	 4 replace(translate(mixed,'0123456789','9999999999'),'9','')

	 5 is not null

	 6 then

	 7 replace(

	 8 translate(mixed,

	 9 replace(

	10 translate(mixed,'0123456789','9999999999'),'9',''),

	11 rpad('#',length(mixed),'#')),'#','')

	12 else

	13 mixed

	14 end as integer) as mixed

	15 from V

	16 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

[bookmark: sqlckbk-CHP-6-SECT-13.2.5]

SQL Server

The built-in function ISNUMERIC along with a wildcard search allows you to easily identify strings that contains numbers, but getting numeric characters out of a string is not particularly efficient because the TRANSLATE function is not supported.

[bookmark: sqlckbk-CHP-6-SECT-13.3]

Discussion

The TRANSLATE function is very useful here as it allows you to easily isolate and identify numbers and characters. The trick is to convert all numbers to a single character; this way, rather than searching for different numbers you only search for one character.

[bookmark: sqlckbk-CHP-6-SECT-13.3.1]

DB2, Oracle, and PostgreSQL

The syntax differs slightly among these DBMSs, but the technique is the same. I'll use the solution for PostgreSQL for the discussion.

The real work is done by functions TRANSLATE and REPLACE. To get the final result set requires several function calls, each listed below in one query:

	

	select mixed as orig,

	translate(mixed,'0123456789','9999999999') as mixed1,

	replace(translate(mixed,'0123456789','9999999999'),'9','') as mixed2,

	 translate(mixed,

	 replace(

	 translate(mixed,'0123456789','9999999999'),'9',''),

	 rpad('#',length(mixed),'#')) as mixed3,

	 replace(

	 translate(mixed,

	 replace(

	translate(mixed,'0123456789','9999999999'),'9',''),

	 rpad('#',length(mixed),'#')),'#','') as mixed4

	 from V

	 where strpos(translate(mixed,'0123456789','9999999999'),'9') > 0

	 ORIG | MIXED1 | MIXED2 | MIXED3 | MIXED4 | MIXED5

	--------+--------+--------+--------+--------+--------

	 CL10AR | CL99AR | CLAR | ##10## | 10 | 10

	 KI10NG | KI99NG | KING | ##10## | 10 | 10

	 MI10LL | MI99LL | MILL | ##10## | 10 | 10

	 7369 | 9999 | | 7369 | 7369 | 7369

	 7566 | 9999 | | 7566 | 7566 | 7566

	 7788 | 9999 | | 7788 | 7788 | 7788

	 7876 | 9999 | | 7876 | 7876 | 7876

	 7902 | 9999 | | 7902 | 7902 | 7902

First, notice that any rows without at least one number are removed. How this is accomplished will become clear as you examine each of the columns in the above result set. The rows that are kept are the values in the ORIG column and are the rows that will eventually make up the result set. The first step to extracting the numbers is to use the function TRANSLATE to convert any number to a 9 (you can use any digit; 9 is arbitrary), this is represented by the values in MIXED1. Now that all numbers are 9's, they can be treating as a single unit. The next step is to remove all of the numbers by using the function REPLACE. Because all digits are now 9, REPLACE simply looks for any 9's and removes them. This is represented by the values in MIXED2. The next step, MIXED3, uses values that are returned by MIXED2. These values are then compared to the values in ORIG. If any characters from MIXED2 are found in ORIG, they are converted to the # character by TRANSLATE. The result set from MIXED3 shows that the letters, not the numbers, have now been singled out and converted to a single character. Now that all non-[bookmark: idx-CHP-6-0292]numeric characters are represented by #'s, they can be treated as a single unit. The next step, MIXED4, uses REPLACE to find and remove any # characters in each row; what's left are numbers only. The final step is to cast the numeric characters as numbers. Now that you've gone through the steps, you can see how the WHERE clause works. The results from MIXED1 are passed to STRPOS, and if a 9 is found (the position in the string where the first 9 is located) the result must be greater than 0. For rows that return a value greater than zero, it means there's at least one number in that row and it should be kept.

[bookmark: sqlckbk-CHP-6-SECT-13.3.2]

MySQL

The first step is to walk each string and evaluate each character and determine whether or not it's a number:

	

	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c

	 from V,

	 (select id pos from t10) iter

	 where iter.pos <= length(v.mixed)

	 order by 1,2

	+--------+------+------+

	| mixed | pos | c |

	+--------+------+------+

	| 7369 | 1 | 7 |

	| 7369 | 2 | 3 |

	| 7369 | 3 | 6 |

	| 7369 | 4 | 9 |

	…

	| ALLEN | 1 | A |

	| ALLEN | 2 | L |

	| ALLEN | 3 | L |

	| ALLEN | 4 | E |

	| ALLEN | 5 | N |

	…

	| CL10AR | 1 | C |

	| CL10AR | 2 | L |

	| CL10AR | 3 | 1 |

	| CL10AR | 4 | 0 |

	| CL10AR | 5 | A |

	| CL10AR | 6 | R |

	+--------+------+------+

Now that each character in each string can be evaluated individually, the next step is to keep only the rows that have a number in the C column:

	

	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c

	 from V,

	 (select id pos from t10) iter

	 where iter.pos <= length(v.mixed)

	 and ascii(substr(v.mixed,iter.pos,1)) between 48 and 57

	 order by 1,2

	+--------+------+------+

	| mixed | pos | c |

	+--------+------+------+

	| 7369 | 1 | 7 |

	| 7369 | 2 | 3 |

	| 7369 | 3 | 6 |

	| 7369 | 4 | 9 |

	…

	| CL10AR | 3 | 1 |

	| CL10AR | 4 | 0 |

	…

	+--------+------+------+

At this point, all the rows in column C are numbers. The next step is to use GROUP_CONCAT to concatenate the numbers to form their respective whole number in MIXED. The final result is then cast as a number:

	

	select cast(group_concat(c order by pos separator '') as unsigned)

	 as MIXED1

	 from (

	select v.mixed, iter.pos, substr(v.mixed,iter.pos,1) as c

	 from V,

	 (select id pos from t10) iter

	 where iter.pos <= length(v.mixed)

	 and ascii(substr(x.mixed,iter.pos,1)) between 48 and 57

) y

	 group by mixed

	 order by 1

	+--------+

	| MIXED1 |

	+--------+

	| 10 |

	| 10 |

	| 10 |

	| 7369 |

	| 7566 |

	| 7788 |

	| 7876 |

	| 7902 |

	+--------+

As a final note, keep in mind that any digits in each string will be concatenated to form one [bookmark: idx-CHP-6-0293]numeric value. For example, an input value of, say, '99Gennick87' will result in the value 9987 being returned. This is something to keep in mind, particularly when working with serialized data.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-14]

Recipe 6.14. Extracting the nth Delimited Substring

[bookmark: sqlckbk-CHP-6-SECT-14.1]

Problem

You want to extract a specified, delimited substring from a string. Consider the following view V, which generates source data for this problem:

	create view V as

	select 'mo,larry,curly' as name

	 from t1

	 union all

	select 'tina,gina,jaunita,regina,leena' as name

	 from t1

Output from the view is as follows:

	

	select * from v

	NAME

	mo,larry,curly

	tina,gina,jaunita,regina,leena

You would like to extract the second name in each row, so the final result set would be:

	 SUB

	larry

	gina

[bookmark: sqlckbk-CHP-6-SECT-14.2]

Solution

The key to solving this problem is to return each name as an individual row while preserving the order in which the name exists in the list. Exactly how you do these things depends on which DBMS you are using.

[bookmark: sqlckbk-CHP-6-SECT-14.2.1]

DB2

After walking the NAMEs returned by view V, use the function ROW_NUMBER to keep only the second name from each string:

	 1 select substr(c,2,locate(',',c,2)-2)

	 2 from (

	 3 select pos, name, substr(name, pos) c,

	 4 row_number() over(partition by name

	 5 order by length(substr(name,pos)) desc) rn

	 6 from (

	 7 select ',' ||csv.name|| ',' as name,

	 8 cast(iter.pos as integer) as pos

	 9 from V csv,

	10 (select row_number() over() pos from t100) iter

	11 where iter.pos <= length(csv.name)+2

	12) x

	13 where length(substr(name,pos)) > 1

	14 and substr(substr(name,pos),1,1) = ','

	15) y

	16 where rn = 2

[bookmark: sqlckbk-CHP-6-SECT-14.2.2]

MySQL

After walking the NAMEs returned by view V, use the position of the commas to return only the second name in each string:

	 1 select name

	 2 from (

	 3 select iter.pos,

	 4 substring_index(

	 5 substring_index(src.name,',',iter.pos),',',-1) name

	 6 from V src,

	 7 (select id pos from t10) iter,

	 8 where iter.pos <=

	 9 length(src.name)-length(replace(src.name,',',''))

	10) x

	11 where pos = 2

[bookmark: sqlckbk-CHP-6-SECT-14.2.3]

Oracle

After walking the NAMEs returned by view V, retrieve the second name in each list by using SUBSTR and INSTR:

	 1 select sub

	 2 from (

	 3 select iter.pos,

	 4 src.name,

	 5 substr(src.name,

	 6 instr(src.name,',',1,iter.pos)+1,

	 7 instr(src.name,',',1,iter.pos+1) -

	 8 instr(src.name,',',1,iter.pos)-1) sub

	 9 from (select ','||name||',' as name from V) src,

	10 (select rownum pos from emp) iter

	11 where iter.pos < length(src.name)-length(replace(src.name,','))

	12)

	13 where pos = 2

[bookmark: sqlckbk-CHP-6-SECT-14.2.4]

PostgreSQL

Use the function SPLIT_PART to help return each individual name as a row:

	 1 select name

	 2 from (

	 3 select iter.pos, split_part(src.name,',',iter.pos) as name

	 4 from (select id as pos from t10) iter,

	 5 (select cast(name as text) as name from v) src

	 7 where iter.pos <=

	 8 length(src.name)-length(replace(src.name,',',''))+1

	 9) x

	10 where pos = 2

[bookmark: sqlckbk-CHP-6-SECT-14.2.5]

SQL Server

After walking the NAMEs returned by view V, use the function ROW_NUMBER to keep only the second name from each string:

	 1 select substring(c,2,charindex(',',c,2)-2)

	 2 from (

	 3 select pos, name, substring(name, pos, len(name)) as c,

	 4 row_number() over(

	 5 partition by name

	 6 order by len(substring(name,pos,len(name))) desc) rn

	 7 from (

	 8 select ',' + csv.name + ',' as name,

	 9 iter.pos

	10 from V csv,

	11 (select id as pos from t100) iter

	12 where iter.pos <= len(csv.name)+2

	13) x

	14 where len(substring(name,pos,len(name))) > 1

	15 and substring(substring(name,pos,len(name)),1,1) = ','

	16) y

	17 where rn = 2

[bookmark: sqlckbk-CHP-6-SECT-14.3]

Discussion

[bookmark: sqlckbk-CHP-6-SECT-14.3.1]

DB2 and SQL Server

The syntax is slightly different between these two DBMSs, but the technique is the same. I will use the solution for DB2 for the discussion. The strings are walked and the results are represented by inline view X:

	

	select ','||csv.name|| ',' as name,

	 iter.pos

	 from v csv,

	 (select row_number() over() pos from t100) iter

	 where iter.pos <= length(csv.name)+2

	EMPS POS

	------------------------------- ----

	,tina,gina,jaunita,regina,leena, 1

	,tina,gina,jaunita,regina,leena, 2

	,tina,gina,jaunita,regina,leena, 3

	…

The next step is to then step through each character in each string:

	

	select pos, name, substr(name, pos) c,

	 row_number() over(partition by name

	 order by length(substr(name, pos)) desc) rn

	 from (

	select ','||csv.name||',' as name,

	 cast(iter.pos as integer) as pos

	 from v csv,

	 (select row_number() over() pos from t100) iter

	 where iter.pos <= length(csv.name)+2

) x

	 where length(substr(name,pos)) > 1

	POS EMPS C RN

	--- --------------- ---------------- --

	 1 ,mo,larry,curly, ,mo,larry,curly, 1

	 2 ,mo,larry,curly, mo,larry,curly, 2

	 3 ,mo,larry,curly, o,larry,curly, 3

	 4 ,mo,larry,curly, ,larry,curly, 4

	 …

Now that different portions of the string are available to you, simply identify which rows to keep. The rows you are interested in are the ones that begin with a comma; the rest can be discarded:

	

	select pos, name, substr(name,pos) c,

	 row_number() over(partition by name

	 order by length(substr(name, pos)) desc) rn

	 from (

	select ','||csv.name||',' as name,

	 cast(iter.pos as integer) as pos

	 from v csv,

	 (select row_number() over() pos from t100) iter

	 where iter.pos <= length(csv.name)+2

) x

	 where length(substr(name,pos)) > 1

	 and substr(substr(name,pos),1,1) = ','

	POS EMPS C RN

	 --- -------------- ---------------- --

	 1 ,mo,larry,curly, ,mo,larry,curly, 1

	 4 ,mo,larry,curly, ,larry,curly, 2

	 10 ,mo,larry,curly, ,curly, 3

	 1 ,tina,gina,jaunita,regina,leena, ,tina,gina,jaunita,regina,leena, 1

	 6 ,tina,gina,jaunita,regina,leena, ,gina,jaunita,regina,leena, 2

	 11 ,tina,gina,jaunita,regina,leena, ,jaunita,regina,leena, 3

	 19 ,tina,gina,jaunita,regina,leena, ,regina,leena, 4

	 26 ,tina,gina,jaunita,regina,leena, ,leena, 5

This is an important step as it sets up how you will get the nth substring. Notice that many rows have been eliminated from this query because of the following condition in the WHERE clause:

	substr(substr(name,pos),1,1) = ','

You'll notice that ,larry,curly, was ranked 4, but now is ranked 2. Remember, the WHERE clause is evaluated before the SELECT, so the rows with leading commas are kept, then ROW_NUMBER performs its ranking. At this point it's easy to see that, to get the nth substring you want rows where RN equals n. The last step is to keep only the rows you are interested in (in this case where RN equals 2) and use SUBSTR to extract the name from that row. The name to keep is the first name in the row: larry from ,larry,curly, and gina from ,gina,jaunita,regina,leena,.

[bookmark: sqlckbk-CHP-6-SECT-14.3.2]

MySQL

The inline view X walks each string. You can determine how many values are in each string by counting the delimiters in the string:

	

	select iter.pos, src.name

	 from (select id pos from t10) iter,

	 V src

	 where iter.pos <=

	 length(src.name)-length(replace(src.name,',',''))

	+------+--------------------------------+

	| pos | name |

	+------+--------------------------------+

	| 1 | mo,larry,curly |

	| 2 | mo,larry,curly |

	| 1 | tina,gina,jaunita,regina,leena |

	| 2 | tina,gina,jaunita,regina,leena |

	| 3 | tina,gina,jaunita,regina,leena |

	| 4 | tina,gina,jaunita,regina,leena |

	+------+--------------------------------+

In this case, there is one fewer row than values in each string because that's all that is needed. The function SUBSTRING_INDEX takes care of parsing the needed values:

	

	select iter.pos,src.name name1,

	 substring_index(src.name,',',iter.pos) name2,

	 substring_index(

	 substring_index(src.name,',',iter.pos),',',-1) name3

	 from (select id pos from t10) iter,

	 V src

	 where iter.pos <=

	 length(src.name)-length(replace(src.name,',',''))

+------+--------------------------------+--------------------------+---------+

| pos | name1 | name2 | name3 |

+------+--------------------------------+--------------------------+---------+

| 1 | mo,larry,curly | mo | mo |

| 2 | mo,larry,curly | mo,larry | larry |

| 1 | tina,gina,jaunita,regina,leena | tina | tina |

| 2 | tina,gina,jaunita,regina,leena | tina,gina | gina |

| 3 | tina,gina,jaunita,regina,leena | tina,gina,jaunita | jaunita |

| 4 | tina,gina,jaunita,regina,leena | tina,gina,jaunita,regina | regina |

+------+--------------------------------+--------------------------+---------+

I've shown three name fields, so you can see how the nested SUBSTRING_INDEX calls work. The inner call returns all characters to the left of the nth occurrence of a comma. The outer call returns everything to the right of the first comma it finds (starting from the end of the string). The final step is to keep the value for NAME3 where POS equals n, in this case 2.

[bookmark: sqlckbk-CHP-6-SECT-14.3.3]

Oracle

The inline view walks each string. The number of times each string is returned is determined by how many values are in each string. The solution finds the number of values in each string by counting the number of delimiters in it. Because each string is enclosed in commas, the number of values in a string is the number of commas minus one. The strings are then UNIONed and joined to a table with a cardinality that is at least the number of values in the largest string. The functions SUBSTR and INSTR use the value of POS to parse each string:

	

	select iter.pos, src.name,

	 substr(src.name,

	 instr(src.name,',',1,iter.pos)+1,

	 instr(src.name,',',1,iter.pos+1)

	 instr(src.name,',',1,iter.pos)-1) sub

	 from (select ','||name||',' as name from v) src,

	 (select rownum pos from emp) iter

	 where iter.pos < length(src.name)-length(replace(src.name,','))

	POS NAME SUB

	--- --------------------------------- -------------

	 1 ,mo,larry,curly, mo

	 1 , tina,gina,jaunita,regina,leena, tina

	 2 ,mo,larry,curly, larry

	 2 , tina,gina,jaunita,regina,leena, gina

	 3 ,mo,larry,curly, curly

	 3 , tina,gina,jaunita,regina,leena, jaunita

	 4 , tina,gina,jaunita,regina,leena, regina

	 5 , tina,gina,jaunita,regina,leena, leena

The first call to INSTR within SUBSTR determines the start position of the substring to extract. The next call to INSTR within SUBSTR finds the position of the nth comma (same as the start position) as well the position of the nth + 1 comma. Subtracting the two values returns the length of the substring to extract. Because every value is parsed into its own row, simply specify WHERE POS = n to keep the nth substring (in this case, where POS = 2, so, the second substring in the list).

[bookmark: sqlckbk-CHP-6-SECT-14.3.4]

PostgreSQL

The inline view X walks each string. The number of rows returned is determined by how many values are in each string. To find the number of values in each string, find the number of delimiters in each string and add one. The function SPLIT_PART uses the values in POS to find the nth occurrence of the delimiter and parse the string into values:

	

	select iter.pos, src.name as name1,

	 split_part(src.name,',',iter.pos) as name2

	 from (select id as pos from t10) iter,

	 (select cast(name as text) as name from v) src

	 where iter.pos <=

	 length(src.name)-length(replace(src.name,',',''))+1

	 pos | name1 | name2

	-----+--------------------------------+---------

	 1 | mo,larry,curly | mo

	 2 | mo,larry,curly | larry

	 3 | mo,larry,curly | curly

	 1 | tina,gina,jaunita,regina,leena | tina

	 2 | tina,gina,jaunita,regina,leena | gina

	 3 | tina,gina,jaunita,regina,leena | jaunita

	 4 | tina,gina,jaunita,regina,leena | regina

	 5 | tina,gina,jaunita,regina,leena | leena

I've shown NAME twice so you can see how SPLIT_PART parses each string using POS. Once each string is parsed, the final step is the keep the rows where POS equals the nth substring you are interested in, in this case, 2.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-15]

Recipe 6.15. Parsing an IP Address

[bookmark: idx-CHP-6-0294]

[bookmark: sqlckbk-CHP-6-SECT-15.1]

Problem

You want to parse an IP address's fields into columns. Consider the following IP address:

	111.22.3.4

You would like the result of your query to be:

	A B C D

	----- ----- ----- ---

	111 22 3 4

[bookmark: sqlckbk-CHP-6-SECT-15.2]

Solution

The solution depends on the built-in functions provided by your DBMS. Regardless of your DBMS, being able to locate periods and the numbers immediately surrounding them are the keys to the solution.

[bookmark: sqlckbk-CHP-6-SECT-15.2.1]

DB2

Use the recursive WITH clause to simulate an iteration through the [bookmark: idx-CHP-6-0295]IP address while using SUBSTR to easily parse it. A leading period is added to the IP address so that every set of numbers has a period in front of it and can be treated the same way.

	 1 with x (pos,ip) as (

	 2 values (1,'.92.111.0.222')

	 3 union all

	 4 select pos+1,ip from x where pos+1 <= 20

	 5)

	 6 select max(case when rn=1 then e end) a,

	 7 max(case when rn=2 then e end) b,

	 8 max(case when rn=3 then e end) c,

	 9 max(case when rn=4 then e end) d

	10 from (

	11 select pos,c,d,

	12 case when posstr(d,'.') > 0 then substr(d,1,posstr(d,'.')-1)

	13 else d

	14 end as e,

	15 row_number() over(order by pos desc) rn

	16 from (

	17 select pos, ip,right(ip,pos) as c, substr(right(ip,pos),2) as d

	18 from x

	19 where pos <= length(ip)

	20 and substr(right(ip,pos),1,1) = '.'

	21) x

	22) y

[bookmark: sqlckbk-CHP-6-SECT-15.2.2]

MySQL

The function SUBSTR_INDEX makes parsing an IP address an easy operation:

	1 select substring_index(substring_index(y.ip,'.',1),'.',-1) a,

	2 substring_index(substring_index(y.ip,'.',2),'.',-1) b,

	3 substring_index(substring_index(y.ip,'.',3),'.',-1) c,

	4 substring_index(substring_index(y.ip,'.',4),'.',-1) d

	5 from (select '92.111.0.2' as ip from t1) y

[bookmark: sqlckbk-CHP-6-SECT-15.2.3]

Oracle

Use the built-in function SUBSTR and INSTR to parse and navigate through the [bookmark: idx-CHP-6-0296]IP address:

	1 select ip,

	2 substr(ip, 1, instr(ip,'.')-1) a,

	3 substr(ip, instr(ip,'.')+1,

	4 instr(ip,'.',1,2)-instr(ip,'.')-1) b,

	5 substr(ip, instr(ip,'.',1,2)+1,

	6 instr(ip,'.',1,3)-instr(ip,'.',1,2)-1) c,

	7 substr(ip, instr(ip,'.',1,3)+1) d

	8 from (select '92.111.0.2' as ip from t1)

[bookmark: sqlckbk-CHP-6-SECT-15.2.4]

PostgreSQL

Use the built-in function SPLIT_PART to parse an IP address:

	1 select split_part(y.ip,'.',1) as a,

	2 split_part(y.ip,'.',2) as b,

	3 split_part(y.ip,'.',3) as c,

	4 split_part(y.ip,'.',4) as d

	5 from (select cast('92.111.0.2' as text) as ip from t1) as y

[bookmark: sqlckbk-CHP-6-SECT-15.2.5]

SQL Server

Use the recursive WITH clause to simulate an iteration through the IP address while using SUBSTR to easily parse it. A leading period is added to the IP address so that every set of numbers has a period in front of it and can be treated the same way:

	 1 with x (pos,ip) as (

	 2 select 1 as pos,'.92.111.0.222' as ip from t1

	 3 union all

	 4 select pos+1,ip from x where pos+1 <= 20

	 5)

	 6 select max(case when rn=1 then e end) a,

	 7 max(case when rn=2 then e end) b,

	 8 max(case when rn=3 then e end) c,

	 9 max(case when rn=4 then e end) d

	10 from (

	11 select pos,c,d,

	12 case when charindex('.',d) > 0

	13 then substring(d,1,charindex('.',d)-1)

	14 else d

	15 end as e,

	16 row_number() over(order by pos desc) rn

	17 from (

	18 select pos, ip,right(ip,pos) as c,

	19 substring(right(ip,pos),2,len(ip)) as d

	20 from x

	21 where pos <= len(ip)

	22 and substring(right(ip,pos),1,1) = '.'

	23) x

	24) y

[bookmark: sqlckbk-CHP-6-SECT-15.3]

Discussion

By using the built-in functions for your database, you can easily walk through parts of a string. The key is being able to locate each of the periods in the address. Then you can parse the numbers between each.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-2]

Recipe 6.2. Embedding Quotes Within String Literals

[bookmark: idx-CHP-6-0236]

[bookmark: sqlckbk-CHP-6-SECT-2.1]

Problem

You want to embed quote marks within string literals. You would like to produce results such as the following with SQL:

	QMARKS

	g'day mate

	beavers' teeth

	'

[bookmark: sqlckbk-CHP-6-SECT-2.2]

Solution

The following three SELECTs highlight different ways you can create quotes: in the middle of a string and by themselves:

	1 select 'g''day mate' qmarks from t1 union all

	2 select 'beavers'' teeth' from t1 union all

	3 select '''' from t1

[bookmark: sqlckbk-CHP-6-SECT-2.3]

Discussion

When working with quotes, it's often useful to think of them like parentheses. When you have an opening parenthesis, you must always have a closing parenthesis. The same goes for quotes. Keep in mind that you should always have an even number of quotes across any given string. To embed a single quote within a string you need to use two quotes:

	

	select 'apples core', 'apple''s core',

	 case when '' is null then 0 else 1 end

	 from t1

	 'APPLESCORE 'APPLE''SCOR CASEWHEN''ISNULLTHEN0ELSE1END

	 ----------- ------------ -----------------------------

	 apples core apple's core 0

Following is the solution stripped down to its bare elements. You have two outer quotes defining a string literal, and, within that string literal you have two quotes that together represent just one quote in the string that you actually get:

	

	select '''' as quote from t1

	Q

	-

	'

When working with quotes, be sure to remember that a string literal comprising two quotes alone, with no intervening characters, is NULL.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-3]

Recipe 6.3. Counting the Occurrences of a Character in a String

[bookmark: idx-CHP-6-0237]

[bookmark: sqlckbk-CHP-6-SECT-3.1]

Problem

You want to count the number of times a character or substring occurs within a given string. Consider the following string:

	10,CLARK,MANAGER

You want to determine how many commas are in the string.

[bookmark: sqlckbk-CHP-6-SECT-3.2]

Solution

Subtract the length of the string without the commas from the original length of the string to determine the number of commas in the string. Each DBMS provides functions for obtaining the length of a string and removing characters from a string. In most cases, these functions are LENGTH and REPLACE, respectively (SQL Server users will use the built-in function LEN rather than LENGTH):

	1 select (length('10,CLARK,MANAGER')-

	2 length(replace('10,CLARK,MANAGER',',','')))/length(',')

	3 as cnt

	4 from t1

[bookmark: sqlckbk-CHP-6-SECT-3.3]

Discussion

You arrive at the solution by using simple subtraction. The call to LENGTH on line 1 returns the original size of the string, and the first call to LENGTH on line 2 returns the size of the string without the commas, which are removed by REPLACE.

By subtracting the two lengths you obtain the difference in terms of characters, which is the number of commas in the string. The last operation divides the difference by the length of your search string. This division is necessary if the string you are looking for has a length greater than 1. In the following example, counting the occurrence of "LL" in the string "HELLO HELLO" without dividing will return an incorrect result:

	

	select

	 (length('HELLO HELLO')-

	 length(replace('HELLO HELLO','LL','')))/length('LL')

	 as correct_cnt,

	 (length('HELLO HELLO')-

	 length(replace('HELLO HELLO','LL',''))) as incorrect_cnt

	 from t1

	CORRECT_CNT INCORRECT_CNT

	----------- -------------

	 2 4

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-4]

Recipe 6.4. Removing Unwanted Characters from a String

[bookmark: idx-CHP-6-0238]

[bookmark: sqlckbk-CHP-6-SECT-4.1]

Problem

You want to remove specific characters from your data. Consider this result set:

	ENAME SAL

	---------- ----------

	SMITH 800

	ALLEN 1600

	WARD 1250

	JONES 2975

	MARTIN 1250

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

	TURNER 1500

	ADAMS 1100

	JAMES 950

	FORD 3000

	MILLER 1300

You want to remove all zeros and vowels as shown by the following values in columns STRIPPED1 and STRIPPED2:

	ENAME STRIPPED1 SAL STRIPPED2

	---------- ---------- ---------- ---------

	SMITH SMTH 800 8

	ALLEN LLN 1600 16

	WARD WRD 1250 125

	JONES JNS 2975 2975

	MARTIN MRTN 1250 125

	BLAKE BLK 2850 285

	CLARK CLRK 2450 245

	SCOTT SCTT 3000 3

	KING KNG 5000 5

	TURNER TRNR 1500 15

	ADAMS DMS 1100 11

	JAMES JMS 950 95

	FORD FRD 3000 3

	MILLER MLLR 1300 13

[bookmark: sqlckbk-CHP-6-SECT-4.2]

Solution

Each DBMS provides functions for removing unwanted characters from a string. The functions [bookmark: idx-CHP-6-0239]REPLACE and [bookmark: idx-CHP-6-0240]TRANSLATE are most useful for this problem.

[bookmark: sqlckbk-CHP-6-SECT-4.2.1]

DB2

Use the built-in functions TRANSLATE and REPLACE to remove unwanted characters and strings:

	1 select ename,

	2 replace(translate(ename,'aaaaa','AEIOU'),'a','') stripped1,

	3 sal,

	4 replace(cast(sal as char(4)),'0','') stripped2

	5 from emp

[bookmark: sqlckbk-CHP-6-SECT-4.2.2]

MySQL and SQL Server

MySQL and SQL Server do not offer a TRANSLATE function, so several calls to REPLACE are needed:

	 1 select ename,

	 2 replace(

	 3 replace(

	 4 replace(

	 5 replace(

	 6 replace(ename,'A',''),'E',''),'I',''),'O',''),'U','')

	 7 as stripped1,

	 8 sal,

	 9 replace(sal,0,'') stripped2

	10 from emp

[bookmark: sqlckbk-CHP-6-SECT-4.2.3]

Oracle and PostgreSQL

Use the built-in functions TRANSLATE and REPLACE to remove unwanted characters and strings:

	1 select ename,

	2 replace(translate(ename,'AEIOU','aaaaa'),'a')

	3 as stripped1,

	4 sal,

	5 replace(sal,0,'') as stripped2

	6 from emp

[bookmark: sqlckbk-CHP-6-SECT-4.3]

Discussion

The built-in function REPLACE removes all occurrences of zeros. To remove the vowels, use TRANSLATE to convert all vowels into one specific character (I used "a"; you can use any character), then use REPLACE to remove all occurrences of that character.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-5]

Recipe 6.5. Separating Numeric and Character Data

[bookmark: idx-CHP-6-0241]

[bookmark: sqlckbk-CHP-6-SECT-5.1]

Problem

You have (unfortunately) stored numeric data along with character data together in one column. You want to separate the character data from the numeric data. Consider the following result set:

	DATA

	SMITH800

	ALLEN1600

	WARD1250

	JONES2975

	MARTIN1250

	BLAKE2850

	CLARK2450

	SCOTT3000

	KING5000

	TURNER1500

	ADAMS1100

	JAMES950

	FORD3000

	MILLER1300

You would like the result to be:

	ENAME SAL

	---------- ----------

	SMITH 800

	ALLEN 1600

	WARD 1250

	JONES 2975

	MARTIN 1250

	BLAKE 2850

	CLARK 2450

	SCOTT 3000

	KING 5000

	TURNER 1500

	ADAMS 1100

	JAMES 950

	FORD 3000

	MILLER 1300

[bookmark: sqlckbk-CHP-6-SECT-5.2]

Solution

Use the built-in functions [bookmark: idx-CHP-6-0242]TRANSLATE and [bookmark: idx-CHP-6-0243]REPLACE to isolate the character from the [bookmark: idx-CHP-6-0244]numeric data. Like other recipes in this chapter, the trick is to use TRANSLATE to transform multiple characters into a single character you can reference. This way you are no longer searching for multiple numbers or characters, rather one character to represent all numbers or one character to represent all characters.

[bookmark: sqlckbk-CHP-6-SECT-5.2.1]

DB2

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character data:

	 1 select replace(

	 2 translate(data,'0000000000','0123456789'),'0','') ename,

	 3 cast(

	 4 replace(

	 5 translate(lower(data),repeat('z',26),

	 6 'abcdefghijklmnopqrstuvwxyz'),'z','') as integer) sal

	 7 from (

	 8 select ename||cast(sal as char(4)) data

	 9 from emp

	10) x

[bookmark: sqlckbk-CHP-6-SECT-5.2.2]

Oracle

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character data:

	 1 select replace(

	 2 translate(data,'0123456789','0000000000'),'0') ename,

	 3 to_number(

	 5 replace(

	 6 translate(lower(data),

	 7 'abcdefghijklmnopqrstuvwxyz',

	 8 rpad('z',26,'z')),'z')) sal

	 9 from (

	10 select ename||sal data

	11 from emp

	12)

[bookmark: sqlckbk-CHP-6-SECT-5.2.3]

PostgreSQL

Use the functions TRANSLATE and REPLACE to isolate and separate the numeric from the character data:

	 1 select replace(

	 2 translate(data,'0123456789','0000000000'),'0','') as ename,

	 3 cast(

	 4 replace(

	 5 translate(lower(data),

	 6 'abcdefghijklmnopqrstuvwxyz',

	 7 rpad('z',26,'z')),'z','') as integer) as sal

	 8 from (

	 9 select ename||sal as data

	10 from emp

	11) x

[bookmark: sqlckbk-CHP-6-SECT-5.3]

Discussion

The syntax is a bit different for each DBMS, but the technique is the same. I will use the solution for Oracle in the discussion section. The key to solving this problem is to isolate the [bookmark: idx-CHP-6-0245]numeric and character data. You can use TRANSLATE and REPLACE to do this. To extract the numeric data, first isolate all character data using TRANSLATE:

	

	select data,

	 translate(lower(data),

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('z',26,'z')) sal

	 from (select ename||sal data from emp)

	DATA SAL

	-------------------- -------------------

	SMITH800 zzzzz800

	ALLEN1600 zzzzz1600

	WARD1250 zzzz1250

	JONES2975 zzzzz2975

	MARTIN1250 zzzzzz1250

	BLAKE2850 zzzzz2850

	CLARK2450 zzzzz2450

	SCOTT3000 zzzzz3000

	KING5000 zzzz5000

	TURNER1500 zzzzzz1500

	ADAMS1100 zzzzz1100

	JAMES950 zzzzz950

	FORD3000 zzzz3000

	MILLER1300 zzzzzz1300

By using TRANSLATE you convert every non-[bookmark: idx-CHP-6-0246]numeric character into a lowercase Z. The next step is to remove all instances of lowercase Z from each record using REPLACE, leaving only numerical characters that can then be cast to a number:

	

	select data,

	 to_number(

	 replace(

	 translate(lower(data),

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('z',26,'z')),'z')) sal

	 from (select ename||sal data from emp)

	 DATA SAL

	 -------------------- ----------

	 SMITH800 800

	 ALLEN1600 1600

	 WARD1250 1250

	 JONES2975 2975

	 MARTIN1250 1250

	 BLAKE2850 2850

	 CLARK2450 2450

	 SCOTT3000 3000

	 KING5000 5000

	 TURNER1500 1500

	 ADAMS1100 1100

	 JAMES950 950

	 FORD3000 3000

	 MILLER1300 1300

To extract the non-numeric characters, isolate the numeric characters using TRANSLATE:

	

	select data,

	 translate(data,'0123456789','0000000000') ename

	 from (select ename||sal data from emp)

	 DATA ENAME

	 -------------------- ----------

	 SMITH800 SMITH000

	 ALLEN1600 ALLEN0000

	 WARD1250 WARD0000

	 JONES2975 JONES0000

	 MARTIN1250 MARTIN0000

	 BLAKE2850 BLAKE0000

	 CLARK2450 CLARK0000

	 SCOTT3000 SCOTT0000

	 KING5000 KING0000

	 TURNER1500 TURNER0000

	 ADAMS1100 ADAMS0000

	 JAMES950 JAMES000

	 FORD3000 FORD0000

	 MILLER1300 MILLER0000

By using TRANSLATE you convert every [bookmark: idx-CHP-6-0247]numeric character into a zero. The next step is to remove all instances of zero from each record using REPLACE, leaving only non-numeric characters:

	

	select data,

	 replace(translate(data,'0123456789','0000000000'),'0') ename

	 from (select ename||sal data from emp)

	 DATA ENAME

	 -------------------- -------

	 SMITH800 SMITH

	 ALLEN1600 ALLEN

	 WARD1250 WARD

	 JONES2975 JONES

	 MARTIN1250 MARTIN

	 BLAKE2850 BLAKE

	 CLARK2450 CLARK

	 SCOTT3000 SCOTT

	 KING5000 KING

	 TURNER1500 TURNER

	 ADAMS1100 ADAMS

	 JAMES950 JAMES

	 FORD3000 FORD

	 MILLER1300 MILLER

Put the two techniques together and you have your solution.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-6]

Recipe 6.6. Determining Whether a String Is Alphanumeric

[bookmark: idx-CHP-6-0248]

[bookmark: sqlckbk-CHP-6-SECT-6.1]

Problem

You want to return rows from a table only when a column of interest contains no characters other than numbers and letters. Consider the following view V (SQL Server users will use the operator "+" for concatenation instead of "||"):

	create view V as

	select ename as data

	 from emp

	 where deptno=10

	 union all

	select ename||', $'|| cast(sal as char(4)) ||'.00' as data

	 from emp

	 where deptno=20

	 union all

	select ename|| cast(deptno as char(4)) as data

	 from emp

	 where deptno=30

The view V represents your table, and it returns the following:

	DATA

	CLARK

	KING

	MILLER

	SMITH, $800.00

	JONES, $2975.00

	SCOTT, $3000.00

	ADAMS, $1100.00

	FORD, $3000.00

	ALLEN30

	WARD30

	MARTIN30

	BLAKE30

	TURNER30

	JAMES30

However, from the view's data you want to return only the following records:

	DATA

	CLARK

	KING

	MILLER

	ALLEN30

	WARD30

	MARTIN30

	BLAKE30

	TURNER30

	JAMES30

In short, you wish to omit those rows containing data other than letters and digits.

[bookmark: sqlckbk-CHP-6-SECT-6.2]

Solution

It may seem intuitive at first to solve the problem by searching for all the possible non-[bookmark: idx-CHP-6-0249]alphanumeric characters that can be found in a string, but, on the contrary, you will find it easier to do the exact opposite: find all the alphanumeric characters. By doing so, you can treat all the alphanumeric characters as one by converting them to one single character. The reason you want to do this is so the alphanumeric characters can be manipulated together, as a whole. Once you've generated a copy of the string in which all alphanumeric characters are represented by a single character of your choosing, it is easy to isolate the alphanumeric characters from any other characters.

[bookmark: sqlckbk-CHP-6-SECT-6.2.1]

DB2

Use the function TRANSLATE to convert all [bookmark: idx-CHP-6-0250]alphanumeric characters to a single character, then identify any rows that have characters other than the converted alphanumeric character. For DB2 users, the CAST function calls in view V are necessary; otherwise, the view cannot be created due to type conversion errors. Take extra care when working with casts to CHAR as they are fixed length (padded):

	1 select data

	2 from V

	3 where translate(lower(data),

	4 repeat('a',36),

	5 '0123456789abcdefghijklmnopqrstuvwxyz') =

	6 repeat('a',length(data))

[bookmark: sqlckbk-CHP-6-SECT-6.2.2]

MySQL

The syntax for view V is slightly different in MySQL:

	create view V as

	select ename as data

	 from emp

	 where deptno=10

	 union all

	select concat(ename,', $',sal,'.00') as data

	 from emp

	 where deptno=20

	 union all

	select concat(ename,deptno) as data

	 from emp

	 where deptno=30

Use a regular expression to easily find rows that contain non-alphanumeric data:

	1 select data

	2 from V

	3 where data regexp '[^0-9a-zA-Z]' = 0

[bookmark: sqlckbk-CHP-6-SECT-6.2.3]

Oracle and PostgreSQL

Use the function TRANSLATE to convert all alphanumeric characters to a single character, then identify any rows that have characters other than the converted alphanumeric character. The CAST function calls in view V are not needed for Oracle and PostgreSQL. Take extra care when working with casts to CHAR as they are fixed length (padded). If you decide to cast, cast to VARCHAR or VARCHAR2:

	1 select data

	2 from V

	3 where translate(lower(data),

	4 '0123456789abcdefghijklmnopqrstuvwxyz',

	5 rpad('a',36,'a')) = rpad('a',length(data),'a')

[bookmark: sqlckbk-CHP-6-SECT-6.2.4]

SQL Server

Because SQL Server does not support a [bookmark: idx-CHP-6-0251]TRANSLATE function, you must walk each row and find any that contains a character that contains a non-[bookmark: idx-CHP-6-0252]alphanumeric value. That can be done many ways, but the following solution uses an ASCII-value evaluation:

	 1 select data

	 2 from (

	 3 select v.data, iter.pos,

	 4 substring(v.data,iter.pos,1) c,

	 5 ascii(substring(v.data,iter.pos,1)) val

	 6 from v,

	 7 (select id as pos from t100) iter

	 8 where iter.pos <= len(v.data)

	 9) x

	10 group by data

	11 having min(val) between 48 and 122

[bookmark: sqlckbk-CHP-6-SECT-6.3]

Discussion

The key to these solutions is being able to reference multiple characters concurrently. By using the function TRANSLATE you can easily manipulate all numbers or all characters without having to "iterate" and inspect each character one by one.

[bookmark: sqlckbk-CHP-6-SECT-6.3.1]

DB2, Oracle, and PostgreSQL

Only 9 of the 14 rows from view V are alphanumeric. To find the rows that are alphanumeric only, simply use the function TRANSLATE. In this example, TRANSLATE converts characters 09 and az to "a". Once the conversion is done, the converted row is then compared with a string of all "a" with the same length (as the row). If the length is the same, then you know all the characters are alphanumeric and nothing else.

By using the TRANSLATE function (using the Oracle syntax):

	where translate(lower(data),

	 '0123456789abcdefghijklmnopqrstuvwxyz',

	 rpad('a',36,'a'))

you convert all numbers and letters into a distinct character (I chose "a"). Once the data is converted, all strings that are indeed alphanumeric can be identified as a string comprising only a single character (in this case, "a"). This can be seen by running TRANSLATE by itself:

	

	select data, translate(lower(data),

	 '0123456789abcdefghijklmnopqrstuvwxyz',

	 rpad('a',36,'a'))

	 from V

	DATA TRANSLATE(LOWER(DATA)

	-------------------- ---------------------

	CLARK aaaaa

	…

	SMITH, $800.00 aaaaa, $aaa.aa

	…

	ALLEN30 aaaaaaa

	…

The [bookmark: idx-CHP-6-0253]alphanumeric values are converted, but the string lengths have not been modified. Because the lengths are the same, the rows to keep are the ones for which the call to TRANSLATE returns all a's. You keep those rows, rejecting the others, by comparing each original string's length with the length of its corresponding string of a's:

	

	select data, translate(lower(data),

	 '0123456789abcdefghijklmnopqrstuvwxyz',

	 rpad('a',36,'a')) translated,

	 rpad('a',length(data),'a') fixed

	 from V

	DATA TRANSLATED FIXED

	-------------------- -------------------- ----------------

	CLARK aaaaa aaaaa

	…

	SMITH, $800.00 aaaaa, $aaa.aa aaaaaaaaaaaaaa

	…

	ALLEN30 aaaaaaa aaaaaaa

	…

The last step is to keep only the strings where TRANSLATED equals FIXED.

[bookmark: sqlckbk-CHP-6-SECT-6.3.2]

MySQL

The expression in the WHERE clause:

	where data regexp '[^0-9a-zA-Z]' = 0

causes rows that have only numbers or characters to be returned. The value ranges in the brackets, "0-9a-zA-Z", represent all possible numbers and letters. The character "^" is for negation, so the expression can be stated as "not numbers or letters." A return value of 1 is true and 0 is false, so the whole expression can be stated as "return rows where anything other than numbers and letters is false."

[bookmark: sqlckbk-CHP-6-SECT-6.3.3]

SQL Server

The first step is to walk each row returned by view V. Each character in the value returned for DATA will itself be returned as a row. The values returned by C represent each individual character for the values returned by DATA:

	+-----------------+------+------+------+

	| data | pos | c | val |

	+-----------------+------+------+------+

	| ADAMS, $1100.00 | 1 | A | 65 |

	| ADAMS, $1100.00 | 2 | D | 68 |

	| ADAMS, $1100.00 | 3 | A | 65 |

	| ADAMS, $1100.00 | 4 | M | 77 |

	| ADAMS, $1100.00 | 5 | S | 83 |

	| ADAMS, $1100.00 | 6 | , | 44 |

	| ADAMS, $1100.00 | 7 | | 32 |

	| ADAMS, $1100.00 | 8 | $ | 36 |

	| ADAMS, $1100.00 | 9 | 1 | 49 |

	| ADAMS, $1100.00 | 10 | 1 | 49 |

	| ADAMS, $1100.00 | 11 | 0 | 48 |

	| ADAMS, $1100.00 | 12 | 0 | 48 |

	| ADAMS, $1100.00 | 13 | . | 46 |

	| ADAMS, $1100.00 | 14 | 0 | 48 |

	| ADAMS, $1100.00 | 15 | 0 | 48 |

Inline view Z not only returns each character in the column DATA row by row, it also provides the ASCII value for each character. For this particular implementation of SQL Server, the range 48122 represents [bookmark: idx-CHP-6-0254]alphanumeric characters. With that knowledge, you can group each row in DATA and filter out any such that the minimum ASCII value is not in the 48122 range.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-7]

Recipe 6.7. Extracting Initials from a Name

[bookmark: idx-CHP-6-0255]

[bookmark: sqlckbk-CHP-6-SECT-7.1]

Problem

You want convert a full name into initials. Consider the following name:

	 Stewie Griffin

You would like to return:

	 S.G.

[bookmark: sqlckbk-CHP-6-SECT-7.2]

Solution

It's important to keep in mind that SQL does not provide the flexibility of languages such as C or Python; therefore, creating a generic solution to deal with any name format is not something particularly easy to do in SQL. The solutions presented here expect the [bookmark: idx-CHP-6-0256]names to be either first and last name, or first, middle name/middle initial, and last name.

[bookmark: sqlckbk-CHP-6-SECT-7.2.1]

DB2

Use the built-in functions REPLACE, TRANSLATE, and REPEAT to extract the initials:

	1 select replace(

	2 replace(

	3 translate(replace('Stewie Griffin', '.', ''),

	4 repeat('#',26),

	5 'abcdefghijklmnopqrstuvwxyz'),

	6 '#',''), ' ','.')

	7 ||'.'

	8 from t1

[bookmark: sqlckbk-CHP-6-SECT-7.2.2]

MySQL

Use the built-in functions CONCAT, CONCAT_WS, SUBSTRING, and SUBSTRING_ INDEX to extract the [bookmark: idx-CHP-6-0257]

initials:

	 1 select case

	 2 when cnt = 2 then

	 3 trim(trailing '.' from

	 4 concat_ws('.',

	 5 substr(substring_index(name,' ',1),1,1),

	 6 substr(name,

	 7 length(substring_index(name,' ',1))+2,1),

	 8 substr(substring_index(name,' ',-1),1,1),

	 9 '.'))

	10 else

	11 trim(trailing '.' from

	12 concat_ws('.',

	13 substr(substring_index(name,' ',1),1,1),

	14 substr(substring_index(name,' ',-1),1,1)

	15))

	16 end as initials

	17 from (

	18 select name,length(name)-length(replace(name,' ','')) as cnt

	19 from (

	20 select replace('Stewie Griffin','.','') as name from t1

	21)y

	22)x

[bookmark: sqlckbk-CHP-6-SECT-7.2.3]

Oracle and PostgreSQL

Use the built-in functions REPLACE, TRANSLATE, and RPAD to extract the initials:

	1 select replace(

	2 replace(

	3 translate(replace('Stewie Griffin', '.', ''),

	4 'abcdefghijklmnopqrstuvwxyz',

	5 rpad('#',26,'#')), '#',''),' ','.') ||'.'

	6 from t1

[bookmark: sqlckbk-CHP-6-SECT-7.2.4]

SQL Server

As of the time of this writing, neither TRANSLATE nor CONCAT_WS is supported in SQL Server.

[bookmark: sqlckbk-CHP-6-SECT-7.3]

Discussion

By isolating the capital letters you can extract the initials from a name. The following sections describe each vendor-specific solution in detail.

[bookmark: sqlckbk-CHP-6-SECT-7.3.1]

DB2

The REPLACE function will remove any periods in the name (to handle middle [bookmark: idx-CHP-6-0258]

initials), and the TRANSLATE function will convert all non-uppercase letters to #.

	

	select translate(replace('Stewie Griffin', '.', ''),

	 repeat('#',26),

	 'abcdefghijklmnopqrstuvwxyz')

	 from t1

	TRANSLATE('STE

	S##### G######

At this point, the initials are the characters that are not #. The function REPLACE is then used to remove all the # characters:

	

	select replace(

	 translate(replace('Stewie Griffin', '.', ''),

	 repeat('#',26),

	 'abcdefghijklmnopqrstuvwxyz'),'#','')

	 from t1

	

	REP

	S G

The next step is to replace the white space with a period by using REPLACE again:

	select replace(

	 replace(

	 translate(replace('Stewie Griffin', '.', ''),

	 repeat('#',26),

	 'abcdefghijklmnopqrstuvwxyz'),'#',''),' ','.') || '.'

	 from t1

	REPLA

	S.G

The final step is to append a decimal to the end of the initials.

[bookmark: sqlckbk-CHP-6-SECT-7.3.2]

Oracle and PostgreSQL

The REPLACE function will remove any periods in the name (to handle middle initials), and the TRANSLATE function will convert all non-uppercase letters to '#'.

	

	select translate(replace('Stewie Griffin','.',''),

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('#',26,'#'))

	 from t1

	

	TRANSLATE('STE

	S##### G######

At this point, the [bookmark: idx-CHP-6-0259]

initials are the characters that are not "#". The function REPLACE is then used to remove all the # characters:

	

	select replace(

	 translate(replace('Stewie Griffin','.',''),

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('#',26,'#')),'#','')

	 from t1

	REP

	S G

The next step is to replace the white space with a period by using REPLACE again:

	

	select replace(

	 replace(

	 translate(replace('Stewie Griffin','.',''),

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('#',26,'#')),'#',''),' ','.') || '.'

	 from t1

	REPLA

	S.G

The final step is to append a decimal to the end of the initials.

[bookmark: sqlckbk-CHP-6-SECT-7.3.3]

MySQL

The inline view Y is used to remove any period from the name. The inline view X finds the number of white spaces in the name so the SUBSTR function can be called the correct number of times to extract the initials. The three calls to SUBSTRING_ INDEX parse the string into individual [bookmark: idx-CHP-6-0260]names based on the location of the white space. Because there is only a first and last name, the code in the ELSE portion of the case statement is executed:

	

	select substr(substring_index(name, ' ',1),1,1) as a,

	 substr(substring_index(name,' ',-1),1,1) as b

	 from (select 'Stewie Griffin' as name from t1) x

	

	A B

	- -

	S G

If the name in question has a middle name or initial, the initial would be returned by executing

	substr(name,length(substring_index(name, ' ',1))+2,1)

which finds the end of the first name then moves two spaces to the beginning of the middle name or initial; that is, the start position for SUBSTR. Because only onecharacter is kept, the middle name or initial is successfully returned. The [bookmark: idx-CHP-6-0261]

initials are then passed to CONCAT_WS, which separates the initials by a period:

	

	select concat_ws('.',

	 substr(substring_index(name, ' ',1),1,1),

	 substr(substring_index(name,' ',-1),1,1),

	 '.') a

	 from (select 'Stewie Griffin' as name from t1) x

	

	A

	S.G..

The last step is to trim the extraneous period from the initials.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-8]

Recipe 6.8. Ordering by Parts of a String

[bookmark: idx-CHP-6-0262]

[bookmark: sqlckbk-CHP-6-SECT-8.1]

Problem

You want to order your result set based on a substring. Consider the following records:

	ENAME

	SMITH

	ALLEN

	WARD

	JONES

	MARTIN

	BLAKE

	CLARK

	SCOTT

	KING

	TURNER

	ADAMS

	JAMES

	FORD

	MILLER

You want the records to be ordered based on the last two characters of each name:

	ENAME

	ALLEN

	TURNER

	MILLER

	JONES

	JAMES

	MARTIN

	BLAKE

	ADAMS

	KING

	WARD

	FORD

	CLARK

	SMITH

	SCOTT

[bookmark: sqlckbk-CHP-6-SECT-8.2]

Solution

The key to this solution is to find and use your DBMS's built-in function to extract the substring on which you wish to sort. This is typically done with the [bookmark: idx-CHP-6-0263]SUBSTR function.

[bookmark: sqlckbk-CHP-6-SECT-8.2.1]

DB2, Oracle, MySQL, and PostgreSQL

Use a combination of the built-in functions LENGTH and SUBSTR to order by a specific part of a string:

	1 select ename

	2 from emp

	3 order by substr(ename,length(ename)-1,)

[bookmark: sqlckbk-CHP-6-SECT-8.2.2]

SQL Server

Use functions SUBSTRING and LEN to order by a specific part of a string:

	1 select ename

	2 from emp

	3 order by substring(ename,len(ename)-1,2)

[bookmark: sqlckbk-CHP-6-SECT-8.3]

Discussion

By using a SUBSTR expression in your ORDER BY clause, you can pick any part of a string to use in ordering a result set. You're not limited to SUBSTR either. You can order rows by the result of almost any expression.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6-SECT-9]

Recipe 6.9. Ordering by a Number in a String

[bookmark: idx-CHP-6-0264]

[bookmark: sqlckbk-CHP-6-SECT-9.1]

Problem

You want order your result set based on a number within a string. Consider the following view:

	create view V as

	select e.ename ||' '||

	 cast(e.empno as char(4))||' '||

	 d.dname as data

	 from emp e, dept d

	 where e.deptno=d.deptno

This view returns the following data:

	DATA

	 CLARK 7782 ACCOUNTING

	 KING 7839 ACCOUNTING

	 MILLER 7934 ACCOUNTING

	 SMITH 7369 RESEARCH

	 JONES 7566 RESEARCH

	 SCOTT 7788 RESEARCH

	 ADAMS 7876 RESEARCH

	 FORD 7902 RESEARCH

	 ALLEN 7499 SALES

	 WARD 7521 SALES

	 MARTIN 7654 SALES

	 BLAKE 7698 SALES

	 TURNER 7844 SALES

	 JAMES 7900 SALES

You want to order the results based on the employee number, which falls between the employee name and respective department:

	DATA

	SMITH 7369 RESEARCH

	ALLEN 7499 SALES

	WARD 7521 SALES

	JONES 7566 RESEARCH

	MARTIN 7654 SALES

	BLAKE 7698 SALES

	CLARK 7782 ACCOUNTING

	SCOTT 7788 RESEARCH

	KING 7839 ACCOUNTING

	TURNER 7844 SALES

	ADAMS 7876 RESEARCH

	JAMES 7900 SALES

	FORD 7902 RESEARCH

	MILLER 7934 ACCOUNTING

[bookmark: sqlckbk-CHP-6-SECT-9.2]

Solution

Each solution uses functions and syntax specific to its DBMS, but the method (making use of the built-in functions [bookmark: idx-CHP-6-0265]REPLACE and [bookmark: idx-CHP-6-0266]TRANSLATE) is the same for each. The idea is to use REPLACE and TRANSLATE to remove non-digits from the [bookmark: idx-CHP-6-0267]strings, leaving only the numeric values upon which to sort.

[bookmark: sqlckbk-CHP-6-SECT-9.2.1]

DB2

Use the built-in functions REPLACE and TRANSLATE to order [bookmark: idx-CHP-6-0268]by numeric characters in a string:

	1 select data

	2 from V

	3 order by

	4 cast(

	5 replace(

	6 translate(data,repeat('#',length(data)),

	7 replace(

	8 translate(data,'##########','0123456789'),

	9 '#','')),'#','') as integer)

[bookmark: sqlckbk-CHP-6-SECT-9.2.2]

Oracle

Use the built-in functions REPLACE and TRANSLATE to order [bookmark: idx-CHP-6-0269]by numeric characters in a string:

	1 select data

	2 from V

	3 order by

	4 to_number(

	5 replace(

	6 translate(data,

	7 replace(

	8 translate(data,'0123456789','##########'),

	9 '#'),rpad('#',20,'#')),'#'))

[bookmark: sqlckbk-CHP-6-SECT-9.2.3]

PostgreSQL

Use the built-in functions REPLACE and TRANSLATE to order by numeric characters in a string:

	1 select data

	2 from V

	3 order by

	4 cast(

	5 replace(

	6 translate(data,

	7 replace(

	8 translate(data,'0123456789','##########'),

	9 '#',''),rpad('#',20,'#')),'#','') as integer)

[bookmark: sqlckbk-CHP-6-SECT-9.2.4]

MySQL and SQL Server

As of the time of this writing, neither vendor supplies the TRANSLATE function.

[bookmark: sqlckbk-CHP-6-SECT-9.3]

Discussion

The purpose of view V is only to supply rows on which to demonstrate this recipe's solution. The view simply concatenates several columns from the EMP table. The solution shows how to take such concatenated text as input and sort it by the employee number embedded within.

The ORDER BY clause in each solution may look a bit intimidating but performs quite well and is pretty straightforward once you examine it piece by piece. To order by the numbers in the string, it's easiest to remove any characters that are not numbers. Once the non-numeric characters are removed all that is left to do is cast the string of numerals into a number, then sort as you see fit. Before examining each function call it is important to understand the order in which each function is called. Starting with the innermost call, TRANSLATE (line 8 from each of the original solutions), you see that:

			TRANSLATE (line 8) is called and the results are returned to

			REPLACE (line 7) and those results are returned to

			TRANSLATE (line 6) and those results are returned to

			REPLACE (line 5) and those results are returned and finally

			cast into a number

The first step is to convert the numbers into characters that do not exist in the rest of the string. For this example, I chose "#" and used TRANSLATE to convert all non-numeric characters into occurrences of "#". For example, the following query shows the original data on the left and the results from the first translation:

	

	select data,

	 translate(data,'0123456789','##########') as tmp

	 from V

	DATA TMP

	 ------------------------------ -----------------------

	 CLARK 7782 ACCOUNTING CLARK #### ACCOUNTING

	 KING 7839 ACCOUNTING KING #### ACCOUNTING

	 MILLER 7934 ACCOUNTING MILLER #### ACCOUNTING

	 SMITH 7369 RESEARCH SMITH #### RESEARCH

	 JONES 7566 RESEARCH JONES #### RESEARCH

	 SCOTT 7788 RESEARCH SCOTT #### RESEARCH

	 ADAMS 7876 RESEARCH ADAMS #### RESEARCH

	 FORD 7902 RESEARCH FORD #### RESEARCH

	 ALLEN 7499 SALES ALLEN #### SALES

	 WARD 7521 SALES WARD #### SALES

	 MARTIN 7654 SALES MARTIN #### SALES

	 BLAKE 7698 SALES BLAKE #### SALES

	 TURNER 7844 SALES TURNER #### SALES

	 JAMES 7900 SALES JAMES #### SALES

TRANSLATE finds the numerals in each string and converts each one to to the "#" character. The modified [bookmark: idx-CHP-6-0270]strings are then returned to REPLACE (line 11), which removes all occurrences of "#":

	

	select data,

	replace(

	translate(data,'0123456789','##########'),'#') as tmp

	 from V

	DATA TMP

	 ------------------------------ -------------------

	 CLARK 7782 ACCOUNTING CLARK ACCOUNTING

	 KING 7839 ACCOUNTING KING ACCOUNTING

	 MILLER 7934 ACCOUNTING MILLER ACCOUNTING

	 SMITH 7369 RESEARCH SMITH RESEARCH

	 JONES 7566 RESEARCH JONES RESEARCH

	 SCOTT 7788 RESEARCH SCOTT RESEARCH

	 ADAMS 7876 RESEARCH ADAMS RESEARCH

	 FORD 7902 RESEARCH FORD RESEARCH

	 ALLEN 7499 SALES ALLEN SALES

	 WARD 7521 SALES WARD SALES

	 MARTIN 7654 SALES MARTIN SALES

	 BLAKE 7698 SALES BLAKE SALES

	 TURNER 7844 SALES TURNER SALES

	 JAMES 7900 SALES JAMES SALES

The [bookmark: idx-CHP-6-0271]strings are then returned to TRANSLATE once again, but this time it's the second (outermost) TRANSLATE in the solution. TRANSLATE searches the original string for any characters that match the characters in TMP. If any are found, they too are converted to "#"s. This conversion allows all non-numeric characters to be treated as a single character (because they are all transformed to the same character):

	

	select data, translate(data,

	 replace(

	 translate(data,'0123456789','##########'),

	 '#'),

	 rpad('#',length(data),'#')) as tmp

	 from V

	DATA TMP

	------------------------------ ---------------------------

	CLARK 7782 ACCOUNTING ########7782###########

	KING 7839 ACCOUNTING ########7839###########

	MILLER 7934 ACCOUNTING ########7934###########

	SMITH 7369 RESEARCH ########7369#########

	JONES 7566 RESEARCH ########7566#########

	SCOTT 7788 RESEARCH ########7788#########

	ADAMS 7876 RESEARCH ########7876#########

	FORD 7902 RESEARCH ########7902#########

	ALLEN 7499 SALES ########7499######

	WARD 7521 SALES ########7521######

	MARTIN 7654 SALES ########7654######

	BLAKE 7698 SALES ########7698######

	TURNER 7844 SALES ########7844######

	JAMES 7900 SALES ########7900######

The next step is to remove all "#" characters through a call to REPLACE (line 8), leaving you with only numbers:

	

	select data, replace(

	 translate(data,

	 replace(

	 translate(data,'0123456789','##########'),

	 '#'),

	 rpad('#',length(data),'#')),'#') as tmp

	 from V

	DATA TMP

	------------------------------ -----------

	CLARK 7782 ACCOUNTING 7782

	KING 7839 ACCOUNTING 7839

	MILLER 7934 ACCOUNTING 7934

	SMITH 7369 RESEARCH 7369

	JONES 7566 RESEARCH 7566

	SCOTT 7788 RESEARCH 7788

	ADAMS 7876 RESEARCH 7876

	FORD 7902 RESEARCH 7902

	ALLEN 7499 SALES 7499

	WARD 7521 SALES 7521

	MARTIN 7654 SALES 7654

	BLAKE 7698 SALES 7698

	TURNER 7844 SALES 7844

	JAMES 7900 SALES 7900

Finally, cast TMP to a number (line 4) using the appropriate DBMS function (often CAST) to accomplish this:

	

	select data, to_number(

	 replace(

	 translate(data,

	 replace(

	 translate(data,'0123456789','##########'),

	 '#'),

	 rpad('#',length(data),'#')),'#')) as tmp

	 from V

	DATA TMP

	------------------------------ ----------

	CLARK 7782 ACCOUNTING 7782

	KING 7839 ACCOUNTING 7839

	MILLER 7934 ACCOUNTING 7934

	SMITH 7369 RESEARCH 7369

	JONES 7566 RESEARCH 7566

	SCOTT 7788 RESEARCH 7788

	ADAMS 7876 RESEARCH 7876

	FORD 7902 RESEARCH 7902

	ALLEN 7499 SALES 7499

	WARD 7521 SALES 7521

	MARTIN 7654 SALES 7654

	BLAKE 7698 SALES 7698

	TURNER 7844 SALES 7844

	JAMES 7900 SALES 7900

When developing [bookmark: idx-CHP-6-0272]queries like this, it's helpful to work with your expressions in the SELECT list. That way, you can easily view the intermediate results as you work toward a final solution. However, because the point of this recipe is to order the results, ultimately you should place all the function calls into the ORDER [bookmark: idx-CHP-6-0273]BY clause:

	

	select data

	 from V

	 order by

	 to_number(

	 replace(

	 translate(data,

	 replace(

	 translate(data,'0123456789','##########'),

	 '#'),rpad('#',length(data),'#')),'#'))

	DATA

	SMITH 7369 RESEARCH

	ALLEN 7499 SALES

	WARD 7521 SALES

	JONES 7566 RESEARCH

	MARTIN 7654 SALES

	BLAKE 7698 SALES

	CLARK 7782 ACCOUNTING

	SCOTT 7788 RESEARCH

	KING 7839 ACCOUNTING

	TURNER 7844 SALES

	ADAMS 7876 RESEARCH

	JAMES 7900 SALES

	FORD 7902 RESEARCH

	MILLER 7934 ACCOUNTING

As a final note, the data in the view is comprised of three fields, only one being numeric. Keep in mind that if there had been multiple numeric fields, they would have all been concatenated into one number before the rows were sorted.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-6]

Chapter 6. Working with Strings

This chapter focuses on string manipulation in SQL. Keep in mind that SQL is not designed to perform complex string manipulation and you can (and will) find working with strings in SQL to be very cumbersome and frustrating at times. Despite SQL's limitations, there are some very useful built-in functions provided by the different DBMSs, and I've tried to use them in creative ways. This chapter in particular is very representative of the message I tried to convey in the introduction; SQL is the good, the bad, and the ugly. I hope that you take away from this chapter a better appreciation for what can and can't be done in SQL when working with strings. In many cases you'll be surprised by how easy parsing and transforming of strings can be, while at other times you'll be aghast by the kind of SQL that is necessary to accomplish a particular task.

The first recipe in this chapter is critically important, as it is leveraged by several of the subsequent solutions. In many cases, you'd like to have the ability to traverse a string by moving through it a character at a time. Unfortunately, SQL does not make this easy. Because there is no [bookmark: idx-CHP-6-0235]loop functionality in SQL (Oracle's MODEL clause excluded), you need to mimic a loop to traverse a string. I call this operation "walking a string" or "walking through a string" and the very first recipe explains the technique. This is a fundamental operation in string parsing when using SQL, and is referenced and used by almost all recipes in this chapter. I strongly suggest becoming comfortable with how the technique works.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-1]

Recipe 7.1. Computing an Average

[bookmark: sqlckbk-CHP-7-SECT-1.1]

Problem

You want to compute the average value in a column, either for all rows in a table or for some subset of rows. For example, you might want to find the average salary for all employees as well as the average salary for each department.

[bookmark: sqlckbk-CHP-7-SECT-1.2]

Solution

When computing the average of all employee salaries, simply apply the [bookmark: idx-CHP-7-0297]AVG function to the column containing those salaries. By excluding a WHERE clause, the average is computed against all non-NULL values:

	

	1 select avg(sal) as avg_sal

	2 from emp

	 AVG_SAL

	2073.21429

To compute the average salary for each department, use the GROUP BY clause to create a group corresponding to each department:

	

	1 select deptno, avg(sal) as avg_sal

	2 from emp

	3 group by deptno

	 DEPTNO AVG_SAL

	---------- ----------

	 10 2916.66667

	 20 2175

	 30 1566.66667

[bookmark: sqlckbk-CHP-7-SECT-1.3]

Discussion

When finding an average where the whole table is the group or window, simply apply the [bookmark: idx-CHP-7-0298]AVG function to the column you are interested in without using the GROUP BY clause. It is important to realize that the function AVG ignores NULLs. The effect of NULL values being ignored can be seen here:

	create table t2(sal integer)

	insert into t2 values (10)

	insert into t2 values (20)

	insert into t2 values (null)

	

	select avg(sal) select distinct 30/2

	 from t2 from t2

	 AVG(SAL) 30/2

	---------- ----------

	 15 15

	

	select avg(coalesce(sal,0)) select distinct 30/3

	 from t2 from t2

	

	AVG(COALESCE(SAL,0)) 30/3

	-------------------- ----------

	 10 10

The [bookmark: idx-CHP-7-0299]COALESCE function will return the first non-NULL value found in the list of values that you pass. When NULL SAL values are converted to zero, the average changes. When invoking aggregate functions, always give thought to how you want NULLs handled.

The second part of the solution uses GROUP BY (line 3) to divide employee records into groups based on department affiliation. GROUP BY automatically causes aggregate functions such as AVG to execute and return a result for each group. In this example, AVG would execute once for each department-based group of employee records.

It is not necessary, by the way, to include GROUP BY columns in your select list. For example:

	

	select avg(sal)

	 from emp

	 group by deptno

	 AVG(SAL)

	2916.66667

	 2175

	1566.66667

You are still grouping by DEPTNO even though it is not in the SELECT clause. Including the column you are grouping by in the SELECT clause often improves readability, but is not mandatory. It is mandatory, however, to avoid placing columns in your SELECT list that are not also in your GROUP BY clause.

[bookmark: sqlckbk-CHP-7-SECT-1.4]

See Also

Appendix A for a refresher on GROUP BY functionality.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-10]

Recipe 7.10. Calculating a Median

[bookmark: sqlckbk-CHP-7-SECT-10.1]

Problem

You want to calculate the median (for those of who do not recall, the median is the value of the middle member of a set of ordered elements) value for a column of numeric values. For example, you want to find the median of the salaries in DEPTNO 20. Based on the following salaries:

	

	select sal

	 from emp

	 where deptno = 20

	 order by sal

	 SAL

	 800

	 1100

	 2975

	 3000

	 3000

the median is 2975.

[bookmark: sqlckbk-CHP-7-SECT-10.2]

Solution

Other than the Oracle solution (which uses supplied functions to compute a median), all of the solutions are based on the method described by Rozenshtein, Abramovich, and Birger in [bookmark: idx-CHP-7-0331]Optimizing Transact-SQL: Advanced Programming Techniques (SQL Forum Press, 1997). The introduction of window functions allows for a more efficient solution compared to the traditional self join.

[bookmark: sqlckbk-CHP-7-SECT-10.2.1]

DB2

Use the window functions COUNT(*) OVER and ROW_NUMBER to find the median:

	 1 select avg(sal)

	 2 from (

	 3 select sal,

	 4 count(*) over() total,

	 5 cast(count(*) over() as decimal)/2 mid,

	 6 ceil(cast(count(*) over() as decimal)/2) next,

	 7 row_number() over (order by sal) rn

	 8 from emp

	 9 where deptno = 20

	10) x

	11 where (mod(total,2) = 0

	12 and rn in (mid, mid+1)

	13)

	14 or (mod(total,2) = 1

	15 and rn = next

	16)

[bookmark: sqlckbk-CHP-7-SECT-10.2.2]

MySQL and PostgreSQL

Use a self join to find the [bookmark: idx-CHP-7-0332]median:

	 1 select avg(sal)

	 2 from (

	 3 select e.sal

	 4 from emp e, emp d

	 5 where e.deptno = d.deptno

	 6 and e.deptno = 20

	 7 group by e.sal

	 8 having sum(case when e.sal = d.sal then 1 else 0 end)

	 9 >= abs(sum(sign(e.sal - d.sal)))

	10)

[bookmark: sqlckbk-CHP-7-SECT-10.2.3]

Oracle

Use the [bookmark: idx-CHP-7-0333]functions MEDIAN (Oracle Database 10g) or [bookmark: idx-CHP-7-0334]PERCENTILE_CONT (Oracle9i Database):

	1 select median(sal)

	2 from emp

	3 where deptno=20

	1 select percentile_cont(0.5)

	2 within group(order by sal)

	3 from emp

	4 where deptno=20

Use the DB2 solution for Oracle8i Database. For versions prior to Oracle8i Database you can use the PostgreSQL/MySQL solution.

[bookmark: sqlckbk-CHP-7-SECT-10.2.4]

SQL Server

Use the window functions COUNT(*) OVER and ROW_NUMBER to find the median:

	 1 select avg(sal)

	 2 from (

	 3 select sal,

	 4 count(*)over() total,

	 5 cast(count(*)over() as decimal)/2 mid,

	 6 ceiling(cast(count(*)over() as decimal)/2) next,

	 7 [bookmark: idx-CHP-7-0335]row_number()over(order by sal) rn

	 8 from emp

	 9 where deptno = 20

	10) x

	11 where ([bookmark: idx-CHP-7-0336]total%2 = 0

	12 and rn in (mid, mid+1)

	13)

	14 or (total%2 = 1

	15 and rn = next

	16)

[bookmark: sqlckbk-CHP-7-SECT-10.3]

Discussion

[bookmark: sqlckbk-CHP-7-SECT-10.3.1]

DB2 and SQL Server

The only difference between the DB2 and SQL Server solutions is a small point of syntax: SQL Server uses "%" for [bookmark: idx-CHP-7-0337]modulo and DB2 uses the function MOD; otherwise they are the same. Inline view X returns three different counts, TOTAL, MID, and NEXT, along with RN, generated by ROW_NUMBER. These additional columns help determine how to find the median. Examine the result set for inline view X to see what these columns represent:

	

	select sal,

	 count(*)over() total,

	 cast(count(*)over() as decimal)/2 mid,

	 ceil(cast(count(*)over() as decimal)/2) next,

	 row_number()over(order by sal) rn

	 from emp

	 where deptno = 20

	SAL TOTAL MID NEXT RN

	---- ----- ---- ---- ----

	 800 5 2.5 3 1

	1100 5 2.5 3 2

	2975 5 2.5 3 3

	3000 5 2.5 3 4

	3000 5 2.5 3 5

To find the median, the values for SAL must be ordered from lowest to highest. Since DEPTNO 20 has an odd number of employees, the median is simply the SAL that is located in the position where RN equals NEXT (the position that represents the smallest whole number larger than the total number of employees divided by two).

The first part of the WHERE clause (lines 1113) is not satisfied if there are an odd number of rows returned by the result set. If you know that the result set will always be odd, you can simplify to:

	select avg(sal)

	 from (

	select sal,

	 count(*)over() total,

	 ceil(cast(count(*)over() as decimal)/2) next,

	 row_number()over(order by sal) rn

	 from emp

	 where deptno = 20

) x

	 where rn = next

Unfortunately, if you have an even number of rows in the result set, the simplified solution will not work. The original solution handles even-numbered rows by using the values in the column MID. Consider what the results from inline view X would look like for DEPTNO 30, which has six employees:

	

	select sal,

	 count(*)over() total,

	 cast(count(*)over() as decimal)/2 mid,

	 ceil(cast(count(*)over() as decimal)/2) next,

	 row_number()over(order by sal) rn

	 from emp

	 where deptno = 30

	SAL TOTAL MID NEXT RN

	---- ----- ---- ---- ----

	 950 6 3 3 1

	1250 6 3 3 2

	1250 6 3 3 3

	1500 6 3 3 4

	1600 6 3 3 5

	2850 6 3 3 6

Since there are an even number of rows returned, the median is computed by taking the average of two rows; the row where RN equals MID and the row where RN equals MID + 1.

[bookmark: sqlckbk-CHP-7-SECT-10.3.2]

MySQL and PostgreSQL

The median is computed by first self joining table EMP, which returns a Cartesian product for all the salaries (but the GROUP BY on E.SAL will prevent duplicates from being returned). The HAVING clause uses the function SUM to count the number of times E.SAL equals D.SAL; if this count is greater than or equal to the number of times E.SAL is greater than D.SAL then that row is the median. You can observe this by moving the SUM into the SELECT list:

	

	select e.sal,

	 sum(case when e.sal=d.sal

	 then 1 else 0 end) as cnt1,

	 abs(sum(sign(e.sal - d.sal))) as cnt2

	 from emp e, emp d

	 where e.deptno = d.deptno

	 and e.deptno = 20

	 group by e.sal

	 SAL CNT1 CNT2

	---- ---- ----

	 800 1 4

	1100 1 2

	2975 1 0

	3000 4 6

[bookmark: sqlckbk-CHP-7-SECT-10.3.3]

Oracle

If you are on Oracle Database 10g or Oracle9i Database, you can leave the work of computing a median to [bookmark: idx-CHP-7-0338]functions supplied by Oracle. If you are running Oracle8i Database, you can use the DB2 solution. Otherwise you must use the PostgreSQL solution. While the MEDIAN function obviously computes a median, it may not be at all obvious that [bookmark: idx-CHP-7-0339]PERCENTILE_CONT does so as well. The argument passed to PERCENTILE_CONT, 0.5, is a percentile value. The clause, WITHIN GROUP (ORDER BY SAL), determines which sorted rows PERCENTILE_CONT will search (remember, a median is the middle value from a set of ordered values). The value returned is the value from the sorted rows that falls into the given percentile (in this case, 0.5, which is the middle because the boundary values are 0 and 1).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-11]

Recipe 7.11. Determining the Percentage of a Total

[bookmark: idx-CHP-7-0340]

[bookmark: sqlckbk-CHP-7-SECT-11.1]

Problem

You want to determine the percentage that values in a specific column represent against a total. For example, you want to determine what percentage of all salaries are the salaries in DEPTNO 10 (the percentage that DEPTNO 10 salaries contribute to the total).

[bookmark: sqlckbk-CHP-7-SECT-11.2]

Solution

In general, computing a percentage against a total in SQL is no different than doing so on paper; simply divide, then multiply. In this example you want to find the [bookmark: idx-CHP-7-0341]percentage of total salaries in table EMP that come from DEPTNO 10. To do that, simply find the salaries for DEPTNO 10, and then divide by the total salary for the table. As the last step, multiply by 100 to return a value that represents a percent.

[bookmark: sqlckbk-CHP-7-SECT-11.2.1]

MySQL and PostgreSQL

Divide the sum of the salaries in DEPTNO 10 by the sum of all salaries:

	1 select (sum(

	2 case when deptno = 10 then sal end)/sum(sal)

	3)*100 as pct

	4 from emp

[bookmark: sqlckbk-CHP-7-SECT-11.2.2]

DB2, Oracle, and SQL Server

Use an inline view with the window function [bookmark: idx-CHP-7-0342]SUM OVER to find the sum of all salaries along with the sum of all salaries in DEPTNO 10. Then do the division and multiplication in the outer query:

	1 select distinct (d10/total)*100 as pct

	2 from (

	3 select deptno,

	4 sum(sal)over() total,

	5 sum(sal)over(partition by deptno) d10

	6 from emp

	7) x

	8 where deptno=10

[bookmark: sqlckbk-CHP-7-SECT-11.3]

Discussion

[bookmark: sqlckbk-CHP-7-SECT-11.3.1]

MySQL and PostgreSQL

The CASE statement conveniently returns only the salaries from DEPTNO 10. They are then summed and divided by the sum of all the salaries. Because NULLs are ignored by aggregates, an ELSE clause is not needed in the CASE statement. To see exactly which values are divided, execute the query without the division:

	

	select sum(case when deptno = 10 then sal end) as d10,

	 sum(sal)

	 from emp

	D10 SUM(SAL)

	---- ---------

	8750 29025

Depending on how you define SAL, you may need to include explicit casts when performing division. For example, on DB2, SQL Server, and PostgreSQL, if SAL is stored as an integer, you can cast to decimal to get the correct answer, as seen below:

	select (cast(

	 sum(case when deptno = 10 then sal end)

	 as decimal)/sum(sal)

)*100 as pct

	 from emp

[bookmark: sqlckbk-CHP-7-SECT-11.3.2]

DB2, Oracle, and SQL Server

As an alternative to the traditional solution, this solution uses window functions to compute a [bookmark: idx-CHP-7-0343]percentage relative to the total. For DB2 and SQL Server, if you've stored SAL as an integer, you'll need to cast before dividing:

	select distinct

	 cast(d10 as decimal)/total*100 as pct

	 from (

	select deptno,

	 sum(sal)over() total,

	 sum(sal)over(partition by deptno) d10

	 from emp

) x

	 where deptno=10

It is important to keep in mind that window functions are applied after the WHERE clause is evaluated. Thus, the filter on DEPTNO cannot be performed in inline view X. Consider the results [bookmark: idx-CHP-7-0344]of inline view X without and with the filter on DEPTNO. First without:

	

	select deptno,

	 sum(sal)over() total,

	 sum(sal)over(partition by deptno) d10

	 from emp

	DEPTNO TOTAL D10

	------- --------- ---------

	 10 29025 8750

	 10 29025 8750

	 10 29025 8750

	 20 29025 10875

	 20 29025 10875

	 20 29025 10875

	 20 29025 10875

	 20 29025 10875

	 30 29025 9400

	 30 29025 9400

	 30 29025 9400

	 30 29025 9400

	 30 29025 9400

	 30 29025 9400

and now with:

	

	select deptno,

	 sum(sal)over() total,

	 sum(sal)over(partition by deptno) d10

	 from emp

	 where deptno=10

	DEPTNO TOTAL D10

	------ --------- ---------

	 10 8750 8750

	 10 8750 8750

	 10 8750 8750

Because window functions are applied after the WHERE clause, the value for TOTAL represents the sum of all salaries in DEPTNO 10 only. But to solve the problem you want the TOTAL to represent the sum of all salaries, period. That's why the filter on DEPTNO must happen outside of inline view X.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-12]

Recipe 7.12. Aggregating Nullable Columns

[bookmark: idx-CHP-7-0345]

[bookmark: sqlckbk-CHP-7-SECT-12.1]

Problem

You want to perform an aggregation on a column, but the column is nullable. You want the accuracy of your aggregation to be preserved, but are concerned because [bookmark: idx-CHP-7-0346]aggregate functions ignore NULLs. For example, you want to determine the average commission for employees in DEPTNO 30, but there are some employees who do not earn a commission (COMM is NULL for those employees). Because NULLs are ignored by aggregates, the accuracy of the output is compromised. You would like to somehow include [bookmark: idx-CHP-7-0347]NULL values in your aggregation.

[bookmark: sqlckbk-CHP-7-SECT-12.2]

Solution

Use the [bookmark: idx-CHP-7-0348]COALESCE function to convert NULLs to 0, so they will be included in the aggregation:

	1 select avg(coalesce(comm,0)) as avg_comm

	2 from emp

	3 where deptno=30

[bookmark: sqlckbk-CHP-7-SECT-12.3]

Discussion

When working with aggregate functions, keep in mind that NULLs are ignored. Consider the output of the solution without using the COALESCE function:

	

	select avg(comm)

	 from emp

	 where deptno=30

	 AVG(COMM)

	 550

This query shows an average commission of 550 for DEPTNO 30, but a quick examination of those rows:

	

	select ename, comm

	 from emp

	 where deptno=30

	order by comm desc

	ENAME COMM

	---------- ---------

	BLAKE

	JAMES

	MARTIN 1400

	WARD 500

	ALLEN 300

	TURNER 0

shows that only four of the six employees can earn a commission. The sum of all commissions in DEPTNO 30 is 2200, and the average should be 2200/6, not 2200/4. By excluding the COALESCE function, you answer the question, "What is the average commission of employees in DEPTNO 30 who can earn a commission?" rather than "What is the average commission of all employees in DEPTNO 30?" When working with aggregates, remember to treat NULLs accordingly.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-13]

Recipe 7.13. Computing Averages Without High and Low Values

[bookmark: idx-CHP-7-0349]

[bookmark: sqlckbk-CHP-7-SECT-13.1]

Problem

You want to compute an average, but you wish to exclude the highest and lowest values in order to (hopefully) reduce the effect of skew. For example, you want to compute the average salary of all employees excluding the highest and lowest salaries.

[bookmark: sqlckbk-CHP-7-SECT-13.2]

Solution

[bookmark: sqlckbk-CHP-7-SECT-13.2.1]

MySQL and PostgreSQL

Use subqueries to exclude high and low values:

	1 select avg(sal)

	2 from emp

	3 where sal not in (

	4 (select min(sal) from emp),

	5 (select max(sal) from emp)

	6)

[bookmark: sqlckbk-CHP-7-SECT-13.2.2]

DB2, Oracle, and SQL Server

Use an inline view with the windowing functions MAX OVER and MIN OVER to generate a result set from which you can easily eliminate the high and low values:

	1 select avg(sal)

	2 from (

	3 select sal, min(sal)over() min_sal, max(sal)over() max_sal

	4 from emp

	5) x

	6 where sal not in (min_sal,max_sal)

[bookmark: sqlckbk-CHP-7-SECT-13.3]

Discussion

[bookmark: sqlckbk-CHP-7-SECT-13.3.1]

MySQL and PostgreSQL

The subqueries return the highest and lowest salaries in the table. By using NOT IN against the values returned, you exclude the highest and lowest salaries from the average. Keep in mind that if there are duplicates (if multiple employees have the highest or lowest salaries), they will all be excluded from the average. If your goal is to exclude only a single instance of the high and low values, simply subtract them from the SUM and then divide:

	select (sum(sal)-min(sal)-max(sal))/(count(*)-2)

	 from emp

[bookmark: sqlckbk-CHP-7-SECT-13.3.2]

DB2, Oracle, and SQL Server

Inline view X returns each salary along with the highest and lowest salary:

	

	select sal, min(sal)over() min_sal, max(sal)over() max_sal

	 from emp

	 SAL MIN_SAL MAX_SAL

	--------- --------- ---------

	 800 800 5000

	 1600 800 5000

	 1250 800 5000

	 2975 800 5000

	 1250 800 5000

	 2850 800 5000

	 2450 800 5000

	 3000 800 5000

	 5000 800 5000

	 1500 800 5000

	 1100 800 5000

	 950 800 5000

	 3000 800 5000

	 1300 800 5000

You can access the high and low salary at every row, so finding which salaries are highest and/or lowest is trivial. The outer query filters the rows returned from inline view X such that any salary that matches either MIN_SAL or MAX_SAL is excluded from the average.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-14]

Recipe 7.14. Converting Alphanumeric Strings into Numbers

[bookmark: idx-CHP-7-0350]

[bookmark: sqlckbk-CHP-7-SECT-14.1]

Problem

You have alphanumeric data and would like to return numbers only. You want to return the number 123321 from the string "paul123f321".

[bookmark: sqlckbk-CHP-7-SECT-14.2]

Solution

[bookmark: sqlckbk-CHP-7-SECT-14.2.1]

DB2

Use the functions TRANSLATE and REPLACE to extract numeric characters from an alphanumeric string:

	1 select cast(

	2 replace(

	3 translate('paul123f321',

	4 repeat('#',26),

	5 'abcdefghijklmnopqrstuvwxyz'),'#','')

	6 as integer) as num

	7 from t1

[bookmark: sqlckbk-CHP-7-SECT-14.2.2]

Oracle and PostgreSQL

Use the functions TRANSLATE and REPLACE to extract numeric characters from an alphanumeric string:

	1 select cast(

	2 replace(

	3 translate('paul123f321',

	4 'abcdefghijklmnopqrstuvwxyz',

	5 rpad('#',26,'#')),'#','')

	6 as integer) as num

	7 from t1

[bookmark: sqlckbk-CHP-7-SECT-14.2.3]

MySQL and SQL Server

As of the time of this writing, neither vendor supports the TRANSLATE function, thus a solution will not be provided.

[bookmark: sqlckbk-CHP-7-SECT-14.3]

Discussion

The only difference between the two solutions is syntax; DB2 uses the function REPEAT rather than RPAD and the parameter list for TRANSLATE is in a different order. The following explanation uses the Oracle/PostgreSQL solution but is relevant to DB2 as well. If you run query inside out (starting with TRANSLATE only), you'll see this is very simple. First, TRANSLATE converts any non-numeric character to an instance of "#":

	

	select translate('paul123f321',

	 'abcdefghijklmnopqrstuvwxyz',

	 rpad('#',26,'#')) as num

	 from t1

	NUM

	####123#321

Since all non-numeric characters are now represented by "#", simply use REPLACE to remove them, then cast the result to a number. This particular example is extremely simple because the data is alphanumeric. If additional characters can be stored, rather than fishing for those characters, it is easier to approach this problem differently: rather than finding non-numeric characters and then removing them, find all numeric characters and remove anything that is not amongst them. The following example will help clarify this technique:

	

	select replace(

	 translate('paul123f321',

	 replace(translate('paul123f321',

	 '0123456789',

	 rpad('#',10,'#')),'#',''),

	 rpad('#',length('paul123f321'),'#')),'#','') as num

	 from t1

	NUM

	123321

This solution looks a bit more convoluted than the original but is not so bad once you break it down. Observe the innermost call to TRANSLATE:

	

	select translate('paul123f321',

	 '0123456789',

	 rpad('#',10,'#'))

	 from t1

	TRANSLATE('

	paul###f###

So, the initial approach is different; rather than replacing each non-numeric character with an instance of "#", you replace each numeric character with an instance of "#". The next step removes all instances of "#", thus leaving only non-numeric characters:

	

	select replace(translate('paul123f321',

	 '0123456789',

	 rpad('#',10,'#')),'#','')

	 from t1

	REPLA

	paulf

The next step is to call TRANSLATE again, this time to replace each of the non-numeric characters (from the query above) with an instance of "#" in the original string:

	

	select translate('paul123f321',

	 replace(translate('paul123f321',

	 '0123456789',

	 rpad('#',10,'#')),'#',''),

	 rpad('#',length('paul123f321'),'#'))

	 from t1

	TRANSLATE('

	####123#321

At this point, stop and examine the outermost call to TRANSLATE. The second parameter to RPAD (or the second parameter to REPEAT for DB2) is the length of the original string. This is convenient to use since no character can occur enough times to be greater than the string it is part of. Now that all non-numeric characters are replaced by instances of "#", the last step is to use REPLACE to remove all instances of "#". Now you are left with a number.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-15]

Recipe 7.15. Changing Values in a Running Total

[bookmark: idx-CHP-7-0351]

[bookmark: sqlckbk-CHP-7-SECT-15.1]

Problem

You want to modify the values in a running total depending on the values in another column. Consider a scenario where you want to display the transaction history of a credit card account along with the current balance after each transaction. The following view, V, will be used in this example:

	

	create view V (id,amt,trx)

	as

	select 1, 100, 'PR' from t1 union all

	select 2, 100, 'PR' from t1 union all

	select 3, 50, 'PY' from t1 union all

	select 4, 100, 'PR' from t1 union all

	select 5, 200, 'PY' from t1 union all

	select 6, 50, 'PY' from t1

	select * from V

	ID AMT TR

	-- ---------- --

	 1 100 PR

	 2 100 PR

	 3 50 PY

	 4 100 PR

	 5 200 PY

	 6 50 PY

The ID column uniquely identifies each transaction. The AMT column represents the amount of money involved in each transaction (either a purchase or a payment). The TRX column defines the type of transaction; a payment is "PY" and a purchase is "PR." If the value for TRX is PY, you want the current value for AMT subtracted from the running total; if the value for TRX is PR, you want the current value for AMT added to the running total. Ultimately you want to return the following result set:

	TRX_TYPE AMT BALANCE

	-------- ---------- ----------

	PURCHASE 100 100

	PURCHASE 100 200

	PAYMENT 50 150

	PURCHASE 100 250

	PAYMENT 200 50

	PAYMENT 50 0

[bookmark: sqlckbk-CHP-7-SECT-15.2]

Solution

[bookmark: sqlckbk-CHP-7-SECT-15.2.1]

DB2 and Oracle

Use the window function SUM OVER to create the [bookmark: idx-CHP-7-0352]running total along with a CASE expression to determine the type of transaction:

	 1 select case when trx = 'PY'

	 2 then 'PAYMENT'

	 3 else 'PURCHASE'

	 4 end trx_type,

	 5 amt,

	 6 sum(

	 7 case when trx = 'PY'

	 8 then -amt else amt

	 9 end

	10) over (order by id,amt) as balance

	11 from V

[bookmark: sqlckbk-CHP-7-SECT-15.2.2]

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to create the running total along with a CASE expression to determine the type of transaction:

	 1 select case when v1.trx = 'PY'

	 2 then 'PAYMENT'

	 3 else 'PURCHASE'

	 4 end as trx_type,

	 5 v1.amt,

	 6 (select sum(

	 7 case when v2.trx = 'PY'

	 8 then -v2.amt else v2.amt

	 9 end

	10)

	11 from V v2

	12 where v2.id <= v1.id) as balance

	13 from V v1

[bookmark: sqlckbk-CHP-7-SECT-15.3]

Discussion

The CASE expression determines whether the current AMT is added or deducted from the running total. If the transaction is a payment, the AMT is changed to a negative value, thus reducing the amount of the running total. The result of the CASE expression is seen below:

	

	select case when trx = 'PY'

	 then 'PAYMENT'

	 else 'PURCHASE'

	 end trx_type,

	 case when trx = 'PY'

	 then -amt else amt

	 end as amt

	 from V

	TRX_TYPE AMT

	-------- ---------

	PURCHASE 100

	PURCHASE 100

	PAYMENT -50

	PURCHASE 100

	PAYMENT -200

	PAYMENT -50

After evaluating the transaction type, the values for AMT are then added to or subtracted from the running total. For an explanation on how the window function, SUM OVER, or the scalar subquery creates the running total see recipe "Calculating a Running Total."

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-2]

Recipe 7.2. Finding the Min/Max Value in a Column

[bookmark: idx-CHP-7-0300]

[bookmark: idx-CHP-7-0301]

[bookmark: sqlckbk-CHP-7-SECT-2.1]

Problem

You want to find the highest and lowest [bookmark: idx-CHP-7-0302]values in a given column. For example, you want to find the highest and lowest salaries for all employees, as well as the highest and lowest salaries for each department.

[bookmark: sqlckbk-CHP-7-SECT-2.2]

Solution

When searching for the lowest and highest salaries for all employees, simply use the functions MIN and MAX, respectively:

	

	1 select min(sal) as min_sal, max(sal) as max_sal

	2 from emp

	 MIN_SAL MAX_SAL

	---------- ----------

	 800 5000

When searching for the lowest and highest salaries for each department, use the functions MIN and MAX with the GROUP BY clause:

	1 select deptno, min(sal) as min_sal, max(sal) as max_sal

	2 from emp

	3 group by deptno

	 DEPTNO MIN_SAL MAX_SAL

	---------- ---------- ----------

	 10 1300 5000

	 20 800 3000

	 30 950 2850

[bookmark: sqlckbk-CHP-7-SECT-2.3]

Discussion

When searching for the highest or lowest values, and in cases where the whole table is the group or window, simply apply the MIN or MAX function to the column you are interested in without using the [bookmark: idx-CHP-7-0303]GROUP BY clause.

Remember that the MIN and MAX [bookmark: idx-CHP-7-0304]functions ignore NULLs, and that you can have NULL groups as well as NULL values for columns in a group. The following are examples that ultimately lead to a query using GROUP BY that returns NULL values for two groups (DEPTNO 10 and 20):

	

	select deptno, comm

	 from emp

	 where deptno in (10,30)

	 order by 1

	 DEPTNO COMM

	 ---------- ----------

	 10

	 10

	 10

	 30 300

	 30 500

	 30

	 30 0

	 30 1300

	 30

	

	select min(comm), max(comm)

	 from emp

	 MIN(COMM) MAX(COMM)

	---------- ----------

	 0 1300

	

	select deptno, min(comm), max(comm)

	 from emp

	 group by deptno

	 DEPTNO MIN(COMM) MAX(COMM)

	 ---------- ---------- ----------

	 10

	 20

	 30 0 1300

Remember, as Appendix A points out, even if nothing other than aggregate functions are listed in the [bookmark: idx-CHP-7-0305]SELECT clause, you can still group by other columns in the table; for example:

	select min(comm), max(comm)

	 from emp

	 group by deptno

	 MIN(COMM) MAX(COMM)

	---------- ----------

	 0 1300

Here you are still grouping by DEPTNO even though it is not in the SELECT clause. Including the column you are grouping by in the SELECT clause often improves readability, but is not mandatory. It is mandatory, however, that any column in the SELECT list of a GROUP BY query also be listed in the GROUP BY clause.

[bookmark: sqlckbk-CHP-7-SECT-2.4]

See Also

Appendix A for a refresher on GROUP BY functionality.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-3]

Recipe 7.3. Summing the Values in a Column

[bookmark: idx-CHP-7-0306]

[bookmark: sqlckbk-CHP-7-SECT-3.1]

Problem

You want to compute the sum of all values, such as all employee salaries, in a column.

[bookmark: sqlckbk-CHP-7-SECT-3.2]

Solution

When computing a sum where the whole table is the group or window, simply apply the [bookmark: idx-CHP-7-0307]SUM function to the columns you are interested in without using the GROUP BY clause:

	

	1 select sum(sal)

	2 from emp

	 SUM(SAL)

	 29025

When creating multiple groups or windows of data, use the [bookmark: idx-CHP-7-0308]SUM function with the GROUP BY clause. The following example sums employee salaries by department:

	

	1 select deptno, sum(sal) as total_for_dept

	2 from emp

	3 group by deptno

	 DEPTNO TOTAL_FOR_DEPT

	---------- --------------

	 10 8750

	 20 10875

	 30 9400

[bookmark: sqlckbk-CHP-7-SECT-3.3]

Discussion

When searching for the sum of all salaries for each department, you are creating groups or "windows" of data. Each employee's salary is added together to produce a total for his respective department. This is an example of aggregation in SQL because detailed information, such as each individual employee's salary, is not the focus; the focus is the end result for each department. It is important to note that the SUM function will ignore NULLs, but you can have NULL groups, which can be seen here. DEPTNO 10 does not have any employees who earn a commission, thus grouping by DEPTNO 10 while attempting to SUM the values in COMM will result in a group with a NULL value returned by SUM:

	

	select deptno, comm

	 from emp

	 where deptno in (10,30)

	 order by 1

	 DEPTNO COMM

	---------- ----------

	 10

	 10

	 10

	 30 300

	 30 500

	 30

	 30 0

	 30 1300

	 30

	

	select sum(comm)

	 from emp

	 SUM(COMM)

	 2100

	select deptno, sum(comm)

	 from emp

	 where deptno in (10,30)

	 group by deptno

	 DEPTNO SUM(COMM)

	---------- ----------

	 10

	 30 2100

[bookmark: sqlckbk-CHP-7-SECT-3.4]

See Also

Appendix A for a refresher on GROUP BY functionality.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-4]

Recipe 7.4. Counting Rows in a Table

[bookmark: idx-CHP-7-0309]

[bookmark: sqlckbk-CHP-7-SECT-4.1]

Problem

You want to count the number of rows in a table, or you wish to count the number of values in a column. For example, you want to find the total number of employees as well as the number of employees in each department.

[bookmark: sqlckbk-CHP-7-SECT-4.2]

Solution

When counting rows where the whole table is the group or window, simply use the [bookmark: idx-CHP-7-0310]COUNT function along with the "*" character:

	

	1 select count(*)

	2 from emp

	 COUNT(*)

	 14

When creating multiple groups, or windows of data, use the [bookmark: idx-CHP-7-0311]COUNT function with the GROUP BY clause:

	

	1 select deptno, count(*)

	2 from emp

	3 group by deptno

	 DEPTNO COUNT(*)

	---------- ----------

	 10 3

	 20 5

	 30 6

[bookmark: sqlckbk-CHP-7-SECT-4.3]

Discussion

When counting the number of employees for each department, you are creating groups or "windows" of data. Each employee found increments the count by one to produce a total for her respective department. This is an example of aggregation in SQL because detailed information, such as each individual employee's salary or job, is not the focus; the focus is the end result for each department. It is important to note that the COUNT function will ignore NULLs when passed a column name as an argument, but will include NULLs when passed the "*" character or any constant; consider:

	

	select deptno, comm

	 from emp

	 DEPTNO COMM

	---------- ----------

	 20

	 30 300

	 30 500

	 20

	 30 1300

	 30

	 10

	 20

	 10

	 30 0

	 20

	 30

	 20

	 10

	

	select count(*), count(deptno), count(comm), count('hello')

	 from emp

	 COUNT(*) COUNT(DEPTNO) COUNT(COMM) COUNT('HELLO')

	---------- ------------- ----------- --------------

	 14 14 4 14

	

	select deptno, count(*), count(comm), count('hello')

	 from emp

	 group by deptno

	 DEPTNO COUNT(*) COUNT(COMM) COUNT('HELLO')

	 ---------- ---------- ----------- --------------

	 10 3 0 3

	 20 5 0 5

	 30 6 4 6

If all rows are null for the column passed to COUNT or if the table is empty, COUNT will return zero. It should also be noted that, even if nothing other than aggregate functions are specified in the SELECT clause, you can still group by other columns in the table; for example:

	

	select count(*)

	 from emp

	 group by deptno

	 COUNT(*)

	 3

	 5

	 6

Notice that you are still grouping by DEPTNO even though it is not in the SELECT clause. Including the column you are grouping by in the SELECT clause often improves readability, but is not mandatory. If you do include it (in the SELECT list), it is mandatory that is it listed in the GROUP BY clause.

[bookmark: sqlckbk-CHP-7-SECT-4.4]

See Also

Appendix A for a refresher on GROUP BY functionality.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-5]

Recipe 7.5. Counting Values in a Column

[bookmark: idx-CHP-7-0312]

[bookmark: sqlckbk-CHP-7-SECT-5.1]

Problem

You wish to count the number of non-NULL values in a column. For example, you'd like to find out how many employees are on commission.

[bookmark: sqlckbk-CHP-7-SECT-5.2]

Solution

[bookmark: idx-CHP-7-0313]Count the number of non-NULL values in the EMP table's COMM column:

	

	select count(comm)

	 from emp

	COUNT(COMM)

	 4

[bookmark: sqlckbk-CHP-7-SECT-5.3]

Discussion

When you "count star," as in COUNT(*), what you are really counting is rows (regardless of actual value, which is why rows containing NULL and non-NULL values are counted). But when you COUNT a column, you are counting the number of non-NULL values in that column. The previous recipe's discussion touches on this distinction. In this solution, COUNT(COMM) returns the number of non-NULL values in the COMM column. Since only commissioned employees have commissions, the result of COUNT(COMM) is the number of such employees.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-6]

Recipe 7.6. Generating a Running Total

[bookmark: idx-CHP-7-0314]

[bookmark: sqlckbk-CHP-7-SECT-6.1]

Problem

You want to calculate a running total of values in a column.

[bookmark: sqlckbk-CHP-7-SECT-6.2]

Solution

As an example, the following solutions show how to compute a running total of salaries for all employees. For readability, results are ordered by SAL whenever possible so that you can easily eyeball the progression of the running total.

[bookmark: sqlckbk-CHP-7-SECT-6.2.1]

DB2 and Oracle

Use the windowing version of the function SUM to compute a running total:

	

	1 select ename, sal,

	2 sum(sal) over (order by sal,empno) as running_total

	3 from emp

	4 order by 2

	ENAME SAL RUNNING_TOTAL

	---------- ---------- -------------

	SMITH 800 800

	JAMES 950 1750

	ADAMS 1100 2850

	WARD 1250 4100

	MARTIN 1250 5350

	MILLER 1300 6650

	TURNER 1500 8150

	ALLEN 1600 9750

	CLARK 2450 12200

	BLAKE 2850 15050

	JONES 2975 18025

	SCOTT 3000 21025

	FORD 3000 24025

	KING 5000 29025

[bookmark: sqlckbk-CHP-7-SECT-6.2.2]

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a [bookmark: idx-CHP-7-0315]running total (without the use of a window function such as [bookmark: idx-CHP-7-0316]SUM OVER, you cannot easily order the result set by SAL as in the DB2 and Oracle solution). Ultimately, the running total is correct (the final value is the same as the above recipe), but the intermediate values differ due to the lack of ordering:

	

	1 select e.ename, e.sal,

	2 (select sum(d.sal) from emp d

	3 where d.empno <= e.empno) as running_total

	4 from emp e

	5 order by 3

	ENAME SAL RUNNING_TOTAL

	---------- ---------- -------------

	SMITH 800 800

	ALLEN 1600 2400

	WARD 1250 3650

	JONES 2975 6625

	MARTIN 1250 7875

	BLAKE 2850 10725

	CLARK 2450 13175

	SCOTT 3000 16175

	KING 5000 21175

	TURNER 1500 22675

	ADAMS 1100 23775

	JAMES 950 24725

	FORD 3000 27725

	MILLER 1300 29025

[bookmark: sqlckbk-CHP-7-SECT-6.3]

Discussion

Generating a running total is one of the tasks made simple by the new ANSI windowing functions. For DBMSs that do not yet support these windowing functions, a scalar subquery (joining on a field with unique values) is required.

[bookmark: sqlckbk-CHP-7-SECT-6.3.1]

DB2 and Oracle

The windowing function SUM OVER makes generating a running total a simple task. The ORDER BY clause in the solution includes not only the SAL column, but also the EMPNO column (which is the primary key) to avoid duplicate values in the running total. The column RUNNING_TOTAL2 in the following example illustrates the problem that you might otherwise have with duplicates:

	

	select empno, sal,

	 sum(sal)over(order by sal,empno) as [bookmark: idx-CHP-7-0317]running_total1,

	 sum(sal)over(order by sal) as running_total2

	 from emp

	 order by 2

	ENAME SAL RUNNING_TOTAL1 RUNNING_TOTAL2

	---------- ---------- -------------- --------------

	SMITH 800 800 800

	JAMES 950 1750 1750

	ADAMS 1100 2850 2850

	WARD 1250 4100 5350

	MARTIN 1250 5350 5350

	MILLER 1300 6650 6650

	TURNER 1500 8150 8150

	ALLEN 1600 9750 9750

	CLARK 2450 12200 12200

	BLAKE 2850 15050 15050

	JONES 2975 18025 18025

	SCOTT 3000 21025 24025

	FORD 3000 24025 24025

	KING 5000 29025 29025

The values in RUNNING_TOTAL2 for WARD, MARTIN, SCOTT, and FORD are incorrect. Their salaries occur more than once, and those duplicates are summed together and added to the running total. This is why EMPNO (which is unique) is needed to produce the (correct) results that you see in RUNNING_TOTAL1. Consider this: for ADAMS you see 2850 for RUNNING_TOTAL1 and RUNNING_TOTAL2. Add WARD's salary of 1250 to 2850 and you get 4100, yet RUNNING_TOTAL2 returns 5350. Why? Since WARD and MARTIN have the same SAL, their two 1250 salaries are added together to yield 2500, which is then added to 2850 to arrive at 5350 for both WARD and MARTIN. By specifying a combination of columns to order by that cannot result in duplicate values (e.g., any combination of SAL and EMPNO is unique), you ensure the correct progression of the running total.

[bookmark: sqlckbk-CHP-7-SECT-6.3.2]

MySQL, PostgreSQL, and SQL Server

Until windowing functions are fully supported for these DBMSs, you can use a scalar subquery to compute a running total. You must join on a column with unique values; otherwise the running total will have incorrect values in the event that duplicate salaries exist. The key to this recipe's solution is the join on D.EMPNO to E. EMPNO, which returns (sums) every D.SAL where D.EMPNO is less than or equal E.EMPNO. This can be understood easily by rewriting the scalar subquery as a join for a handful of the employees:

	

	select e.ename as ename1, e.empno as empno1, e.sal as sal1,

	 d.ename as ename2, d.empno as empno2, d.sal as sal2

	 from emp e, emp d

	 where d.empno <= e.empno

	 and e.empno = 7566

	ENAME EMPNO1 SAL1 ENAME EMPNO2 SAL2

	---------- ---------- ---------- ---------- ---------- ----------

	JONES 7566 2975 SMITH 7369 800

	JONES 7566 2975 ALLEN 7499 1600

	JONES 7566 2975 WARD 7521 1250

	JONES 7566 2975 JONES 7566 2975

Every value in EMPNO2 is compared against every value in EMPNO1. For every row where the value in EMPNO2 is less than or equal to the value in EMPNO1, the value in SAL2 is included in the sum. In this snippet, the EMPNO values for employees Smith, Allen, Ward, and Jones are compared against the EMPNO of Jones. Since all four employees' EMPNOs meet the condition of being less than or equal to Jones' EMPNO, those salaries are summed. Any employee whose EMPNO is greater than Jones' is not included in the SUM (in this snippet). The way the full query works is by summing all the salaries where the corresponding EMPNO is less than or equal to 7934 (Miller's EMPNO), which is the highest in the table.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-7]

Recipe 7.7. Generating a Running Product

[bookmark: idx-CHP-7-0318]

[bookmark: sqlckbk-CHP-7-SECT-7.1]

Problem

You want to compute a running product on a numeric column. The operation is similar to "Calculating a Running Total," but using multiplication instead of addition.

[bookmark: sqlckbk-CHP-7-SECT-7.2]

Solution

By way of example, the solutions all compute [bookmark: idx-CHP-7-0319]running products of employee salaries. While a running product of salaries may not be all that useful, the technique can easily be applied to other, more useful domains.

[bookmark: sqlckbk-CHP-7-SECT-7.2.1]

DB2 and Oracle

Use the windowing function [bookmark: idx-CHP-7-0320]SUM OVER and take advantage of the fact that you can simulate multiplication by adding [bookmark: idx-CHP-7-0321]logarithms:

	

	1 select empno,ename,sal,

	2 exp(sum(ln(sal))over(order by sal,empno)) as running_prod

	3 from emp

	4 where deptno = 10

	EMPNO ENAME SAL RUNNING_PROD

	----- ---------- ---- --------------------

	 7934 MILLER 1300 1300

	 7782 CLARK 2450 3185000

	 7839 KING 5000 15925000000

It is not valid in SQL to compute logarithms of values less than or equal to zero. If you have such values in your tables you need to avoid passing those invalid values to SQL's LN function. Precautions against invalid values and NULLs are not provided in this solution for the sake of readability, but you should consider whether to place such precautions in production code that you write. If you absolutely must work with negative and zero values, then this solution may not work for you.

An alternative, Oracle-only solution is to use the [bookmark: idx-CHP-7-0322]MODEL clause that became available in Oracle Database 10g. In the following example, each SAL is returned as a negative number to show that negative values will not cause a problem for the [bookmark: idx-CHP-7-0323]running product:

	

	1 select empno, ename, sal, tmp as running_prod

	2 from (

	3 select empno,ename,-sal as sal

	4 from emp

	5 where deptno=10

	6)

	7 model

	8 dimension by(row_number()over(order by sal desc) rn)

	9 measures(sal, 0 tmp, empno, ename)

	10 rules (

	11 tmp[any] = case when sal[cv()-1] is null then sal[cv()]

	12 else tmp[cv()-1]*sal[cv()]

	13 end

	14)

	EMPNO ENAME SAL RUNNING_PROD

	----- ---------- ---- --------------------

	 7934 MILLER -1300 -1300

	 7782 CLARK -2450 3185000

	 7839 KING -5000 -15925000000

[bookmark: sqlckbk-CHP-7-SECT-7.2.2]

MySQL, PostgreSQL, and SQL Server

You still use the approach of summing logarithms, but these platforms do not support windowing functions, so use a scalar subquery instead:

	

	1 select e.empno,e.ename,e.sal,

	2 (select exp(sum(ln(d.sal)))

	3 from emp d

	4 where d.empno <= e.empno

	5 and e.deptno=d.deptno) as running_prod

	6 from emp e

	7 where e.deptno=10

	EMPNO ENAME SAL RUNNING_PROD

	----- ---------- ---- --------------------

	 7782 CLARK 2450 2450

	 7839 KING 5000 12250000

	 7934 MILLER 1300 15925000000

SQL Server users use LOG instead of LN.

[bookmark: sqlckbk-CHP-7-SECT-7.3]

Discussion

Except for the MODEL clause solution, which is only usable with Oracle Database 10g or later, all the solutions take advantage of the fact that you can sum two numbers by:

			Computing their respective natural logarithms

			Summing those logarithms

			Raising the result to the power of the mathematical constant e (using the EXP function)

The one caveat when using this approach is that it doesn't work for summing zero or negative values, because any value less than or equal to zero is out of range for an SQL logarithm.

[bookmark: sqlckbk-CHP-7-SECT-7.3.1]

DB2 and Oracle

For an explanation of how the window function SUM OVER works, see the previous recipe "Generating a Running Total."

In Oracle Database 10g and later, you can generate [bookmark: idx-CHP-7-0324]running products via the MODEL clause. Using the MODEL clause along with the window function ROW_NUMBER allows you to easily access prior rows. Each item in the MEASURES list can be accessed like an array. The arrays can then be searched by using the items in the DIMENSIONS list (which are the values returned by ROW_NUMBER, alias RN):

	

	select empno, ename, sal, tmp as running_prod,rn

	 from (

	select empno,ename,-sal as sal

	 from emp

	 where deptno=10

)

	 model

	 dimension by(row_number()over(order by sal desc) rn)

	 measures(sal, 0 tmp, empno, ename)

	 rules ()

	EMPNO ENAME SAL RUNNING_PROD RN

	----- ---------- ---------- ------------ ----------

	 7934 MILLER -1300 0 1

	 7782 CLARK -2450 0 2

	 7839 KING -5000 0 3

Observe that SAL[1] has a value of1300. Because the numbers are increasing by one with no gaps, you can reference prior rows by subtracting one. The RULES clause:

	rules (

	 tmp[any] = case when sal[cv()-1] is null then sal[cv()]

	 else tmp[cv()-1]*sal[cv()]

	 end

)

uses the built-in operator, ANY, to work through each row without hard-coding. ANY in this case will be the values 1, 2, and 3. TMP[n] is initialized to zero. A value is assigned to TMP[n] by evaluating the current value (the function CV returns the current value) of the corresponding SAL row. TMP[1] is initially zero and SAL[1] is1300. There is no value for SAL[0] so TMP[1] is set to SAL[1]. After TMP[1] is set, the next row is TMP[2]. First SAL[1] is evaluated (SAL[CV()1] is SAL[1] because the current value of ANY is now 2). SAL[1] is not null, it is1300, so TMP[2] is set to the product of TMP[1] and SAL[2]. This is continued for all the rows.

[bookmark: sqlckbk-CHP-7-SECT-7.3.2]

MySQL, PostgreSQL, and SQL Server

See "Generating a [bookmark: idx-CHP-7-0325]Running Total" earlier in this chapter for an explanation of the subquery approach used for the MySQL, PostgreSQL, and SQL Server solutions.

Be aware that the output of the subquery-based solution is slightly different from that of the Oracle and DB2 solutions due to the EMPNO comparison (the [bookmark: idx-CHP-7-0326]running product is computed in a different order). Like a running total, the summation is driven by the predicate of the scalar subquery; the ordering of rows is by EMPNO for this solution whereas the Oracle/DB2 solution order is by SAL.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-8]

Recipe 7.8. Calculating a Running Difference

[bookmark: sqlckbk-CHP-7-SECT-8.1]

Problem

You want to compute a running difference on values in a numeric column. For example, you want to compute a running difference on the salaries in DEPTNO 10. You would like to return the following result set:

	ENAME SAL RUNNING_DIFF

	---------- ---------- ------------

	MILLER 1300 1300

	CLARK 2450 -1150

	KING 5000 -6150

[bookmark: sqlckbk-CHP-7-SECT-8.2]

Solution

[bookmark: sqlckbk-CHP-7-SECT-8.2.1]

DB2 and Oracle

Use the window function SUM OVER to create a running difference:

	1 select ename,sal,

	2 sum(case when rn = 1 then sal else -sal end)

	3 over(order by sal,empno) as running_diff

	4 from (

	5 select empno,ename,sal,

	6 row_number()over(order by sal,empno) as rn

	7 from emp

	8 where deptno = 10

	9) x

[bookmark: sqlckbk-CHP-7-SECT-8.2.2]

MySQL, PostgreSQL, and SQL Server

Use a scalar subquery to compute a running difference:

	1 select a.empno, a.ename, a.sal,

	2 (select case when a.empno = min(b.empno) then sum(b.sal)

	3 else sum(-b.sal)

	4 end

	5 from emp b

	6 where b.empno <= a.empno

	7 and b.deptno = a.deptno) as rnk

	8 from emp a

	9 where a.deptno = 10

[bookmark: sqlckbk-CHP-7-SECT-8.3]

Discussion

The solutions are identical to those of "Generating a Running Total." The only difference is that all values for SAL are returned as negative values with the exception of the first (you want the starting point to be the first SAL in DEPTNO 10).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7-SECT-9]

Recipe 7.9. Calculating a Mode

[bookmark: sqlckbk-CHP-7-SECT-9.1]

Problem

You want to find the mode (for those of you who don't recall, the mode in mathematics is the element that appears most frequently for a given set of data) of the values in a column. For example, you wish to find mode of the salaries in DEPTNO 20. Based on the following salaries:

	

	select sal

	 from emp

	 where deptno = 20

	 order by sal

	 SAL

	 800

	 1100

	 2975

	 3000

	 3000

the mode is 3000.

[bookmark: sqlckbk-CHP-7-SECT-9.2]

Solution

[bookmark: sqlckbk-CHP-7-SECT-9.2.1]

DB2 and SQL Server

Use the window function DENSE_RANK to rank the counts of the salaries to facilitate extracting the mode:

	 1 select sal

	 2 from (

	 3 select sal,

	 4 dense_rank()over(order by cnt desc) as rnk

	 5 from (

	 6 select sal, count(*) as cnt

	 8 from emp

	 9 where deptno = 20

	10 group by sal

	11) x

	12) y

	13 where rnk = 1

[bookmark: sqlckbk-CHP-7-SECT-9.2.2]

Oracle

Users on Oracle8i Database can use the solution provided for DB2. If you are on Oracle9i Database and later, you can use the [bookmark: idx-CHP-7-0327]KEEP extension to the aggregate function MAX to find the mode SAL. One important note is that if there are ties, i.e., multiple rows that are the mode, the solution using [bookmark: idx-CHP-7-0328]KEEP will only keep one, and that is the one with the highest salary. If you want to see all [bookmark: idx-CHP-7-0329]modes (if more than one exists), you must modify this solution or simply use the DB2 solution presented above. In this case, since 3000 is the mode SAL in DEPTNO 20 and is also the highest SAL, this solution is sufficient:

	1 select max(sal)

	2 keep(dense_rank first order by cnt desc) sal

	3 from (

	4 select sal, count(*) cnt

	5 from emp

	6 where deptno=20

	7 group by sal

	8)

[bookmark: sqlckbk-CHP-7-SECT-9.2.3]

MySQL and PostgreSQL

Use a subquery to find the mode:

	1 select sal

	2 from emp

	3 where deptno = 20

	4 group by sal

	5 having count(*) >= all (select count(*)

	6 from emp

	7 where deptno = 20

	8 group by sal)

[bookmark: sqlckbk-CHP-7-SECT-9.3]

Discussion

[bookmark: sqlckbk-CHP-7-SECT-9.3.1]

DB2 and SQL Server

The inline view X returns each SAL and the number of times it occurs. Inline view Y uses the window function DENSE_RANK (which allows for ties) to sort the results.

The results are ranked based on the number of times each SAL occurs as is seen below:

	1 select sal,

	2 dense_rank()over(order by cnt desc) as rnk

	3 from (

	4 select sal,count(*) as cnt

	5 from emp

	6 where deptno = 20

	7 group by sal

	8) x

	 SAL RNK

	----- ----------

	 3000 1

	 800 2

	 1100 2

	 2975 2

The outermost portion of query simply keeps the row(s) where RNK is 1.

[bookmark: sqlckbk-CHP-7-SECT-9.3.2]

Oracle

The inline view returns each SAL and the number of times it occurs and is shown below:

	select sal, count(*) cnt

	 from emp

	 where deptno=20

	 group by sal

	 SAL CNT

	----- ----------

	 800 1

	 1100 1

	 2975 1

	 3000 2

The next step is to use the [bookmark: idx-CHP-7-0330]KEEP extension of the aggregate function MAX to find the mode. If you analyze the KEEP clause shown below you will notice three subclauses, DENSE_RANK, FIRST, and ORDER BY CNT DESC:

	keep(dense_rank first order by cnt desc)

What this does is extremely convenient for finding the mode. The KEEP clause determines which SAL will be returned by MAX by looking at the value of CNT returned by the inline view. Working from right to left, the values for CNT are ordered in descending order, then the first is kept of all the values for CNT returned in DENSE_RANK order. Looking at the result set from the inline view, you can see that 3000 has the highest CNT of 2. The MAX(SAL) returned is the greatest SAL that has the greatest CNT, in this case 3000.

[bookmark: sqlckbk-CHP-7-SECT-9.4]

See Also

Chapter 11, the section on "Finding Knight Values," for a deeper discussion of Oracle's KEEP extension of aggregate functions.

[bookmark: sqlckbk-CHP-7-SECT-9.4.1]

MySQL and PostgreSQL

The subquery returns the number of times each SAL occurs. The outer query returns any SAL that has a number of occurrences greater than or equal to all of the counts returned by the subquery (or to put it another way, the outer query returns the most common salaries in DEPTNO 20).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-7]

Chapter 7. Working with Numbers

This chapter focuses on common operations involving numbers, including numeric computations. While SQL is not typically considered the first choice for complex computations, it is very efficient for day-to-day numeric chores.

						[image:]			

Some recipes in this chapter make use of aggregate functions and the GROUP BY clause. If you are not familiar with grouping, please read at least the first major section, called "Grouping," in Appendix A.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-1]

Recipe 8.1. Adding and Subtracting Days, Months, and Years

[bookmark: sqlckbk-CHP-8-SECT-1.1]

Problem

You need to add or subtract some number of days, months, or years from a date. For example, using the HIREDATE for employee CLARK you want to return six different dates: five days before and after CLARK was hired, five months before and after CLARK was hired, and, finally, five years before and after CLARK was hired. CLARK was hired on "09-JUN-1981", so you want to return the following result set:

	HD_MINUS_5D HD_PLUS_5D HD_MINUS_5M HD_PLUS_5M HD_MINUS_5Y HD_PLUS_5Y

	----------- ----------- ----------- ----------- ----------- -----------

	04-JUN-1981 14-JUN-1981 09-JAN-1981 09-NOV-1981 09-JUN-1976 09-JUN-1986

	12-NOV-1981 22-NOV-1981 17-JUN-1981 17-APR-1982 17-NOV-1976 17-NOV-1986

	18-JAN-1982 28-JAN-1982 23-AUG-1981 23-JUN-1982 23-JAN-1977 23-JAN-1987

[bookmark: sqlckbk-CHP-8-SECT-1.2]

Solution

[bookmark: sqlckbk-CHP-8-SECT-1.2.1]

DB2

Standard addition and subtraction is allowed on date values, but any value that you add to or subtract from a date must be followed by the unit of time it represents:

	1 select hiredate -5 day as hd_minus_5D,

	2 hiredate +5 day as hd_plus_5D,

	3 hiredate -5 month as hd_minus_5M,

	4 hiredate +5 month as hd_plus_5M,

	5 hiredate -5 year as hd_minus_5Y,

	6 hiredate +5 year as hd_plus_5Y

	7 from emp

	8 where deptno = 10

[bookmark: sqlckbk-CHP-8-SECT-1.2.2]

Oracle

Use standard addition and subtraction for days, and use the [bookmark: idx-CHP-8-0355]ADD_MONTHS function to add and subtract months and years:

	1 select hiredate-5 as hd_minus_5D,

	2 hiredate+5 as hd_plus_5D,

	3 add_months(hiredate,-5) as hd_minus_5M,

	4 add_months(hiredate,5) as hd_plus_5M,

	5 add_months(hiredate,-5*12) as hd_minus_5Y,

	6 add_months(hiredate,5*12) as hd_plus_5Y

	7 from emp

	8 where deptno = 10

[bookmark: sqlckbk-CHP-8-SECT-1.2.3]

PostgreSQL

Use standard addition and subtraction with the [bookmark: idx-CHP-8-0356]INTERVAL keyword specifying the unit of time to add or subtract. Single quotes are required when specifying an INTERVAL value:

	1 select hiredate - interval '5 day' as hd_minus_5D,

	2 hiredate + interval '5 day' as hd_plus_5D,

	3 hiredate - interval '5 month' as hd_minus_5M,

	4 hiredate + interval '5 month' as hd_plus_5M,

	5 hiredate - interval '5 year' as hd_minus_5Y,

	6 hiredate + interval '5 year' as hd_plus_5Y

	7 from emp

	8 where deptno=10

[bookmark: sqlckbk-CHP-8-SECT-1.2.4]

MySQL

Use standard addition and subtraction with the INTERVAL keyword specifying the unit of time to add or subtract. Unlike the PostgreSQL solution, you do not place single quotes around the INTERVAL value:

	1 select hiredate - interval 5 day as hd_minus_5D,

	2 hiredate + interval 5 day as hd_plus_5D,

	3 hiredate - interval 5 month as hd_minus_5M,

	4 hiredate + interval 5 month as hd_plus_5M,

	5 hiredate - interval 5 year as hd_minus_5Y,

	6 hiredate + interval 5 year as hd_plus_5Y

	7 from emp

	8 where deptno=10

Alternatively, you can use the [bookmark: idx-CHP-8-0357]DATE_ADD function, which is shown below:

	1 select date_add(hiredate,interval -5 day) as hd_minus_5D,

	2 date_add(hiredate,interval 5 day) as hd_plus_5D,

	3 date_add(hiredate,interval -5 month) as hd_minus_5M,

	4 date_add(hiredate,interval 5 month) as hd_plus_5M,

	5 date_add(hiredate,interval -5 year) as hd_minus_5Y,

	6 date_add(hiredate,interval 5 year) as hd_plus_5DY

	7 from emp

	8 where deptno=10

[bookmark: sqlckbk-CHP-8-SECT-1.2.5]

SQL Server

Use the [bookmark: idx-CHP-8-0358]DATEADD function to add or subtract different units of time to/from a date:

	1 select dateadd(day,-5,hiredate) as hd_minus_5D,

	2 dateadd(day,5,hiredate) as hd_plus_5D,

	3 dateadd(month,-5,hiredate) as hd_minus_5M,

	4 dateadd(month,5,hiredate) as hd_plus_5M,

	5 dateadd(year,-5,hiredate) as hd_minus_5Y,

	6 dateadd(year,5,hiredate) as hd_plus_5Y

	7 from emp

	8 where deptno = 10

[bookmark: sqlckbk-CHP-8-SECT-1.3]

Discussion

The Oracle solution takes advantage of the fact that integer values represent days when performing date [bookmark: idx-CHP-8-0359]arithmetic. However, that's true only of arithmetic with DATE types. Oracle9 i Database introduced [bookmark: idx-CHP-8-0360]TIMESTAMP types. For those, you should use the INTERVAL solution shown for PostgreSQL. Beware too, of passing TIMESTAMPs to old-style date functions such as [bookmark: idx-CHP-8-0361]ADD_MONTHS. By doing so, you can lose any fractional seconds that such TIMESTAMP values may contain.

The [bookmark: idx-CHP-8-0362]INTERVAL keyword and the string literals that go with it represent ISO-standard SQL syntax. The standard requires that interval values be enclosed within single quotes. PostgreSQL (and Oracle9 i Database and later) complies with the standard. MySQL deviates somewhat by omitting support for the quotes.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-2]

Recipe 8.2. Determining the Number of Days Between Two Dates

[bookmark: sqlckbk-CHP-8-SECT-2.1]

Problem

You want to find the [bookmark: idx-CHP-8-0363]difference between two dates and represent the result in days. For example, you want to find the difference in days between the HIREDATEs of employee ALLEN and employee WARD.

[bookmark: sqlckbk-CHP-8-SECT-2.2]

Solution

[bookmark: sqlckbk-CHP-8-SECT-2.2.1]

DB2

Use two inline views to find the HIREDATEs for WARD and ALLEN. Then subtract one HIREDATE from the other using the DAYS function:

	 1 select days(ward_hd) - days(allen_hd)

	 2 from (

	 3 select hiredate as ward_hd

	 4 from emp

	 5 where ename = 'WARD'

	 6) x,

	 7 (

	 8 select hiredate as allen_hd

	 9 from emp

	10 where ename = 'ALLEN'

	11) y

[bookmark: sqlckbk-CHP-8-SECT-2.2.2]

Oracle and PostgreSQL

Use two inline views to find the HIREDATEs for WARD and ALLEN, and then subtract one date from the other:

	 1 select ward_hd - allen_hd

	 2 from (

	 3 select hiredate as ward_hd

	 4 from emp

	 5 where ename = 'WARD'

	 6) x,

	 7 (

	 8 select hiredate as allen_hd

	 9 from emp

	10 where ename = 'ALLEN'

	11) y

[bookmark: sqlckbk-CHP-8-SECT-2.2.3]

MySQL and SQL Server

Use the function [bookmark: idx-CHP-8-0364]DATEDIFF to find the number of days between two dates. MySQL's version of DATEDIFF requires only two parameters (the two dates you want to find the difference in days between), and the smaller of the two dates should be passed first to avoid negative values (opposite in SQL Server). SQL Server's version of the function allows you to specify what you want the return value to represent (in this example you want to return the difference in days). The solution following uses the SQL Server version:

	 1 select datediff(day,allen_hd,ward_hd)

	 2 from (

	 3 select hiredate as ward_hd

	 4 from emp

	 5 where ename = 'WARD'

	 6) x,

	 7 (

	 8 select hiredate as allen_hd

	 9 from emp

	10 where ename = 'ALLEN'

	11) y

MySQL users can simply remove the first argument of the function and flip-flop the order in which ALLEN_HD and WARD_HD is passed.

[bookmark: sqlckbk-CHP-8-SECT-2.3]

Discussion

For all solutions, inline views X and Y return the HIREDATEs for employees WARD and ALLEN respectively. For example:

	

	select ward_hd, allen_hd

	 from (

	select hiredate as ward_hd

	 from emp

	 where ename = 'WARD'

) y,

	 (

	select hiredate as allen_hd

	 from emp

	 where ename = 'ALLEN'

) x

	WARD_HD ALLEN_HD

	----------- ----------

	22-FEB-1981 20-FEB-1981

You'll notice a Cartesian product is created, because there is no join specified between X and Y. In this case, the lack of a join is harmless as the cardinalities for X and Y are both 1, thus the result set will ultimately have one row (obviously, because 1x1=1). To get the difference in days, simply subtract one of the two values returned from the other using methods appropriate for your database.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-3]

Recipe 8.3. Determining the Number of Business Days Between Two Dates

[bookmark: idx-CHP-8-0365]

[bookmark: sqlckbk-CHP-8-SECT-3.1]

Problem

Given two dates, you want to find how many "working" days are between them, including the two dates themselves. For example, if January 10th is a Tuesday and January 11th is a Monday, then the number of working days between these two dates is two, as both days are typical work days. For this recipe, "business days" is defined as any day that is not Saturday or Sunday.

[bookmark: sqlckbk-CHP-8-SECT-3.2]

Solution

The solution examples find the number of [bookmark: idx-CHP-8-0366]business days between the HIREDATEs of BLAKE and JONES. To determine the number of business days between two dates, you can use a pivot table to return a row for each day between the two dates (including the start and end dates). Having done that, finding the number of business days is simply counting the dates returned that are not Saturday or Sunday.

						[image:]			

If you want to exclude holidays as well, you can create a HOLIDAYS table. Then include a simple NOT IN predicate to exclude days listed in HOLIDAYS from the solution.

[bookmark: sqlckbk-CHP-8-SECT-3.2.1]

DB2

Use the pivot table T500 to generate the required number of rows (representing days) between the two dates. Then count each day that is not a weekend. Use the [bookmark: idx-CHP-8-0367]DAYNAME function to return the weekday name of each date. For example:

	 1 select sum(case when dayname(jones_hd+t500.id day -1 day)

	 2 in ('Saturday','Sunday')

	 3 then 0 else 1

	 4 end) as days

	 5 from (

	 6 select max(case when ename = 'BLAKE'

	 7 then hiredate

	 8 end) as blake_hd,

	 9 max(case when ename = 'JONES'

	10 then hiredate

	11 end) as jones_hd

	12 from emp

	13 where ename in ('BLAKE','JONES')

	14) x,

	15 t500

	16 where t500.id <= blake_hd-jones_hd+1

[bookmark: sqlckbk-CHP-8-SECT-3.2.2]

MySQL

Use the pivot table T500 to generate the required number of rows (days) between the two dates. Then count each day that is not a weekend. Use the [bookmark: idx-CHP-8-0368]DATE_ADD function to add days to each date. Use the [bookmark: idx-CHP-8-0369]DATE_FORMAT function to obtain the weekday name of each date:

	 1 select sum(case when date_format(

	 2 date_add(jones_hd,

	 3 interval t500.id-1 DAY),'%a')

	 4 in ('Sat','Sun')

	 5 then 0 else 1

	 6 end) as days

	 7 from (

	 8 select max(case when ename = 'BLAKE'

	 9 then hiredate

	10 end) as blake_hd,

	11 max(case when ename = 'JONES'

	12 then hiredate

	13 end) as jones_hd

	14 from emp

	15 where ename in ('BLAKE','JONES')

	16) x,

	17 t500

	18 where t500.id <= datediff(blake_hd,jones_hd)+1

[bookmark: sqlckbk-CHP-8-SECT-3.2.3]

Oracle

Use the pivot table T500 to generate the required number of rows ([bookmark: idx-CHP-8-0370]days) between the two dates, and then count each day that is not a weekend. Use the [bookmark: idx-CHP-8-0371]TO_CHAR function to obtain the weekday name of each date:

	 1 select sum(case when to_char(jones_hd+t500.id-1,'DY')

	 2 in ('SAT','SUN')

	 3 then 0 else 1

	 4 end) as days

	 5 from (

	 6 select max(case when ename = 'BLAKE'

	 7 then hiredate

	 8 end) as blake_hd,

	 9 max(case when ename = 'JONES'

	10 then hiredate

	11 end) as jones_hd

	12 from emp

	13 where ename in ('BLAKE','JONES')

	14) x,

	15 t500

	16 where t500.id <= blake_hd-jones_hd+1

[bookmark: sqlckbk-CHP-8-SECT-3.2.4]

PostgreSQL

Use the pivot table T500 to generate the required number of rows (days) between the two dates. Then count each day that is not a weekend. Use the TO_CHAR function to obtain the weekday name of each date:

	 1 select sum(case when trim(to_char(jones_hd+t500.id-1,'DAY'))

	 2 in ('SATURDAY','SUNDAY')

	 3 then 0 else 1

	 4 end) as days

	 5 from (

	 6 select max(case when ename = 'BLAKE'

	 7 then hiredate

	 8 end) as blake_hd,

	 9 max(case when ename = 'JONES'

	10 then hiredate

	11 end) as jones_hd

	12 from emp

	13 where ename in ('BLAKE','JONES')

	14) x,

	15 t500

	16 where t500.id <= blake_hd-jones_hd+1

[bookmark: sqlckbk-CHP-8-SECT-3.2.5]

SQL Server

Use the pivot table T500 to generate the required number of rows (days) between the two dates, and then count each day that is not a weekend. Use the [bookmark: idx-CHP-8-0372]DATENAME function to obtain the weekday name of each date:

	 1 select sum(case when datename(dw,jones_hd+t500.id-1)

	 2 in ('SATURDAY','SUNDAY')

	 3 then 0 else 1

	 4 end) as days

	 5 from (

	 6 select [bookmark: idx-CHP-8-0373]max(case when ename = 'BLAKE'

	 7 then hiredate

	 8 end) as blake_hd,

	 9 max(case when ename = 'JONES'

	10 then hiredate

	11 end) as jones_hd

	12 from emp

	13 where ename in ('BLAKE','JONES')

	14) x,

	15 t500

	16 where t500.id <= datediff(day,jones_hd-blake_hd)+1

[bookmark: sqlckbk-CHP-8-SECT-3.3]

Discussion

While each RDBMS requires the use of different built-in functions to determine the name of a day, the overall solution approach is the same for each. The solution can be broken into two steps:

			Return the [bookmark: idx-CHP-8-0374]days between the start date and end date (inclusive).

			Count how many days (i.e., rows) there are, excluding weekends.

Inline view X performs step 1. If you examine inline view X, you'll notice the use of the aggregate function MAX, which the recipe uses to remove NULLs. If the use of MAX is unclear, the following output might help you understand. The output shows the results from inline view X without MAX:

	

	select case when ename = 'BLAKE'

	 then hiredate

	 end as blake_hd,

	 case when ename = 'JONES'

	 then hiredate

	 end as jones_hd

	 from emp

	 where ename in ('BLAKE','JONES')

	BLAKE_HD JONES_HD

	----------- -----------

	 02-APR-1981

	01-MAY-1981

Without MAX, two rows are returned. By using MAX you return only one row instead of two, and the NULLs are eliminated:

	

	select max(case when ename = 'BLAKE'

	 then hiredate

	 end) as blake_hd,

	 max(case when ename = 'JONES'

	 then hiredate

	 end) as jones_hd

	 from emp

	 where ename in ('BLAKE','JONES')

	BLAKE_HD JONES_HD

	----------- -----------

	01-MAY-1981 02-APR-1981

The number of [bookmark: idx-CHP-8-0375]days (inclusive) between the two dates here is 30. Now that the two dates are in one row, the next step is to generate one row for each of those 30 days. To return the 30 days (rows), use table T500. Since each value for ID in table T500 is simply 1 greater than the one before it, add each row returned by T500 to the earlier of the two dates (JONES_HD) to generate consecutive days starting from JONES_HD up to and including BLAKE_HD. The result of this addition is shown below (using Oracle syntax):

	

	select x.*, t500.*, jones_hd+t500.id-1

	 from (

	select max(case when ename = 'BLAKE'

	 then hiredate

	 end) as blake_hd,

	 max(case when ename = 'JONES'

	 then hiredate

	 end) as jones_hd

	 from emp

	 where ename in ('BLAKE','JONES')

) x,

	 t500

	 where t500.id <= blake_hd-jones_hd+1

	BLAKE_HD JONES_HD ID JONES_HD+T5

	----------- ----------- ---------- -----------

	01-MAY-1981 02-APR-1981 1 02-APR-1981

	01-MAY-1981 02-APR-1981 2 03-APR-1981

	01-MAY-1981 02-APR-1981 3 04-APR-1981

	01-MAY-1981 02-APR-1981 4 05-APR-1981

	01-MAY-1981 02-APR-1981 5 06-APR-1981

	01-MAY-1981 02-APR-1981 6 07-APR-1981

	01-MAY-1981 02-APR-1981 7 08-APR-1981

	01-MAY-1981 02-APR-1981 8 09-APR-1981

	01-MAY-1981 02-APR-1981 9 10-APR-1981

	01-MAY-1981 02-APR-1981 10 11-APR-1981

	01-MAY-1981 02-APR-1981 11 12-APR-1981

	01-MAY-1981 02-APR-1981 12 13-APR-1981

	01-MAY-1981 02-APR-1981 13 14-APR-1981

	01-MAY-1981 02-APR-1981 14 15-APR-1981

	01-MAY-1981 02-APR-1981 15 16-APR-1981

	01-MAY-1981 02-APR-1981 16 17-APR-1981

	01-MAY-1981 02-APR-1981 17 18-APR-1981

	01-MAY-1981 02-APR-1981 18 19-APR-1981

	01-MAY-1981 02-APR-1981 19 20-APR-1981

	01-MAY-1981 02-APR-1981 20 21-APR-1981

	01-MAY-1981 02-APR-1981 21 22-APR-1981

	01-MAY-1981 02-APR-1981 22 23-APR-1981

	01-MAY-1981 02-APR-1981 23 24-APR-1981

	01-MAY-1981 02-APR-1981 24 25-APR-1981

	01-MAY-1981 02-APR-1981 25 26-APR-1981

	01-MAY-1981 02-APR-1981 26 27-APR-1981

	01-MAY-1981 02-APR-1981 27 28-APR-1981

	01-MAY-1981 02-APR-1981 28 29-APR-1981

	01-MAY-1981 02-APR-1981 29 30-APR-1981

	01-MAY-1981 02-APR-1981 30 01-MAY-1981

If you examine the WHERE clause, you'll notice that you add 1 to the difference between BLAKE_HD and JONES_HD to generate the required 30 rows (otherwise, you would get 29 rows). You'll also notice that you subtract 1 from T500.ID in the SELECT list of the outer query, since the values for ID start at 1 and adding 1 to JONES_HD would cause JONES_HD to be excluded from the final count.

Once you generate the number of rows required for the result set, use a CASE expression to "flag" whether or not each of the [bookmark: idx-CHP-8-0376]days returned are weekdays or weekends (return a 1 for a weekday and a 0 for a weekend). The final step is to use the aggregate function [bookmark: idx-CHP-8-0377]SUM to tally up the number of 1s to get the final answer.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-4]

Recipe 8.4. Determining the Number of Months or Years Between Two Dates

[bookmark: sqlckbk-CHP-8-SECT-4.1]

Problem

You want to find the difference between two dates in terms of either months or years. For example, you want to find the number of months between the first and last employees hired, and you also wish to express that value as some number of years.

[bookmark: sqlckbk-CHP-8-SECT-4.2]

Solution

Since there are always 12 months in a year, you can find the number of months between two dates, and then divide by 12 to get the number of years. After getting comfortable with the solution, you'll want to round the results up or down depending on what you want for the year. For example, the first HIREDATE in table EMP is "17-DEC-1980" and the last is "12-JAN-1983". If you do the math on the years (1983 minus 1980) you get three years, yet the difference in months is approximately 25 (a little over two years). You should tweak the solution as you see fit. The solutions below will return 25 months and ~2 years.

[bookmark: sqlckbk-CHP-8-SECT-4.2.1]

DB2 and MySQL

Use the functions [bookmark: idx-CHP-8-0378]YEAR and [bookmark: idx-CHP-8-0379]MONTH to return the four-digit year and the two-digit month for the dates supplied:

	1 select mnth, mnth/12

	2 from (

	3 select (year(max_hd) - year(min_hd))*12 +

	4 (month(max_hd) - month(min_hd)) as mnth

	5 from (

	6 select min(hiredate) as min_hd, max(hiredate) as max_hd

	7 from emp

	8) x

	9) y

[bookmark: sqlckbk-CHP-8-SECT-4.2.2]

Oracle

Use the function [bookmark: idx-CHP-8-0380]MONTHS_BETWEEN to find the difference between two dates in months (to get years, simply divide by 12):

	1 select months_between(max_hd,min_hd),

	2 months_between(max_hd,min_hd)/12

	3 from (

	4 select min(hiredate) min_hd, max(hiredate) max_hd

	5 from emp

	6) x

[bookmark: sqlckbk-CHP-8-SECT-4.2.3]

PostgreSQL

Use the function [bookmark: idx-CHP-8-0381]EXTRACT to return the four-digit year and two-digit month for the dates supplied:

	 1 select mnth, mnth/12

	 2 from (

	 3 select (extract(year from max_hd)

	 4 extract(year from min_hd)) * 12

	 5 +

	 6 (extract(month from max_hd)

	 7 extract(month from min_hd)) as mnth

	 8 from (

	 9 select min(hiredate) as min_hd, max(hiredate) as max_hd

	10 from emp

	11) x

	12) y

[bookmark: sqlckbk-CHP-8-SECT-4.2.4]

SQL Server

Use the function [bookmark: idx-CHP-8-0382]DATEDIFF to find the difference between two dates in months (to get years, simply divide by 12):

	1 select datediff(month,min_hd,max_hd),

	2 datediff(month,min_hd,max_hd)/12

	3 from (

	4 select min(hiredate) min_hd, max(hiredate) max_hd

	5 from emp

	6) x

[bookmark: sqlckbk-CHP-8-SECT-4.3]

Discussion

[bookmark: sqlckbk-CHP-8-SECT-4.3.1]

DB2, MySQL, and PostgreSQL

Once you extract the year and month for MIN_HD and MAX_HD in the PostgreSQL solution, the method for finding the months and years between MIN_HD and MAX_HD is the same for all three RDBMs. This discussion will cover all three solutions. Inline view X returns the earliest and latest HIREDATEs in table EMP and can be seen below:

	

	select min(hiredate) as min_hd,

	 max(hiredate) as max_hd

	 from emp

	MIN_HD MAX_HD

	----------- -----------

	17-DEC-1980 12-JAN-1983

To find the months between MAX_HD and MIN_HD, multiply the difference in years between MIN_HD and MAX_HD by 12, then add the difference in months between MAX_HD and MIN_HD. If you are having trouble seeing how this works, return the date component for each date. The numeric values for the years and months are show below:

	

	select year(max_hd) as max_yr, year(min_hd) as min_yr,

	 month(max_hd) as max_mon, month(min_hd) as min_mon

	 from (

	select min(hiredate) as min_hd, max(hiredate) as max_hd

	 from emp

) x

	MAX_YR MIN_YR MAX_MON MIN_MON

	------ ---------- ---------- ----------

	 1983 1980 1 12

Looking at the results above, finding the months between MAX_HD and MIN_HD is simply (19831980)*12 + (112). To find the number of years between MIN_HD and MAX_HD, divide the number of months by 12. Again, depending on the results you are looking for you will want to round the values.

[bookmark: sqlckbk-CHP-8-SECT-4.3.2]

Oracle and SQL Server

Inline view X returns the earliest and latest HIREDATEs in table EMP and can be seen below:

	

	select min(hiredate) as min_hd, max(hiredate) as max_hd

	 from emp

	MIN_HD MAX_HD

	----------- -----------

	17-DEC-1980 12-JAN-1983

The functions supplied by Oracle and SQL Server ([bookmark: idx-CHP-8-0383]MONTHS_BETWEEN and DATEDIFF, respectively) will return the number of months [bookmark: idx-CHP-8-0384]between two given dates. To find the year, divide the number of months by 12.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-5]

Recipe 8.5. Determining the Number of Seconds, Minutes, or Hours Between Two Dates

[bookmark: sqlckbk-CHP-8-SECT-5.1]

Problem

You want to return the difference in seconds between two dates. For example, you want to return the difference between the HIREDATEs of ALLEN and WARD in seconds, minutes, and hours.

[bookmark: sqlckbk-CHP-8-SECT-5.2]

Solution

If you can find the number of [bookmark: idx-CHP-8-0385]days between two dates, you can find seconds, minutes, and hours as they are the units of time that make up a day.

[bookmark: sqlckbk-CHP-8-SECT-5.2.1]

DB2

Use the function DAYS to find the difference between ALLEN_HD and WARD_HD in days. Then multiply to find each unit of time:

	 1 select dy*24 hr, dy*24*60 min, dy*24*60*60 sec

	 2 from (

	 3 select (days(max(case when ename = 'WARD'

	 4 then hiredate

	 5 end)) -

	 6 days(max(case when ename = 'ALLEN'

	 7 then hiredate

	 8 end))

	 9) as dy

	10 from emp

	11) x

[bookmark: sqlckbk-CHP-8-SECT-5.2.2]

MySQL and SQL Server

Use the [bookmark: idx-CHP-8-0386]DATEDIFF function to return the number of days between ALLEN_HD and WARD_HD. Then multiply to find each unit of time:

	 1 select datediff(day,allen_hd,ward_hd)*24 hr,

	 2 datediff(day,allen_hd,ward_hd)*24*60 min,

	 3 datediff(day,allen_hd,ward_hd)*24*60*60 sec

	 4 from (

	 5 select max(case when ename = 'WARD'

	 6 then hiredate

	 7 end) as ward_hd,

	 8 max(case when ename = 'ALLEN'

	 9 then hiredate

	10 end) as allen_hd

	11 from emp

	12) x

[bookmark: sqlckbk-CHP-8-SECT-5.2.3]

Oracle and PostgreSQL

Use subtraction to return the number of days between ALLEN_HD and WARD_ HD. Then multiply to find each unit of time:

	 1 select dy*24 as hr, dy*24*60 as min, dy*24*60*60 as sec

	 2 from (

	 3 select (max(case when ename = 'WARD'

	 4 then hiredate

	 5 end) -

	 6 max(case when ename = 'ALLEN'

	 7 then hiredate

	 8 end)) as dy

	 9 from emp

	10) x

[bookmark: sqlckbk-CHP-8-SECT-5.3]

Discussion

Inline view X for all solutions returns the HIREDATEs for WARD and ALLEN, as can be seen below:

	

	select max(case when ename = 'WARD'

	 then hiredate

	 end) as ward_hd,

	 max(case when ename = 'ALLEN'

	 then hiredate

	 end) as allen_hd

	 from emp

	WARD_HD ALLEN_HD

	----------- -----------

	22-FEB-1981 20-FEB-1981

Multiply the number of days between WARD_HD and ALLEN_HD by 24 (hours in a day), 1440 (minutes in a day), and 86400 (seconds in a day).

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-6]

Recipe 8.6. Counting the Occurrences of Weekdays in a Year

[bookmark: idx-CHP-8-0387]

[bookmark: sqlckbk-CHP-8-SECT-6.1]

Problem

You want to count the number of times each weekday occurs in one year.

[bookmark: sqlckbk-CHP-8-SECT-6.2]

Solution

To find the number of occurrences of each weekday in a year, you must:

			Generate all possible dates in the year.

			Format the dates such that they resolve to the name of their respective weekdays.

			Count the occurrence of each weekday name.

[bookmark: sqlckbk-CHP-8-SECT-6.2.1]

DB2

Use recursive WITH to avoid the need to SELECT [bookmark: idx-CHP-8-0388]against a table with at least 366 rows. Use the function DAYNAME to obtain the weekday name for each date, and then count the occurrence of each:

	 1 with x (start_date,end_date)

	 2 as (

	 3 select start_date,

	 4 start_date + 1 year end_date

	 5 from (

	 6 select (current_date

	 7 dayofyear(current_date) day)

	 8 +1 day as start_date

	 9 from t1

	10) tmp

	11 union all

	12 select start_date + 1 day, end_date

	13 from x

	14 where start_date + 1 day < end_date

	15)

	16 select dayname(start_date),count(*)

	17 from x

	18 group by dayname(start_date)

[bookmark: sqlckbk-CHP-8-SECT-6.2.2]

MySQL

Select against table T500 to generate enough rows to return every day in the year. Use the [bookmark: idx-CHP-8-0389]DATE_FORMAT function to obtain the weekday name of each date, and then count the occurrence of each name:

	 1 select date_format(

	 2 date_add(

	 3 cast(

	 4 concat(year(current_date),'-01-01')

	 5 as date),

	 6 interval t500.id-1 day),

	 7 '%W') day,

	 8 count(*)

	 9 from t500

	10 where t500.id <= datediff(

	11 cast(

	12 concat(year(current_date)+1,'-01-01')

	13 as date),

	14 cast(

	15 concat(year(current_date),'-01-01')

	16 as date))

	17 group by date_format(

	18 date_add(

	19 cast(

	20 concat(year(current_date),'-01-01')

	21 as date),

	22 interval t500.id-1 day),

	23 '%W')

[bookmark: sqlckbk-CHP-8-SECT-6.2.3]

Oracle

If you are on Oracle9 i Database or later, you can use the recursive [bookmark: idx-CHP-8-0390]CONNECT BY to return each day [bookmark: idx-CHP-8-0391]in a year. If you are on Oracle8 i Database or earlier, select against table T500 to generate enough rows to return every day in a year. In either case, use the TO_CHAR function to obtain the weekday name of each date, and then count the occurrence of each name.

First, the CONNECT BY solution:

	 1 with x as (

	 2 select level lvl

	 3 from dual

	 4 connect by level <= (

	 5 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')

	 6)

	 7)

	 8 select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)

	 9 from x

	10 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

and next, the solution for older releases of Oracle:

	1 select to_char(trunc(sysdate,'y')+rownum-1,'DAY'),

	2 count(*)

	3 from t500

	4 where rownum <= (add_months(trunc(sysdate,'y'),12)

	5 - trunc(sysdate,'y'))

	6 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

[bookmark: sqlckbk-CHP-8-SECT-6.2.4]

PostgreSQL

Use the built-in function GENERATE_SERIES to generate one rows for every day in the year. Then use the TO_CHAR function to obtain the weekday name of each date. Finally, count the occurrence of each weekday name. For example:

	 1 select to_char(

	 2 cast(

	 3 date_trunc('year',current_date)

	 4 as date) + gs.id-1,'DAY'),

	 5 count(*)

	 6 from generate_series(1,366) gs(id)

	 7 where gs.id <= (cast

	 8 (date_trunc('year',current_date) +

	 9 interval '12 month' as date) -

	10 cast(date_trunc('year',current_date)

	11 as date))

	12 group by to_char(

	13 cast(

	14 date_trunc('year',current_date)

	15 as date) + gs.id-1,'DAY')

[bookmark: sqlckbk-CHP-8-SECT-6.2.5]

SQL Server

Use the recursive WITH to avoid the need to SELECT [bookmark: idx-CHP-8-0392]against a table with at least 366 rows. If you are on a version of SQL Server that does not support the WITH clause, see the alternative Oracle solution as a guideline for using a pivot table. Use the [bookmark: idx-CHP-8-0393]DATENAME function to obtain the weekday name of each date, and then count the occurrence of each name. For example:

	 1 with x (start_date,end_date)

	 2 as (

	 3 select start_date,

	 4 dateadd(year,1,start_date) end_date

	 5 from (

	 6 select cast(

	 7 cast(year(getdate()) as varchar) + '-01-01'

	 8 as datetime) start_date

	 9 from t1

	10) tmp

	11 union all

	12 select dateadd(day,1,start_date), end_date

	13 from x

	14 where dateadd(day,1,start_date) < end_date

	15)

	16 select datename(dw,start_date),count(*)

	17 from x

	18 group by datename(dw,start_date)

	19 OPTION (MAXRECURSION 366)

[bookmark: sqlckbk-CHP-8-SECT-6.3]

Discussion

[bookmark: sqlckbk-CHP-8-SECT-6.3.1]

DB2

Inline view TMP, in the recursive WITH view X, returns the first day of the current year and is shown below:

	

	select (current_date

	 dayofyear(current_date) day)

	 +1 day as start_date

	 from t1

	START_DATE

	01-JAN-2005

The next step is to add one year to START_DATE, so that you have the beginning and end dates. You need to know both because you want to generate every day in a year. START_DATE and END_DATE are shown below:

	

	select start_date,

	 start_date + 1 year end_date

	 from (

	select (current_date

	 dayofyear(current_date) day)

	 +1 day as start_date

	 from t1

	 [bookmark: idx-CHP-8-0394]) tmp

	START_DATE END_DATE

	----------- ------------

	01-JAN-2005 01-JAN-2006

The next step is to recursively increment START_DATE by one day, stopping before it equals END_DATE. A portion of the rows returned by the recursive view X is shown below:

	

	with x (start_date,end_date)

	as (

	select start_date,

	 start_date + 1 year end_date

	 from (

	select (current_date -

	 dayofyear(current_date) day)

	 +1 day as start_date

	 from t1

) tmp

	 union all

	select start_date + 1 day, end_date

	 from x

	 where start_date + 1 day < end_date

)

	select * from x

	START_DATE END_DATE

	----------- -----------

	01-JAN-2005 01-JAN-2006

	02-JAN-2005 01-JAN-2006

	03-JAN-2005 01-JAN-2006

	…

	29-JAN-2005 01-JAN-2006

	30-JAN-2005 01-JAN-2006

	31-JAN-2005 01-JAN-2006

	…

	01-DEC-2005 01-JAN-2006

	02-DEC-2005 01-JAN-2006

	03-DEC-2005 01-JAN-2006

	…

	29-DEC-2005 01-JAN-2006

	30-DEC-2005 01-JAN-2006

	31-DEC-2005 01-JAN-2006

The final step is to use the function DAYNAME on the rows returned by the recursive view X, and count how many times each weekday occurs. The final result is shown below:

	

	with x (start_date,end_date)

	as (

	select start_date,

	 start_date + 1 year end_date

	 from (

	select ([bookmark: idx-CHP-8-0395][bookmark: idx-CHP-8-0396]current_date -

	 dayofyear(current_date) day)

	 +1 day as start_date

	 from t1

) tmp

	 union all

	select start_date + 1 day, end_date

	 from x

	 where start_date + 1 day < end_date

)

	select dayname(start_date),count(*)

	 from x

	 group by dayname(start_date)

	START_DATE COUNT(*)

	---------- ----------

	FRIDAY 52

	MONDAY 52

	SATURDAY 53

	SUNDAY 52

	THURSDAY 52

	TUESDAY 52

	WEDNESDAY 52

[bookmark: sqlckbk-CHP-8-SECT-6.3.2]

MySQL

This solution selects against table T500 to generate one row for every day in the year. The command on line 4 returns the first day of the current year. It does this by returning the year of the date returned by the function CURRENT_DATE, and then appending a month and day (following MySQL's default date format). The result is shown below:

	

	select concat(year(current_date),'-01-01')

	 from t1

	START_DATE

	01-JAN-2005

Now that you have the first day in the current year, use the [bookmark: idx-CHP-8-0397]DATEADD function to add each value from T500.IDto generate each day in the year. Use the function [bookmark: idx-CHP-8-0398]DATE_FORMAT to return the weekday for each date. To generate the required number of rows from table T500, find the difference in days between the first day of the current year and the first day of the next year, and return that many rows (will be either 365 or 366). A portion of the results is shown below:

	

	select date_format(

	 date_add(

	 cast(

	 concat(year(current_date),'-01-01')

	 as date),

	 [bookmark: idx-CHP-8-0399]interval t500.id-1 day),

	 '%W') day

	 from t500

	 where t500.id <= datediff(

	 cast(

	 concat(year(current_date)+1,'-01-01')

	 as date),

	 cast(

	 concat(year(current_date),'-01-01')

	 as date))

	DAY

	01-JAN-2005

	02-JAN-2005

	03-JAN-2005

	…

	29-JAN-2005

	30-JAN-2005

	31-JAN-2005

	…

	01-DEC-2005

	02-DEC-2005

	03-DEC-2005

	…

	29-DEC-2005

	30-DEC-2005

	31-DEC-2005

Now that you can return every day in the current year, count the occurrences of each weekday returned by the function DAYNAME. The final results are shown below:

	

	select date_format(

	 date_add(

	 cast(

	 concat(year(current_date),'-01-01')

	 as date),

	 interval t500.id-1 day),

	 '%W') day,

	 count(*)

	 from t500

	 where t500.id <= datediff(

	 cast(

	 concat(year(current_date)+1,'-01-01')

	 as date),

	 cast(

	 concat(year(current_date),'-01-01')

	 as date))

	 group by date_format(

	 date_add(

	 cast(

	 concat(year(current_date),'-01-01')

	 as date),

	 [bookmark: idx-CHP-8-0400]interval t500.id-1 day),

	 '%W')

	DAY COUNT(*)

	--------- ----------

	FRIDAY 52

	MONDAY 52

	SATURDAY 53

	SUNDAY 52

	THURSDAY 52

	TUESDAY 52

	WEDNESDAY 52

[bookmark: sqlckbk-CHP-8-SECT-6.3.3]

Oracle

The solutions provided either select against table T500 (a pivot table), or use the recursive CONNECT BY and WITH, to generate a row for every day in the current year. The call to the function [bookmark: idx-CHP-8-0401]TRUNC truncates the current date to the first day of the current year.

If you are using the CONNECT BY/WITH solution, you can use the pseudo-column LEVEL to generate sequential numbers beginning at 1. To generate the required number of rows needed for this solution, filter ROWNUM or LEVEL on the difference in days between the first day of the current year and the first day of the next year (will be 365 or 366 days). The next step is to increment each day by adding ROWNUM or LEVEL to the first day of the current year. Partial results are shown below:

	

	/* Oracle 9i and later */

	with x as (

	select level lvl

	 from dual

	 connect by level <= (

	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')

)

)

	select trunc(sysdate,'y')+lvl-1

	 from x

If you are using the pivot-table solution, you can use any table or view with at least 366 rows in it. And since Oracle has ROWNUM, there's no need for a table with incrementing values starting from 1. Consider the following example, which uses pivot table T500 to return every day in the current year:

	

	/* Oracle 8i and earlier */

	select trunc(sysdate,'y')+rownum-1 start_date

	 from t500

	 where rownum <= (add_months(trunc(sysdate,'y'),12)

	 - trunc(sysdate,'y'))

	START_DATE

	01-JAN-2005

	02-JAN-2005

	03-JAN-2005

	…

	29-JAN-2005

	30-JAN-2005

	31-JAN-2005

	…

	01-DEC-2005

	02-DEC-2005

	03-DEC-2005

	…

	29-DEC-2005

	30-DEC-2005

	31-DEC-2005

[bookmark: idx-CHP-8-0402]

Regardless of which approach you take, you eventually must use the function TO_ CHAR to return the weekday name for each date, and then count the occurrence of each name. The final results are shown below:

	

	/* Oracle 9i and later */

	with x as (

	select level lvl

	 from dual

	 connect by level <= (

	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')

)

)

	select to_char(trunc(sysdate,'y')+lvl-1,'DAY'), count(*)

	 from x

	 group by to_char(trunc(sysdate,'y')+lvl-1,'DAY')

	/* Oracle 8i and earlier */

	select to_char(trunc(sysdate,'y')+rownum-1,'DAY') start_date,

	 count(*)

	 from t500

	 where rownum <= (add_months(trunc(sysdate,'y'),12)

	 - trunc(sysdate,'y'))

	 group by to_char(trunc(sysdate,'y')+rownum-1,'DAY')

	START_DATE COUNT(*)

	---------- ----------

	FRIDAY 52

	MONDAY 52

	SATURDAY 53

	SUNDAY 52

	THURSDAY 52

	TUESDAY 52

	WEDNESDAY 52

[bookmark: sqlckbk-CHP-8-SECT-6.3.4]

PostgreSQL

The first step is [bookmark: idx-CHP-8-0403][bookmark: idx-CHP-8-0404]to use the [bookmark: idx-CHP-8-0405]DATE_TRUNC function to return the year of the current date (shown below, selecting against T1 so only one row is returned):

	

	select cast(

	 date_trunc('year',current_date)

	 as date) as start_date

	 from t1

	 START_DATE

	 01-JAN-2005

The next step is to select against a row source (any table expression, really) with at least 366 rows. The solution uses the function GENERATE_SERIES as the row source. You can, of course, use table T500 instead. Then add one day to the first day of the current year until you return every day in the year (shown below):

	

	select cast(date_trunc('year',current_date)

	 as date) + gs.id-1 as start_date

	 from generate_series (1,366) gs(id)

	 where gs.id <= (cast

	 (date_trunc('year',current_date) +

	 interval '12 month' as date) -

	 cast(date_trunc('year',current_date)

	 as date))

	START_DATE

	01-JAN-2005

	02-JAN-2005

	03-JAN-2005

	…

	29-JAN-2005

	30-JAN-2005

	31-JAN-2005

	…

	01-DEC-2005

	02-DEC-2005

	03-DEC-2005

	…

	29-DEC-2005

	30-DEC-2005

	31-DEC-2005

The final step is to use the function TO_CHAR to return the weekday name for each date, and then count the occurrence of each name. The final results are shown below:

	

	select to_char(

	 cast(

	 date_trunc('year',current_date)

	 as date) + gs.id-1,'DAY') as start_dates,

	 count(*)

	 from generate_series(1,366) gs(id)

	 where gs.id <= (cast

	 (date_trunc('year',current_date) +

	 [bookmark: idx-CHP-8-0406]interval '12 month' as date) -

	 cast(date_trunc('year',current_date)

	 as date))

	 group by to_char(

	 cast(

	 date_trunc('year',current_date)

	 as date) + gs.id-1,'DAY')

	START_DATE COUNT(*)

	---------- ----------

	FRIDAY 52

	MONDAY 52

	SATURDAY 53

	SUNDAY 52

	THURSDAY 52

	TUESDAY 52

	WEDNESDAY 52

[bookmark: sqlckbk-CHP-8-SECT-6.3.5]

SQL Server

Inline view TMP, in the recursive WITH view X, returns the first day of the current year and is shown below:

	

	select cast(

	 cast(year(getdate()) as varchar) + '-01-01'

	 as datetime) start_date

	 from t1

	START_DATE

	01-JAN-2005

Once you return the first day of the current year, add one year to START_DATE so that you have the beginning and end dates. You need to know both because you want to generate every day in a year. START_DATE and END_DATE are shown below:

	

	select start_date,

	 dateadd(year,1,start_date) end_date

	 from (

	select cast(

	 cast(year(getdate()) as varchar) + '-01-01'

	 as datetime) start_date

	 from t1

) tmp

	START_DATE END_DATE

	----------- -----------

	01-JAN-2005 01-JAN-2006

Next, recursively [bookmark: idx-CHP-8-0407]increment START_DATE by one day and stop before it equals END_DATE. A portion of the rows returned by the recursive view X is shown below:

	

	with x (start_date,end_date)

	 as (

	 select start_date,

	 dateadd(year,1,start_date) end_date

	 from (

	 select cast(

	 cast(year(getdate()) as varchar) + '-01-01'

	 as datetime) start_date

	 from t1

) tmp

	 union all

	 select dateadd(day,1,start_date), end_date

	 from x

	 where dateadd(day,1,start_date) < end_date

)

	 select * from x

	 OPTION (MAXRECURSION 366)

	START_DATE END_DATE

	----------- -----------

	01-JAN-2005 01-JAN-2006

	02-JAN-2005 01-JAN-2006

	03-JAN-2005 01-JAN-2006

	…

	29-JAN-2005 01-JAN-2006

	30-JAN-2005 01-JAN-2006

	31-JAN-2005 01-JAN-2006

	…

	01-DEC-2005 01-JAN-2006

	02-DEC-2005 01-JAN-2006

	03-DEC-2005 01-JAN-2006

	…

	29-DEC-2005 01-JAN-2006

	30-DEC-2005 01-JAN-2006

	31-DEC-2005 01-JAN-2006

The final step is to use the function [bookmark: idx-CHP-8-0408]DATENAME on the rows returned by the recursive view X and count how many times each weekday occurs. The final result is shown below:

	

	with x(start_date,end_date)

	 as (

	 select start_date,

	 dateadd(year,1,start_date) end_date

	 from (

	 select cast(

	 cast(year(getdate()) as varchar) + '-01-01'

	 as datetime) start_date

	 from t1

) tmp

	 union all

	 select dateadd(day,1,start_date), end_date

	 from x

	 where dateadd(day,1,start_date) < end_date

)

	 select datename(dw,start_date), count(*)

	 from x

	 group by datename(dw,start_date)

	 OPTION (MAXRECURSION 366)[bookmark: idx-CHP-8-0409]

	START_DATE COUNT(*)

	--------- ----------

	FRIDAY 52

	MONDAY 52

	SATURDAY 53

	SUNDAY 52

	THURSDAY 52

	TUESDAY 52

	WEDNESDAY 52

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8-SECT-7]

Recipe 8.7. Determining the Date Difference Between the Current Record and the Next Record

[bookmark: idx-CHP-8-0410]

[bookmark: sqlckbk-CHP-8-SECT-7.1]

Problem

You want to determine the difference in days between two dates (specifically dates stored in two different rows). For example, for every employee in DEPTNO 10, you want to determine the number of days between the day they were hired and the day the next employee (can be in another department) was hired.

[bookmark: sqlckbk-CHP-8-SECT-7.2]

Solution

The trick to this problem's solution is to find the earliest HIREDATE after the current employee was hired. After that, simply use the technique from "Determining the Number of Days between Two Dates" to find the difference in days.

[bookmark: sqlckbk-CHP-8-SECT-7.2.1]

DB2

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use the [bookmark: idx-CHP-8-0411]DAYS function to find the difference in days:

	1 select x.*,

	2 days(x.next_hd) - days(x.hiredate) diff

	3 from (

	4 select e.deptno, e.ename, e.hiredate,

	5 (select min(d.hiredate) from emp d

	6 where d.hiredate > e.hiredate) next_hd

	7 from emp e

	8 where e.deptno = 10

	9) x

[bookmark: sqlckbk-CHP-8-SECT-7.2.2]

MySQL and SQL Server

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use the [bookmark: idx-CHP-8-0412]DATEDIFF function to find the [bookmark: idx-CHP-8-0413]difference in days. The SQL Server version of DATEDIFF is used below:

	1 select x.*,

	2 datediff(day,x.hiredate,x.next_hd) diff

	3 from (

	4 select e.deptno, e.ename, e.hiredate,

	5 (select min(d.hiredate) from emp d

	6 where d.hiredate > e.hiredate) next_hd

	7 from emp e

	8 where e.deptno = 10

	9) x

MySQL users can exclude the first argument ("day") and switch the order of the two remaining arguments:

	2 datediff(x.next_hd, x.hiredate) diff

[bookmark: sqlckbk-CHP-8-SECT-7.2.3]

Oracle

If you're on Oracle8 i Database or later, use the window function [bookmark: idx-CHP-8-0414]LEAD OVER to access the next HIREDATE relative to the current row, thus facilitating subtraction:

	1 select ename, hiredate, next_hd,

	2 next_hd - hiredate diff

	3 from (

	4 select deptno, ename, hiredate,

	5 lead(hiredate)over(order by hiredate) next_hd

	6 from emp

	7)

	8 where deptno=10

If you are on Oracle8 Database or earlier, you can use the PostgreSQL solution as an alternative.

[bookmark: sqlckbk-CHP-8-SECT-7.2.4]

PostgreSQL

Use a scalar subquery to find the next HIREDATE relative to the current HIREDATE. Then use simple subtraction to find the difference in days:

	1 select x.*,

	2 x.next_hd - x.hiredate as diff

	3 from (

	4 select e.deptno, e.ename, e.hiredate,

	5 (select min(d.hiredate) from emp d

	6 where d.hiredate > e.hiredate) as next_hd

	7 from emp e

	8 where e.deptno = 10

	9) x

[bookmark: sqlckbk-CHP-8-SECT-7.3]

Discussion

[bookmark: sqlckbk-CHP-8-SECT-7.3.1]

DB2, MySQL, PostgreSQL, and SQL Server

Despite the [bookmark: idx-CHP-8-0415]differences in syntax, the approach is the same for all these solutions: use a scalar subquery to find the next HIREDATE relative to the current HIREDATE, and then find the difference in days between the two using the technique described in "Determining the Number [bookmark: idx-CHP-8-0416]of Days Between Two Dates," found earlier in this chapter.

[bookmark: sqlckbk-CHP-8-SECT-7.3.2]

Oracle

The window function [bookmark: idx-CHP-8-0417]LEAD OVER is extremely useful here as it allows you to access "future" rows ("future" determined by the ORDER BY clause, relative to the current row). The ability to access rows around your current row without additional joins provides for more readable and efficient code. When working with window functions, keep in mind that they are evaluated after the WHERE clause, hence the need for an inline view in the solution. If you were to move the filter on DEPTNO into the inline view, the results would change (only the HIREDATEs from DEPTNO 10 would be considered). One important note to mention about Oracle's LEAD and [bookmark: idx-CHP-8-0418]LAG functions is their behavior in the presence of duplicates. In the preface I mention that these recipes are not coded "defensively" because there are too many conditions that one can't possibly foresee that can break code. Or, even if one can foresee every problem, sometimes the resulting SQL becomes unreadable. So in most cases, the goal of a solution is to introduce a technique: one that you can use in your production system, but that must be tested and many times tweaked to work for your particular data. In this case, though, there is a situation that I will discuss simply because the workaround may not be all that obvious, particularly for those coming from non-Oracle systems. In this example there are no duplicate HIREDATEs in table EMP, but it is certainly possible (and probably likely) that there are duplicate date values in your tables. Consider the employees in DEPTNO 10 and their HIREDATEs:

	

	select ename, hiredate

	 from emp

	 where deptno=10

	 order by 2

	ENAME HIREDATE

	------ -----------

	CLARK 09-JUN-1981

	KING 17-NOV-1981

	MILLER 23-JAN-1982

For the sake of this example, let's insert four duplicates such that there are five employees (including KING) hired on November 17:

	

	insert into emp (empno,ename,deptno,hiredate)

	values (1,'ant',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)

	values (2,'joe',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)

	values (3,'jim',10,to_date('17-NOV-1981'))

	insert into emp (empno,ename,deptno,hiredate)

	values (4,'choi',10,to_date('17-NOV-1981'))

	select ename, hiredate

	 from emp

	 where deptno=10

	 order by 2

	ENAME HIREDATE

	------ -----------

	CLARK 09-JUN-1981

	ant 17-NOV-1981

	joe 17-NOV-1981

	KING 17-NOV-1981

	jim 17-NOV-1981

	choi 17-NOV-1981

	MILLER 23-JAN-1982

Now there are multiple employees in DEPTNO 10 hired on the same day. If you try to use the proposed solution (moving the filter into the inline view so you only are concerned with employees in DEPTNO 10 and their HIREDATEs) on this result set you get the following output:

	

	select ename, hiredate, next_hd,

	 next_hd - hiredate diff

	 from (

	select deptno, ename, hiredate,

	 lead(hiredate)over(order by hiredate) next_hd

	 from emp

	 where deptno=10

)

	ENAME HIREDATE NEXT_HD DIFF

	------ ----------- ----------- ----------

	CLARK 09-JUN-1981 17-NOV-1981 161

	ant 17-NOV-1981 17-NOV-1981 0

	joe 17-NOV-1981 17-NOV-1981 0

	KING 17-NOV-1981 17-NOV-1981 0

	jim 17-NOV-1981 17-NOV-1981 0

	choi 17-NOV-1981 23-JAN-1982 67

	MILLER 23-JAN-1982 (null) (null)

Looking at the values of DIFF for four of the five employees hired on the same day, you can see that the value is zero. This is not correct. All employees hired on the same day should have their dates evaluated against the HIREDATE of the next date on which an employee was hired, i.e., all employees hired on November 17 should be evaluated against MILLER's HIREDATE. The problem here is that the [bookmark: idx-CHP-8-0419]LEAD function orders the rows by HIREDATE but does not skip duplicates. So, for example, when employee ANT's HIREDATE is evaluated against employee JOE's HIREDATE, the [bookmark: idx-CHP-8-0420]difference is zero, hence a DIFF value of zero for ANT. Fortunately, Oracle has provided an easy workaround for situations like this one. When invoking the LEAD function, you can pass an argument to LEAD to specify exactly where the future row is (i.e., is it the next row, 10 rows later, etc.). So, looking at employee ANT, instead of looking ahead one row you need to look ahead five rows (you want to jump over all the other duplicates), because that's where MILLER is. If you look at employee JOE, he is four rows from MILLER, JIM is three rows from MILLER, KING is two rows from MILLER and, pretty boy CHOI is one row from MILLER. To get the correct answer, simply pass the distance from each employee to MILLER as an argument to LEAD. The solution is shown below:

	

	select ename, hiredate, next_hd,

	 next_hd - hiredate diff

	 from (

	select deptno, ename, hiredate,

	 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd

	 from (

	select deptno,ename,hiredate,

	 count(*)over(partition by hiredate) cnt,

	 row_number()over(partition by hiredate order by empno) rn

	 from emp

	 where deptno=10

)

)

	ENAME HIREDATE NEXT_HD DIFF

	------ ----------- ----------- ----------

	CLARK 09-JUN-1981 17-NOV-1981 161

	ant 17-NOV-1981 23-JAN-1982 67

	joe 17-NOV-1981 23-JAN-1982 67

	jim 17-NOV-1981 23-JAN-1982 67

	choi 17-NOV-1981 23-JAN-1982 67

	KING 17-NOV-1981 23-JAN-1982 67

 	MILLER 23-JAN-1982 (null) (null)

Now the results are correct. All the employees hired on the same day have their HIREDATEs evaluated against the next HIREDATE, not a HIREDATE that matches their own. If the workaround isn't immediately obvious, simply break down the query. Start with the inline view:

	

	select deptno,ename,hiredate,

	 count(*)over(partition by hiredate) cnt,

	 row_number()over(partition by hiredate order by empno) rn

	 from emp

	 where deptno=10

	DEPTNO ENAME HIREDATE CNT RN

	------ ------ ----------- ---------- ----------

	 10 CLARK 09-JUN-1981 1 1

	 10 ant 17-NOV-1981 5 1

	 10 joe 17-NOV-1981 5 2

	 10 jim 17-NOV-1981 5 3

	 10 choi 17-NOV-1981 5 4

	 10 KING 17-NOV-1981 5 5

	 10 MILLER 23-JAN-1982 1 1

The window function COUNT OVER counts the number of times each HIREDATE occurs and returns this value to each row. For the duplicate HIREDATEs, a value of 5 is returned for each row with that HIREDATE. The window function ROW_ NUMBER OVER ranks each employee by EMPNO. The ranking is partitioned by HIREDATE, so unless there are duplicate HIREDATEs each employee will have a rank of 1. At this point, all the duplicates have been counted and ranked and the ranking can serve as the distance to the next HIREDATE (MILLER's HIREDATE). You can see this by subtracting RN from CNT and adding 1 for each row when calling LEAD:

	

	select deptno, ename, hiredate,

	 cnt-rn+1 distance_to_miller,

	 lead(hiredate,cnt-rn+1)over(order by hiredate) next_hd

	 from (

	select deptno,ename,hiredate,

	 count(*)over(partition by hiredate) cnt,

	 row_number()over(partition by hiredate order by empno) rn

	 from emp

	 where deptno=10

)

	DEPTNO ENAME HIREDATE DISTANCE_TO_MILLER NEXT_HD

	------ ------ ----------- ------------------ -----------

	 10 CLARK 09-JUN-1981 1 17-NOV-1981

	 10 ant 17-NOV-1981 5 23-JAN-1982

	 10 joe 17-NOV-1981 4 23-JAN-1982

	 10 jim 17-NOV-1981 3 23-JAN-1982

	 10 choi 17-NOV-1981 2 23-JAN-1982

	 10 KING 17-NOV-1981 1 23-JAN-1982

	 10 MILLER 23-JAN-1982 1 (null)

As you can see, by passing the appropriate distance to jump ahead to, the LEAD function performs the subtraction on the correct dates.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-8]

Chapter 8. Date Arithmetic

[bookmark: idx-CHP-8-0353]

This chapter introduces techniques for performing simple date arithmetic. Recipes cover common tasks like adding days to dates, finding the number of business days between dates, and finding the difference between dates in days.

Being able to successfully manipulate dates with your RDBMS's built-in functions can greatly improve your productivity. For all the recipes in this chapter, I try to take advantage of each RDBMS's built-in functions. In addition, I have chosen to use one date [bookmark: idx-CHP-8-0354]format for all the recipes, "DD-MON-YYYY". I chose to do this because I believe it will benefit those of you who work with one RDBMS and want to learn others. Seeing one standard format will help you focus on the different techniques and functions provided by each RDBMS without having to worry about default date formats.

						[image:]			

This chapter focuses on basic date arithmetic. You'll find more advanced date recipes in the following chapter. The recipes presented in this chapter use simple date data types. If you are using more complex date data types you will need to adjust the solutions accordingly.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-1]

Recipe 9.1. Determining if a Year Is a Leap Year

[bookmark: idx-CHP-9-0422]

[bookmark: sqlckbk-CHP-9-SECT-1.1]

Problem

You want to determine whether or not the current year is a leap year.

[bookmark: sqlckbk-CHP-9-SECT-1.2]

Solution

If you've worked on SQL for some time, there's no doubt that you've come across several techniques for solving this problem. Just about all the solutions I've encountered work well, but the one presented in this recipe is probably the simplest. This solution simply checks the last day of February; if it is the 29th then the current year is a [bookmark: idx-CHP-9-0423]leap year.

[bookmark: sqlckbk-CHP-9-SECT-1.2.1]

DB2

Use the recursive WITH clause to return each day in February. Use the aggregate function MAX to determine the last day in February.

	 1 with x (dy,mth)

	 2 as (

	 3 select dy, month(dy)

	 4 from (

	 5 select (current_date -

	 6 dayofyear(current_date) days +1 days)

	 7 +1 months as dy

	 8 from t1

	 9) tmp1

	10 union all

	11 select dy+1 days, mth

	12 from x

	13 where month(dy+1 day) = mth

	14)

	15 select max(day(dy))

	16 from x

[bookmark: sqlckbk-CHP-9-SECT-1.2.2]

Oracle

Use the function [bookmark: idx-CHP-9-0424]LAST_DAY to find the last day in February:

	1 select to_char(

	2 last_day(add_months(trunc(sysdate,'y'),1)),

	3 'DD')

	4 from t1

[bookmark: sqlckbk-CHP-9-SECT-1.2.3]

PostgreSQL

Use the function GENERATE_SERIES to return each day in February, then use the aggregate function MAX to find the last day in February:

	 1 select max(to_char(tmp2.dy+x.id,'DD')) as dy

	 2 from (

	 3 select dy, to_char(dy,'MM') as mth

	 4 from (

	 5 select cast(cast(

	 6 date_trunc('year',current_date) as date)

	 7 + interval '1 month' as date) as dy

	 8 from t1

	 9) tmp1

	10) tmp2, generate_series (0,29) x(id)

	11 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

[bookmark: sqlckbk-CHP-9-SECT-1.2.4]

MySQL

Use the function [bookmark: idx-CHP-9-0425]LAST_DAY to find the last day in February:

	1 select day(

	2 last_day(

	3 date_add(

	4 date_add(

	5 date_add(current_date,

	6 interval -[bookmark: idx-CHP-9-0426]dayofyear(current_date) day),

	7 interval 1 day),

	8 interval 1 month))) dy

	9 from t1

[bookmark: sqlckbk-CHP-9-SECT-1.2.5]

SQL Server

Use the recursive WITH clause to return each day in February. Use the aggregate function MAX to determine the last day in February:

	 1 with x (dy,mth)

	 2 as (

	 3 select dy, month(dy)

	 4 from (

	 5 select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy

	 6 from t1

	 7) tmp1

	 8 union all

	 9 select dateadd(dd,1,dy), mth

	10 from x

	11 where month(dateadd(dd,1,dy)) = mth

	12)

	13 select max(day(dy))

	14 from x

[bookmark: sqlckbk-CHP-9-SECT-1.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-1.3.1]

DB2

The inline view TMP1 in the recursive view X returns the first day in February by:

			Starting with the current date

			Using [bookmark: idx-CHP-9-0427]DAYOFYEAR to determine the number of days into the current year that the current date represents

			Subtracting that number of days from the current date to get December 31 of the prior year, and then adding one to get to January 1 of the current year

			Adding one month to get to February 1

The result of all this math is shown below:

	

	 select (current_date

	 [bookmark: idx-CHP-9-0428]dayofyear(current_date) days +1 days) +1 months as dy

	 from t1

	DY

	01-FEB-2005

The next step is to return the month of the date returned by inline view TMP1 by using the [bookmark: idx-CHP-9-0429]MONTH function:

	

	select dy, month(dy) as mth

	 from (

	select (current_date

	 dayofyear(current_date) days +1 days) +1 months as dy

	 from t1

) tmp1

	DY MTH

	----------- ---

	01-FEB-2005 2

The results presented thus far provide the start point for the recursive operation that generates each day in February. To return each day in February, repeatedly add one day to DY until you are no longer in the month of February. A portion of the results of the WITH operation is shown below:

	

	 with x (dy,mth)

	 as (

	select dy, month(dy)

	 from (

	select (current_date -

	 dayofyear(current_date) days +1 days) +1 months as dy

	 from t1

) tmp1

	 union all

	 select dy+1 days, mth

	 from x

	 where month(dy+1 day) = mth

)

	 select dy,mth

	 from x

	DY MTH

	----------- ---

	01-FEB-2005 2

	…

	10-FEB-2005 2

	…

	28-FEB-2005 2

The final step is to use the MAX function on the DY column to return the last day in February; if it is the 29th, you are in a [bookmark: idx-CHP-9-0430]leap year.

[bookmark: sqlckbk-CHP-9-SECT-1.3.2]

Oracle

The first step is to find the beginning of the year using the TRUNC function:

	

	select trunc(sysdate,'y')

	 from t1

	DY

	01-JAN-2005

Because the first day of the year is January 1st, the next step is to add one month to get to February 1st:

	

	select add_months(trunc(sysdate,'y'),1) dy

	 from t1

	DY

	01-FEB-2005

The next step is to use the LAST_DAY function to find the last day in February:

	

	select last_day(add_months(trunc(sysdate,'y'),1)) dy

	 from t1

	DY

	28-FEB-2005

The final step (which is optional) is to use TO_CHAR to return either 28 or 29.

[bookmark: sqlckbk-CHP-9-SECT-1.3.3]

PostgreSQL

The first step is to examine the results returned by inline view TMP1. Use the [bookmark: idx-CHP-9-0431]DATE_TRUNC function to find the beginning of the current year and cast that result as a DATE:

	

	select cast(date_trunc('year',current_date) as date) as dy

	 from t1

	DY

	01-JAN-2005

The next step is to add one month to the first day of the current year to get the first day in February, casting the result as a date:

	

	select cast(cast(

	 date_trunc('year',current_date) as date)

	 + interval '1 month' as date) as dy

	 from t1

	DY

	01-FEB-2005

Next, return DY from inline view TMP1 along with the numeric month of DY. Return the numeric month by using the TO_CHAR function:

	

	select dy, to_char(dy,'MM') as mth

	 from (

	 select cast(cast(

	 date_trunc('[bookmark: idx-CHP-9-0432]year',current_date) as date)

	 + interval '1 month' as date) as dy

	 from t1

) tmp1

	DY MTH

	----------- ---

	01-FEB-2005 2

The results shown thus far comprise the result set of inline view TMP2. Your next step is to use the extremely useful function GENERATE_SERIES to return 29 rows (values 1 through 29). Every row returned by GENERATE_SERIES (aliased X) is added to DY from inline view TMP2. Partial results are shown below:

	

	select tmp2.dy+x.id as dy, tmp2.mth

	 from (

	select dy, to_char(dy,'MM') as mth

	 from (

	select cast(cast(

	 date_trunc('year',current_date) as date)

	 + interval '1 month' as date) as dy

	 from t1

) tmp1

) tmp2, generate_series (0,29) x(id)

	 where to_char(tmp2.dy+x.id,'MM') = tmp2.mth

	DY MTH

	----------- ---

	01-FEB-2005 02

	…

	10-FEB-2005 02

	…

	28-FEB-2005 02

The final step is to use the MAX function to return the last day in February. The function TO_CHAR is applied to that value and will return either 28 or 29.

[bookmark: sqlckbk-CHP-9-SECT-1.3.4]

MySQL

The first step is to find the first day of the current year by subtracting from the current date the number of days it is into the year, and then adding one day. Do all of this with the [bookmark: idx-CHP-9-0433]DATE_ADD function:

	

	select date_add(

	 date_add(current_date,

	 interval [bookmark: idx-CHP-9-0434]-dayofyear(current_date) day),

	 interval 1 day) dy

	 from t1

	DY

	01-JAN-2005

Then add one month again using the DATE_ADD function:

	

	select date_add(

	 date_add(

	 date_add(current_date,

	 interval -dayofyear(current_date) day),

	 interval 1 day),

	 interval 1 month) dy

	 from t1

	DY

	01-FEB-2005

Now that you've made it to February, use the LAST_[bookmark: idx-CHP-9-0435]DAY function to find the last day of the month:

	

	select last_day(

	 date_add(

	 date_add(

	 date_add(current_date,

	 interval -dayofyear(current_date) day),

	 interval 1 day),

	 interval 1 month)) dy

	 from t1

	DY

	28-FEB-2005

The final step (which is optional) is to use the DAY function to return either a 28 or 29.

[bookmark: sqlckbk-CHP-9-SECT-1.3.5]

SQL Server

This solution uses the recursive WITH clause to generate each day in February. The first step is to find the first day of February. To do this, find the first day of the current year by subtracting from the current date the number of days it is into the year, and then adding one day. Once you have the first day of the current year, use the DATEADD function to add one month to advance to the first day of February:

	

	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy

	 from t1

	DY

	01-FEB-2005

Next, return the first day of February along with the numeric month for February:

	

	select dy, month(dy) mth

	 from (

	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy

	 from t1

) tmp1

	DY MTH

	----------- ---

	01-FEB-2005 2

Then use the recursive capabilities of the WITH clause to repeatedly add one day to DY from inline view TMP1 until you are no longer in February (partial results shown below):

	

	 with x (dy,mth)

	 as (

	select dy, month(dy)

	 from (

	select dateadd(mm,1,(getdate()-datepart(dy,getdate()))+1) dy

	 from t1

) tmp1

	 union all

	select dateadd(dd,1,dy), mth

	 from x

	 where month(dateadd(dd,1,dy)) = mth

)

	select dy,mth from x

	DY MTH

	----------- ---

	01-FEB-2005 02

	…

	10-FEB-2005 02

	…

	28-FEB-2005 02

Now that you can return each day in February, the final step is to use the MAX function to see if the last day is the 28th or 29th. As an optional last step, you can use the [bookmark: idx-CHP-9-0436]DAY function to return a 28 or 29, rather than a date.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-10]

Recipe 9.10. Filling in Missing Dates

[bookmark: idx-CHP-9-0538]

[bookmark: sqlckbk-CHP-9-SECT-10.1]

Problem

You need to generate a row for every date (or every month, week, or year) within a given range. Such rowsets are often used to generate summary reports. For example, you want to count the number of employees hired every month of every year in which any employee has been hired. Examining the [bookmark: idx-CHP-9-0539]dates of all the employees hired, there have been hirings from 1980 to 1983:

	

	select distinct

	 extract(year from hiredate) as year

	 from emp

	YEAR

	 1980

	 1981

	 1982

	 1983

You want to determine the number of employees hired each month from 1980 to 1983. A portion of the desired result set is shown below:

	MTH NUM_HIRED

	----------- ----------

	01-JAN-1981 0

	01-FEB-1981 2

	01-MAR-1981 0

	01-APR-1981 1

	01-MAY-1981 1

	01-JUN-1981 1

	01-JUL-1981 0

	01-AUG-1981 0

	01-SEP-1981 2

	01-OCT-1981 0

	01-NOV-1981 1

	01-DEC-1981 2

[bookmark: sqlckbk-CHP-9-SECT-10.2]

Solution

The trick here is that you want to return a row for each month even if no employee was hired (i.e., the count would be zero). Because there isn't an employee hired every month between 1980 and 1983, you must generate those months yourself, and then outer join to table EMP on HIREDATE (truncating the actual HIREDATE to its month, so it can match the generated months when possible).

[bookmark: sqlckbk-CHP-9-SECT-10.2.1]

DB2

Use the recursive WITH clause to generate every month (the first day of each month from January 1, 1980, to December 1, 1983). Once you have all the months for the required range of dates, outer join to table EMP and use the aggregate function COUNT to count the number of hires for each month:

	 1 with x (start_date,end_date)

	 2 as (

	 3 select (min(hiredate)

	 4 dayofyear(min(hiredate)) day +1 day) start_date,

	 5 (max(hiredate)

	 6 dayofyear(max(hiredate)) day +1 day) +1 year end_date

	 7 from emp

	 8 union all

	 9 select start_date +1 month, end_date

	10 from x

	11 where (start_date +1 month) < end_date

	12)

	13 select x.start_date mth, count(e.hiredate) num_hired

	14 from x left join emp e

	15 on (x.start_date = (e.hiredate-(day(hiredate)-1) day))

	16 group by x.start_date

	17 order by 1

[bookmark: sqlckbk-CHP-9-SECT-10.2.2]

Oracle

[bookmark: idx-CHP-9-0540]

Use the [bookmark: idx-CHP-9-0541]CONNECT BY clause to generate each month between 1980 and 1983. Then outer join to table EMP and use the aggregate function COUNT to count the number of employees hired in each month. If you are on Oracle8i Database and earlier, the ANSI outer join is not available to you, nor is the ability to use CONNECT BY as a row generator; a simple workaround is to use a traditional pivot table (like the one used in the MySQL solution). Following as an Oracle solution using Oracle's outer-join syntax:

	 1 with x

	 2 as (

	 3 select add_months(start_date,level-1) start_date

	 4 from (

	 5 select min(trunc(hiredate,'y')) start_date,

	 6 add_months(max(trunc(hiredate,'y')),12) end_date

	 7 from emp

	 8)

	 9 connect by level <= months_between(end_date,start_date)

	10)

	11 select x.start_date MTH, count(e.hiredate) num_hired

	12 from x, emp e

	13 where x.start_date = trunc(e.hiredate(+),'mm')

	14 group by x.start_date

	15 order by 1

and here is a second Oracle solution, this time using the ANSI syntax:

	 1 with x

	 2 as (

	 3 select add_months(start_date,level-1) start_date

	 4 from (

	 5 select min(trunc(hiredate,'y')) start_date,

	 6 add_months(max(trunc(hiredate,'y')),12) end_date

	 7 from emp

	 8)

	 9 connect by level <= months_between(end_date,start_date)

	10)

	11 select x.start_date MTH, count(e.hiredate) num_hired

	12 from x left join emp e

	13 on (x.start_date = trunc(e.hiredate,'mm'))

	14 group by x.start_date

	15 order by 1

[bookmark: sqlckbk-CHP-9-SECT-10.2.3]

PostgreSQL

To improve readability, this solution uses a view, named V, to return the number of months between the first day of the first month of the year the first employee was hired and the first day of the last month of the year the most recent employee was hired. Use the value returned by view V as the second value passed to the function GENERATE_SERIES, so that the correct number of months (rows) are generated. Once you have all the months for the required range of [bookmark: idx-CHP-9-0542]dates, outer join to table EMP and use the aggregate function COUNT to count the number of hires for each month:

	create view v

	as

	select cast(

	 extract(year from age(last_month,first_month))*12-1

	 as integer) as mths

	 from (

	select cast(date_trunc('year',min(hiredate)) as date) as first_month,

	 cast(cast(date_trunc('year',max(hiredate))

	 as date) + interval '1 year'

	 as date) as last_month

	 from emp

) x

	1 select y.mth, count(e.hiredate) as num_hired

	2 from (

	3 select cast(e.start_date + (x.id * interval '1 month')

	4 as date) as mth

	5 from generate_series (0,(select mths from v)) x(id),

	6 (select cast(

	7 date_trunc('year',min(hiredate))

	8 as date) as start_date

	9 from emp) e

	10) y left join emp e

	11 on (y.mth = date_trunc('month',e.hiredate))

	12 group by y.mth

	13 order by 1

[bookmark: sqlckbk-CHP-9-SECT-10.2.4]

MySQL

Use the pivot table T500 to generate each month between 1980 and 1983. Then outer join to table EMP and use the aggregate function COUNT to count the number of employees hired for each month:

	1 select z.mth, count(e.hiredate) num_hired

	2 from (

	3 select date_add(min_hd,interval t500.id-1 month) mth

	4 from (

	5 select min_hd, date_add(max_hd,interval 11 month) max_hd

	6 from (

	7 select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,

	8 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd

	9 from emp

	10) x

	11) y,

	12 t500

	13 where date_add(min_hd,interval t500.id-1 month) <= max_hd

	14) z left join emp e

	15 on (z.mth = adddate(

	16 date_add(

	17 last_day(e.hiredate),interval -1 month),1))

	18 group by z.mth

	19 order by 1

[bookmark: sqlckbk-CHP-9-SECT-10.2.5]

SQL Server

Use the recursive WITH clause to generate every month (the first day of each month from January 1, 1980, to December 1, 1983). Once you have all the months for the required range of [bookmark: idx-CHP-9-0543]dates, outer join to table EMP and use the aggregate function COUNT to count the number of hires for each month:

	1 with x (start_date,end_date)

	2 as (

	3 select (min(hiredate)

	4 datepart(dy,min(hiredate))+1) start_date,

	5 dateadd(yy,1,

	6 (max(hiredate)

	7 datepart(dy,max(hiredate))+1)) end_date

	8 from emp

	9 union all

	10 select dateadd(mm,1,start_date), end_date

	11 from x

	12 where dateadd(mm,1,start_date) < end_date

	13)

	14 select x.start_date mth, count(e.hiredate) num_hired

	15 from x left join emp e

	16 on (x.start_date =

	17 dateadd(dd,-day(e.hiredate)+1,e.hiredate))

	18 group by x.start_date

	19 order by 1

[bookmark: sqlckbk-CHP-9-SECT-10.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-10.3.1]

DB2

The first step is to generate every month (actually the first day of each month) from 1980 to 1983. Start using the [bookmark: idx-CHP-9-0544]DAYOFYEAR function on the MIN and MAX HIREDATEs to find the boundary months:

	

	select (min(hiredate)

	 dayofyear(min(hiredate)) day +1 day) start_date,

	 (max(hiredate)

	 dayofyear(max(hiredate)) day +1 day) +1 year end_date

	 from emp

	START_DATE END_DATE

	----------- -----------

	01-JAN-1980 01-JAN-1984

Your next step is to repeatedly add months to START_DATE to return all the months necessary for the final result set. The value for END_DATE is one day more than it should be. This is OK. As you recursively add months to START_DATE, you can stop before you hit END_DATE. A portion of the months created is shown below:

	

	with x (start_date,end_date)

	 as (

	select (min(hiredate)

	 dayofyear(min(hiredate)) day +1 day) start_date,

	 (max(hiredate)

	 dayofyear(max(hiredate)) day +1 day) +1 year end_date

	 from emp

	 union all

	select start_date +1 month, end_date

	 from x

	 where (start_date +1 month) < end_date

)

	select *

	 from x

	START_DATE END_DATE

	----------- -----------

	01-JAN-1980 01-JAN-1984

	01-FEB-1980 01-JAN-1984

	01-MAR-1980 01-JAN-1984

	…

	01-OCT-1983 01-JAN-1984

	01-NOV-1983 01-JAN-1984

	01-DEC-1983 01-JAN-1984

At this point, you have all the months you need, and you can simply outer join to EMP.HIREDATE. Because the day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first day of its month. Finally, use the aggregate function COUNT on EMP.HIREDATE.

[bookmark: sqlckbk-CHP-9-SECT-10.3.2]

Oracle

The first step is to generate the first day of every for every month from 1980 to 1983. Start by using TRUNC and [bookmark: idx-CHP-9-0545]ADD_MONTHS together with the MIN and MAX HIREDATE values to find the boundary months:

	

	select min(trunc(hiredate,'y')) start_date,

	 add_months(max(trunc(hiredate,'y')),12) end_date

	 from emp

	START_DATE END_DATE

	----------- -----------

	01-JAN-1980 01-JAN-1984

Then repeatedly add months [bookmark: idx-CHP-9-0546]to START_DATE to return all the months necessary for the final result set. The value for END_DATE is one day more than it should be, which is OK. As you recursively add months to START_DATE, you can stop before you hit END_DATE. A portion of the months created is shown below:

	

	with x as (

	select add_months(start_date,level-1) start_date

	 from (

	select min(trunc(hiredate,'y')) start_date,

	 add_months(max(trunc(hiredate,'y')),12) end_date

	 from emp

)

	 connect by level <= months_between(end_date,start_date)

)

	select *

	 from x

	START_DATE

	01-JAN-1980

	01-FEB-1980

	01-MAR-1980

	…

	01-OCT-1983

	01-NOV-1983

	01-DEC-1983

At this point, you have all the months you need; simply outer join to EMP.HIREDATE. Because the day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first day of the month it is in. The final step is to use the aggregate function COUNT on EMP.HIREDATE.

[bookmark: sqlckbk-CHP-9-SECT-10.3.3]

PostgreSQL

This solution uses the function GENERATE_SERIES to return the months you need. If you do not have the GENERATE_SERIES function available, you can use a pivot table as in the MySQL solution. The first step is to understand view V. View V simply finds the number of months you'll need to generate by finding the boundary [bookmark: idx-CHP-9-0547]dates for the range. Inline view X in view V uses the MIN and MAX HIREDATEs to find the start and end boundary dates and is shown below:

	

	select cast(date_trunc('year',min(hiredate)) as date) as first_month,

	 cast(cast(date_trunc('year',max(hiredate))

	 as date) + interval '1 year'

	 as date) as last_month

	 from emp

	FIRST_MONTH LAST_MONTH

	----------- -----------

	01-JAN-1980 01-JAN-1984

The value for LAST_MONTH is actually one day more than it should be. This is fine, as you can just subtract 1 when you calculate the months between these two [bookmark: idx-CHP-9-0548]dates. The next step is to use the AGE function to find the difference between the two dates in years, then multiply by 12 (and remember, subtract by 1!):

	

	select cast(

	 extract(year from age(last_month,first_month))*12-1

	 as integer) as mths

	 from (

	select cast(date_trunc('year',min(hiredate)) as date) as first_month,

	 cast(cast(date_trunc('year',max(hiredate))

	 as date) + interval '1 year'

	 as date) as last_month

	 from emp

) x

	MTHS

	 47

Use the value returned by view V as the second parameter of GENERATE_SERIES to return the number of months you need. Your next step is then to find your start date. You'll repeatedly add months to your start date to create your range of months. Inline view Y uses the [bookmark: idx-CHP-9-0549]DATE_TRUNC function on the MIN(HIREDATE) to find the start date, and uses the values returned by GENERATE_SERIES to add months. Partial results are shown below:

	

	select cast(e.start_date + (x.id * interval '1 month')

	 as date) as mth

	 from generate_series (0,(select mths from v)) x(id),

	 (select cast(

	 date_trunc('year',min(hiredate))

	 as date) as start_date

	 from emp

) e

	MTH

	01-JAN-1980

	01-FEB-1980

	01-MAR-1980

	…

	01-OCT-1983

	01-NOV-1983

	01-DEC-1983

Now that you have each month you need for the final result set, outer join to EMP. HIREDATE and use the aggregate function COUNT to count the number of hires for each month.

[bookmark: sqlckbk-CHP-9-SECT-10.3.4]

MySQL

First, find the boundary [bookmark: idx-CHP-9-0550]dates by using the aggregate functions MIN and MAX along with the [bookmark: idx-CHP-9-0551]DAYOFYEAR and [bookmark: idx-CHP-9-0552]ADDDATE functions. The result set shown below is from inline view X:

	

	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,

	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd

	 from emp

	MIN_HD MAX_HD

	----------- -----------

	01-JAN-1980 01-JAN-1983

Next, increment MAX_HD to the last month of the year:

	

	select min_hd, date_add(max_hd,interval 11 month) max_hd

	 from (

	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,

	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd

	 from emp

) x

	MIN_HD MAX_HD

	----------- -----------

	01-JAN-1980 01-DEC-1983

Now that you have the boundary dates, add months to MIN_HD up to and including MAX_HD by using pivot table T500 to generate the rows you need. A portion of the results is shown below:

	

	select date_add(min_hd,interval t500.id-1 month) mth

	 from (

	select min_hd, date_add(max_hd,interval 11 month) max_hd

	 from (

	select adddate(min(hiredate),-dayofyear(min(hiredate))+1) min_hd,

	 adddate(max(hiredate),-dayofyear(max(hiredate))+1) max_hd

	 from emp

) x

) y,

	 t500

	where date_add(min_hd,interval t500.id-1 month) <= max_hd

	MTH

	01-JAN-1980

	01-FEB-1980

	01-MAR-1980

	…

	01-OCT-1983

	01-NOV-1983

	01-DEC-1983

Now that you have all the months you need for the final result set, outer join to EMP.HIREDATE (be sure to truncate EMP.HIREDATE to the first day of the month) and use the aggregate function COUNT on EMP.HIREDATE to count the number of hires in each month.

[bookmark: sqlckbk-CHP-9-SECT-10.3.5]

SQL Server

Begin by generating every month (actually, the first day of each month) from 1980 to 1983. Then find the boundary months by applying the [bookmark: idx-CHP-9-0553]DAYOFYEAR function to the MIN and MAX [bookmark: idx-CHP-9-0554]HIREDATEs:

	

	select (min(hiredate) -

	 datepart(dy,min(hiredate))+1) start_date,

 	 dateadd(yy,1,

	 (max(hiredate) -

	 datepart(dy,max(hiredate))+1)) end_date

	 from emp

	START_DATE END_DATE

	----------- -----------

	01-JAN-1980 01-JAN-1984

Your next step is to repeatedly add months to START_DATE to return all the months necessary for the final result set. The value for END_DATE is one day more than it should be, which is OK, as you can stop recursively adding months to START_DATE before you hit END_DATE. A portion of the months created is shown below:

	

	with x (start_date,end_date)

	 as (

	select (min(hiredate) -

	 datepart(dy,min(hiredate))+1) start_date,

	 dateadd(yy,1,

	 (max(hiredate) -

	 datepart(dy,max(hiredate))+1)) end_date

	 from emp

	 union all

	select dateadd(mm,1,start_date), end_date

	 from x

	 where dateadd(mm,1,start_date) < end_date

)

	select *

	 from x

	START_DATE END_DATE

	----------- -----------

	01-JAN-1980 01-JAN-1984

	01-FEB-1980 01-JAN-1984

	01-MAR-1980 01-JAN-1984

	…

	01-OCT-1983 01-JAN-1984

	01-NOV-1983 01-JAN-1984

	01-DEC-1983 01-JAN-1984

At this point, you have all the months you need. Simply outer join to EMP.HIREDATE. Because the day for each START_DATE is the first of the month, truncate EMP.HIREDATE to the first day of the month. The final step is to use the aggregate function COUNT on EMP.HIREDATE.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-11]

Recipe 9.11. Searching on Specific Units of Time

[bookmark: idx-CHP-9-0555]

[bookmark: sqlckbk-CHP-9-SECT-11.1]

Problem

You want to search for [bookmark: idx-CHP-9-0556]dates that match a given month, or day of the week, or some other unit of time. For example, you want to find all employees hired in February or December, as well as employees hired on a Tuesday.

[bookmark: sqlckbk-CHP-9-SECT-11.2]

Solution

Use the functions supplied by your RDBMS to find month and weekday names for dates. This particular recipe can be useful in various places. Consider, if you wanted to search HIREDATEs but wanted to ignore the year by extracting the month (or any other part of the HIREDATE you are interested in), you can do so. The example solutions to this problem search by month and weekday name. By studying the date formatting functions provided by your RDBMS, you can easily modify these solutions to search by year, quarter, combination of year and quarter, month and year combination, etc.

[bookmark: sqlckbk-CHP-9-SECT-11.2.1]

DB2 and MySQL

Use the functions [bookmark: idx-CHP-9-0557]MONTHNAME and [bookmark: idx-CHP-9-0558]DAYNAME to find the name of the month and weekday an employee was hired, respectively:

	1 select ename

	2 from emp

	3 where monthname(hiredate) in ('February','December')

	4 or dayname(hiredate) = 'Tuesday'

[bookmark: sqlckbk-CHP-9-SECT-11.2.2]

Oracle and PostgreSQL

Use the function TO_CHAR to find the names of the month and weekday an employee was hired. Use the function [bookmark: idx-CHP-9-0559]RTRIM to remove trailing whitespaces:

	1 select ename

	2 from emp

	3 where rtrim(to_char(hiredate,'month')) in ('february','december')

	4 or rtrim(to_char(hiredate,'day')) = 'tuesday'

[bookmark: sqlckbk-CHP-9-SECT-11.2.3]

SQL Server

Use the function [bookmark: idx-CHP-9-0560]DATENAME to find the names of the month and weekday an employee was hired:

	1 select ename

	2 from emp

	3 where datename(m,hiredate) in ('February','December')

	4 or datename(dw,hiredate) = 'Tuesday'

[bookmark: sqlckbk-CHP-9-SECT-11.3]

Discussion

The key to each solution is simply knowing which functions to use and how to use them. To verify what the return values are, put the functions in the SELECT clause and examine the output. Listed below is the result set for employees in DEPTNO 10 (using SQL Server syntax):

	

	select ename,datename(m,hiredate) mth,datename(dw,hiredate) dw

	 from emp

	 where deptno = 10

	ENAME MTH DW

	------ --------- -----------

	CLARK June Tuesday

	KING November Tuesday

	MILLER January Saturday

Once you know what the function(s) return, finding rows using the functions shown in each of the solutions is easy.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-12]

Recipe 9.12. Comparing Records Using Specific Parts of a Date

[bookmark: idx-CHP-9-0561]

[bookmark: sqlckbk-CHP-9-SECT-12.1]

Problem

You want to find which employees have been hired on the same month and weekday. For example, if an employee was hired on Monday, March 10, 1988, and another employee was hired on Monday, March 2, 2001, you want those two to come up as a match since the day of week and month match. In table EMP, only three employees meet this requirement. You want to return the following result set:

	MSG

	--

	JAMES was hired on the same month and weekday as FORD

	SCOTT was hired on the same month and weekday as JAMES

	SCOTT was hired on the same month and weekday as FORD

[bookmark: sqlckbk-CHP-9-SECT-12.2]

Solution

Because you want to compare one employee's HIREDATE with the HIREDATE of the other employees, you will need to self join table EMP. That makes each possible combination of HIREDATEs available for you to compare. Then, simply extract the weekday and month from each HIREDATE and compare.

[bookmark: sqlckbk-CHP-9-SECT-12.2.1]

DB2

After self joining table EMP, use the function [bookmark: idx-CHP-9-0562]DAYOFWEEK to return the numeric day of the week. Use the function [bookmark: idx-CHP-9-0563]MONTHNAME to return the name of the month:

	1 select a.ename ||

	2 ' was hired on the same month and weekday as '||

	3 b.ename msg

	4 from emp a, emp b

	5 where (dayofweek(a.hiredate),monthname(a.hiredate)) =

	6 (dayofweek(b.hiredate),monthname(b.hiredate))

	7 and a.empno < b.empno

	8 order by a.ename

[bookmark: sqlckbk-CHP-9-SECT-12.2.2]

Oracle and PostgreSQL

After self joining table EMP, use the TO_CHAR function to format the HIREDATE into weekday and month for comparison:

	1 select a.ename ||

	2 ' was hired on the same month and weekday as '||

	3 b.ename as msg

	4 from emp a, emp b

	5 where to_char(a.hiredate,'DMON') =

	6 to_char(b.hiredate,'DMON')

	7 and a.empno < b.empno

	8 order by a.ename

[bookmark: sqlckbk-CHP-9-SECT-12.2.3]

MySQL

After self joining table EMP, use the [bookmark: idx-CHP-9-0564]DATE_FORMAT function to format the HIREDATE into weekday and month for comparison:

	1 select concat(a.ename,

	2 ' was hired on the same month and weekday as ',

	3 b.ename) msg

	4 from emp a, emp b

	5 where date_format(a.hiredate,'%w%M') =

	6 date_format(b.hiredate,'%w%M')

	7 and a.empno < b.empno

	8 order by a.ename

[bookmark: sqlckbk-CHP-9-SECT-12.2.4]

SQL Server

After self joining table EMP, use the [bookmark: idx-CHP-9-0565]DATENAME function to format the HIREDATE into weekday and month for comparison:

	1 select a.ename +

	2 ' was hired on the same month and weekday as '+

	3 b.ename msg

	4 from emp a, emp b

	5 where datename(dw,a.hiredate) = datename(dw,b.hiredate)

	6 and datename(m,a.hiredate) = datename(m,b.hiredate)

	7 and a.empno < b.empno

	8 order by a.ename

[bookmark: sqlckbk-CHP-9-SECT-12.3]

Discussion

The only difference between the solutions is the date function used to format the HIREDATE. I'm going to use the Oracle/PostgreSQL solution in this discussion (because it's the shortest to type out), but the explanation holds true for the other solutions as well.

The first step is to self join EMP so that each employee has access to the other employees' HIREDATEs. Consider the results of the query below (filtered for SCOTT):

	

	select a.ename as scott, a.hiredate as scott_hd,

	 b.ename as other_emps, b.hiredate as other_hds

	 from emp a, emp b

	 where a.ename = 'SCOTT'

	 and a.empno != b.empno

	SCOTT SCOTT_HD OTHER_EMPS OTHER_HDS

	---------- ----------- ---------- -----------

	SCOTT 09-DEC-1982 SMITH 17-DEC-1980

	SCOTT 09-DEC-1982 ALLEN 20-FEB-1981

	SCOTT 09-DEC-1982 WARD 22-FEB-1981

	SCOTT 09-DEC-1982 JONES 02-APR-1981

	SCOTT 09-DEC-1982 MARTIN 28-SEP-1981

	SCOTT 09-DEC-1982 BLAKE 01-MAY-1981

	SCOTT 09-DEC-1982 CLARK 09-JUN-1981

	SCOTT 09-DEC-1982 KING 17-NOV-1981

	SCOTT 09-DEC-1982 TURNER 08-SEP-1981

	SCOTT 09-DEC-1982 ADAMS 12-JAN-1983

	SCOTT 09-DEC-1982 JAMES 03-DEC-1981

	SCOTT 09-DEC-1982 FORD 03-DEC-1981

	SCOTT 09-DEC-1982 MILLER 23-JAN-1982

By self-joining table EMP, you can compare SCOTT's HIREDATE to the HIREDATE of all the other employees. The filter on EMPNO is so that SCOTT's HIREDATE is not returned as one of the OTHER_HDS. The next step is to use your RDBMS's supplied date formatting function(s) to compare the weekday and month of the HIREDATEs and keep only those that match:

	

	select a.ename as emp1, a.hiredate as emp1_hd,

	 b.ename as emp2, b.hiredate as emp2_hd

	 from emp a, emp b

	 where to_char(a.hiredate,'DMON') =

	 to_char(b.hiredate,'DMON')

	 and a.empno != b.empno

	 order by 1

	EMP1 EMP1_HD EMP2 EMP2_HD

	---------- ----------- ---------- -----------

	FORD 03-DEC-1981 SCOTT 09-DEC-1982

	FORD 03-DEC-1981 JAMES 03-DEC-1981

	JAMES 03-DEC-1981 SCOTT 09-DEC-1982

	JAMES 03-DEC-1981 FORD 03-DEC-1981

	SCOTT 09-DEC-1982 JAMES 03-DEC-1981

	SCOTT 09-DEC-1982 FORD 03-DEC-1981

At this point, the HIREDATEs are correctly matched, but there are six rows in the result set rather than the three in the "Problem" section of this recipe. The reason for the extra rows is the filter on EMPNO. By using "not equals" you do not filter out the reciprocals. For example, the first row matches FORD and SCOTT and the last row matches SCOTT and FORD. The six rows in the result set are technically accurate but redundant. To remove the redundancy use "less than" (the HIREDATEs are removed to bring the intermediate queries closer to the final result set):

	

	select a.ename as emp1, b.ename as emp2

	 from emp a, emp b

	 where to_char(a.hiredate,'DMON') =

	 to_char(b.hiredate,'DMON')

	 and a.empno < b.empno

	 order by 1

	EMP1 EMP2

	---------- ----------

	JAMES FORD

	SCOTT JAMES

	SCOTT FORD

The final step is to simply concatenate the result set to form the message.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-13]

Recipe 9.13. Identifying Overlapping Date Ranges

[bookmark: idx-CHP-9-0566]

[bookmark: sqlckbk-CHP-9-SECT-13.1]

Problem

You want to find all instances of an employee starting a new project before ending an existing project. Consider table EMP_PROJECT:

	

	select *

	 from emp_project

	EMPNO ENAME PROJ_ID PROJ_START PROJ_END

	----- ---------- ------- ----------- -----------

	7782 CLARK 1 16-JUN-2005 18-JUN-2005

	7782 CLARK 4 19-JUN-2005 24-JUN-2005

	7782 CLARK 7 22-JUN-2005 25-JUN-2005

	7782 CLARK 10 25-JUN-2005 28-JUN-2005

	7782 CLARK 13 28-JUN-2005 02-JUL-2005

	7839 KING 2 17-JUN-2005 21-JUN-2005

	7839 KING 8 23-JUN-2005 25-JUN-2005

	7839 KING 14 29-JUN-2005 30-JUN-2005

	7839 KING 11 26-JUN-2005 27-JUN-2005

	7839 KING 5 20-JUN-2005 24-JUN-2005

	7934 MILLER 3 18-JUN-2005 22-JUN-2005

	7934 MILLER 12 27-JUN-2005 28-JUN-2005

	7934 MILLER 15 30-JUN-2005 03-JUL-2005

	7934 MILLER 9 24-JUN-2005 27-JUN-2005

	7934 MILLER 6 21-JUN-2005 23-JUN-2005

Looking at the results for employee KING, you see that KING began PROJ_ID 8 before finishing PROJ_ID 5 and began PROJ_ID 5 before finishing PROJ_ID 2. You want to return the following result set:

	EMPNO ENAME MSG

	----- ---------- --------------------------------

	7782 CLARK project 7 overlaps project 4

	7782 CLARK project 10 overlaps project 7

	7782 CLARK project 13 overlaps project 10

	7839 KING project 8 overlaps project 5

	7839 KING project 5 overlaps project 2

	7934 MILLER project 12 overlaps project 9

	7934 MILLER project 6 overlaps project 3

[bookmark: sqlckbk-CHP-9-SECT-13.2]

Solution

The key here is to find rows where PROJ_START (the [bookmark: idx-CHP-9-0567]date the new project starts) occurs on or after another project's PROJ_START date and on or before that other project's PROJ_END date. To begin, you need to be able to compare each project with each other project (for the same employee). By self joining EMP_PROJECT on employee, you generate every possible combination of two projects for each employee. To find the overlaps, simply find the rows where PROJ_START for any PROJ_ID falls between PROJ_START and PROJ_END for another PROJ_ID by the same employee.

[bookmark: sqlckbk-CHP-9-SECT-13.2.1]

DB2, PostgreSQL, and Oracle

Self join EMP_PROJECT. Then use the concatenation [bookmark: idx-CHP-9-0568]operator "||" to construct the message that explains which projects overlap:

	1 select a.empno,a.ename,

	2 'project '||b.proj_id||

	3 ' overlaps project '||a.proj_id as msg

	4 from emp_project a,

	5 emp_project b

	6 where a.empno = b.empno

	7 and b.proj_start >= a.proj_start

	8 and b.proj_start <= a.proj_end

	9 and a.proj_id != b.proj_id

[bookmark: sqlckbk-CHP-9-SECT-13.2.2]

MySQL

Self join EMP_PROJECT. Then use the [bookmark: idx-CHP-9-0569]CONCAT function to construct the message that explains which projects overlap:

	1 select a.empno,a.ename,

	2 concat('project ',b.proj_id,

	3 ' overlaps project ',a.proj_id) as msg

	4 from emp_project a,

	5 emp_project b

	6 where a.empno = b.empno

	7 and b.proj_start >= a.proj_start

	8 and b.proj_start <= a.proj_end

	9 and a.proj_id != b.proj_id

[bookmark: sqlckbk-CHP-9-SECT-13.2.3]

SQL Server

Self join EMP_PROJECT. Then use the concatenation [bookmark: idx-CHP-9-0570]operator "[bookmark: idx-CHP-9-0571]+" to construct the message that explains which projects overlap:

	1 select a.empno,a.ename,

	2 'project '+b.proj_id+

	3 ' overlaps project '+a.proj_id as msg

	4 from emp_project a,

	5 emp_project b

	6 where a.empno = b.empno

	7 and b.proj_start >= a.proj_start

	8 and b.proj_start <= a.proj_end

	9 and a.proj_id != b.proj_id

[bookmark: sqlckbk-CHP-9-SECT-13.3]

Discussion

The only difference between the solutions lies in the string concatenation, so one discussion using the DB2 syntax will cover all three solutions. The first step is a self join of EMP_PROJECT so that the PROJ_START [bookmark: idx-CHP-9-0572]dates can be compared amongst the different projects. The output of the self join for employee KING is shown below. You can observe how each project can "see" the other projects:

	

	select a.ename,

	 a.proj_id as a_id,

	 a.proj_start as a_start,

	 a.proj_end as a_end,

	 b.proj_id as b_id,

	 b.proj_start as b_start

	 from emp_project a,

	 emp_project b

	 where a.ename = 'KING'

	 and a.empno = b.empno

	 and a.proj_id != b.proj_id

	order by 2

	ENAME A_ID A_START A_END B_ID B_START

	------ ----- ----------- ----------- ----- -----------

	KING 2 17-JUN-2005 21-JUN-2005 8 23-JUN-2005

	KING 2 17-JUN-2005 21-JUN-2005 14 29-JUN-2005

	KING 2 17-JUN-2005 21-JUN-2005 11 26-JUN-2005

	KING 2 17-JUN-2005 21-JUN-2005 5 20-JUN-2005

	KING 5 20-JUN-2005 24-JUN-2005 2 17-JUN-2005

	KING 5 20-JUN-2005 24-JUN-2005 8 23-JUN-2005

	KING 5 20-JUN-2005 24-JUN-2005 11 26-JUN-2005

	KING 5 20-JUN-2005 24-JUN-2005 14 29-JUN-2005

	KING 8 23-JUN-2005 25-JUN-2005 2 17-JUN-2005

	KING 8 23-JUN-2005 25-JUN-2005 14 29-JUN-2005

	KING 8 23-JUN-2005 25-JUN-2005 5 20-JUN-2005

	KING 8 23-JUN-2005 25-JUN-2005 11 26-JUN-2005

	KING 11 26-JUN-2005 27-JUN-2005 2 17-JUN-2005

	KING 11 26-JUN-2005 27-JUN-2005 8 23-JUN-2005

	KING 11 26-JUN-2005 27-JUN-2005 14 29-JUN-2005

	KING 11 26-JUN-2005 27-JUN-2005 5 20-JUN-2005

	KING 14 29-JUN-2005 30-JUN-2005 2 17-JUN-2005

	KING 14 29-JUN-2005 30-JUN-2005 8 23-JUN-2005

	KING 14 29-JUN-2005 30-JUN-2005 5 20-JUN-2005

	KING 14 29-JUN-2005 30-JUN-2005 11 26-JUN-2005

As you can see from the result set above, the [bookmark: idx-CHP-9-0573]self join makes finding overlapping [bookmark: idx-CHP-9-0574]dates easy; simply return each row where B_START occurs between A_START and A_END. If you look at the WHERE clause on lines 7 and 8 of the solution:

	and b.proj_start >= a.proj_start

	and b.proj_start <= a.proj_end

it is doing just that. Once you have the required rows, constructing the messages is just a matter of concatenating the return values.

Oracle users can use the window function LEAD OVER [bookmark: idx-CHP-9-0575]to avoid the self join, if the maximum number of projects per employee is fixed. This can come in handy if the self join is expensive for your particular results (if the self join requires more resources than the sorts needed for LEAD OVER). For example, consider the alternative for employee KING using LEAD OVER:

	

	select empno,

	 ename,

	 proj_id,

	 proj_start,

	 proj_end,

	 case

	 when lead(proj_start,1)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,2)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,3)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,4)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 end is_overlap

	 from emp_project

	 where ename = 'KING'

	EMPNO ENAME PROJ_ID PROJ_START PROJ_END IS_OVERLAP

	----- ------ ------- ----------- ----------- ----------

	7839 KING 2 17-JUN-2005 21-JUN-2005 5

	7839 KING 5 20-JUN-2005 24-JUN-2005 8

	7839 KING 8 23-JUN-2005 25-JUN-2005

	7839 KING 11 26-JUN-2005 27-JUN-2005

	7839 KING 14 29-JUN-2005 30-JUN-2005

Because the number of projects is fixed at five for employee KING, you can use LEAD OVER [bookmark: idx-CHP-9-0576]to move examine the [bookmark: idx-CHP-9-0577]dates of all the projects without a [bookmark: idx-CHP-9-0578]self join. From here, producing the final result set is easy. Simply keep the rows where IS_OVERLAP is not NULL:

	

	select empno,ename,

	 'project '||is_overlap||

	 ' overlaps project '||proj_id msg

	 from (

	select empno,

	 ename,

	 proj_id,

	 proj_start,

	 proj_end,

	 case

	 when lead(proj_start,1)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,2)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,3)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 when lead(proj_start,4)over(order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(order by proj_start)

	 end is_overlap

	 from emp_project

	 where ename = 'KING'

)

	 where is_overlap is not null

	EMPNO ENAME MSG

	----- ------ --------------------------------

	7839 KING project 5 overlaps project 2

	7839 KING project 8 overlaps project 5

To allow the solution to work for all employees (not just KING), partition by ENAME in the LEAD OVER function:

	

	select empno,ename,

	 'project '||is_overlap||

	 ' overlaps project '||proj_id msg

	 from (

	select empno,

	 ename,

	 proj_id,

	 proj_start,

	 proj_end,

	 case

	 when lead(proj_start,1)over(partition by ename

	 order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(partition by ename

	 order by proj_start)

	 when lead(proj_start,2)over(partition by ename

	 order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(partition by ename

	 order by proj_start)

	 when lead(proj_start,3)over(partition by ename

	 order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(partition by ename

	 order by proj_start)

	 when lead(proj_start,4)over(partition by ename

	 order by proj_start)

	 between proj_start and proj_end

	 then lead(proj_id)over(partition by ename

	 order by proj_start)

	 end is_overlap

	 from emp_project

)

	where is_overlap is not null

	EMPNO ENAME MSG

	----- ------ -------------------------------

	7782 CLARK project 7 overlaps project 4

	7782 CLARK project 10 overlaps project 7

	7782 CLARK project 13 overlaps project 10

	7839 KING project 5 overlaps project 2

	7839 KING project 8 overlaps project 5

	7934 MILLER project 6 overlaps project 3

	7934 MILLER project 12 overlaps project 9

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-2]

Recipe 9.2. Determining the Number of Days in a Year

[bookmark: idx-CHP-9-0437]

[bookmark: sqlckbk-CHP-9-SECT-2.1]

Problem

You want to count the number of days in the current [bookmark: idx-CHP-9-0438]year.

[bookmark: sqlckbk-CHP-9-SECT-2.2]

Solution

The number of [bookmark: idx-CHP-9-0439]days in the current [bookmark: idx-CHP-9-0440]year is the difference between the first day of the next year and the first day of the current year (in days). For each solution the steps are:

			Find the first day of the current year.

			Add one year to that date (to get the first day of the next year).

			Subtract the current year from the result of Step 2.

The solutions differ only in the built-in functions that you use to perform these steps.

[bookmark: sqlckbk-CHP-9-SECT-2.2.1]

DB2

Use the function [bookmark: idx-CHP-9-0441]DAYOFYEAR to help find the first day of the current year, and use DAYS to find the number of days in the current year:

	1 select days((curr_year + 1 year)) - days(curr_year)

	2 from (

	3 select (current_date -

	4 dayofyear(current_date) day +

	5 1 day) curr_year

	6 from t1

	7) x

[bookmark: sqlckbk-CHP-9-SECT-2.2.2]

Oracle

Use the function TRUNC to find the beginning of the current year, and use ADD_ MONTHS to then find the beginning of next year:

	1 select [bookmark: idx-CHP-9-0442]add_months(trunc(sysdate,'y'),12) - trunc(sysdate,'y')

	2 from dual

[bookmark: sqlckbk-CHP-9-SECT-2.2.3]

PostgreSQL

Use the function DATE_TRUNC to find the beginning of the current year. Then use interval arithmetic to determine the beginning of next year:

	1 select cast((curr_year + interval '1 year') as date) - curr_year

	2 from (

	3 select cast(date_trunc('year',current_date) as date) as curr_year

	4 from t1

	5) x

[bookmark: sqlckbk-CHP-9-SECT-2.2.4]

MySQL

Use [bookmark: idx-CHP-9-0443]ADDDATE to help find the beginning of the current year. Use [bookmark: idx-CHP-9-0444]DATEDIFF and interval arithmetic to determine the number of days in the year:

	1 select datediff((curr_year + interval 1 year),curr_year)

	2 from (

	3 select adddate(current_date,-dayofyear(current_date)+1) curr_year

	4 from t1

	5) x

[bookmark: sqlckbk-CHP-9-SECT-2.2.5]

SQL Server

Use the [bookmark: idx-CHP-9-0445]function [bookmark: idx-CHP-9-0446]DATEADD to find the first day of the current [bookmark: idx-CHP-9-0447]year. Use DATEDIFF to return the number of days in the current year:

	1 select datediff(d,curr_year,dateadd(yy,1,curr_year))

	2 from (

	3 select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year

	4 from t1

	5) x

[bookmark: sqlckbk-CHP-9-SECT-2.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-2.3.1]

DB2

The first step is to find the first day of the current year. Use DAYOFYEAR to determine how many days you are into the current year. Subtract that value from the current date to get the last day of last year, and then add 1:

	

	select (current_date

	 dayofyear(current_date) day +

	 1 day) curr_year

	 from t1

	CURR_YEAR

	01-JAN-2005

Now that you have the first day of the current year, just add one year to it; this gives you the first day of next year. Then subtract the beginning of the current year from the beginning of next year.

[bookmark: sqlckbk-CHP-9-SECT-2.3.2]

Oracle

The first step is to find the first day of the current year, which you can easily do by invoking the built-in [bookmark: idx-CHP-9-0448]TRUNC function and passing 'Y' as the second argument (thereby truncating the date to the beginning of the year):

	

	select select trunc(sysdate,'y') curr_year

	 from dual

	CURR_YEAR

	01-JAN-2005

Then add one year to arrive at the first day of the next year. Finally, subtract the two dates to find the number of days in the current year.

[bookmark: sqlckbk-CHP-9-SECT-2.3.3]

PostgreSQL

Begin by finding the first day of the current year. To do that, invoke the DATE_ TRUNC function as follows:

	

	select cast(date_trunc('[bookmark: idx-CHP-9-0449]year',current_date) as date) as curr_year

	 from t1

	CURR_YEAR

	01-JAN-2005

You can then easily add a year to compute the first day of next year. Then all you need to do is to subtract the two dates. Be sure to subtract the earlier date from the later date. The result will be the number of days in the current year.

[bookmark: sqlckbk-CHP-9-SECT-2.3.4]

MySQL

Your first step is to find the first day of the current year. Use DAYOFYEAR to find how many days you are into the current year. Subtract that value from the current date, and add 1:

	

	select adddate(current_date,-dayofyear(current_date)+1) curr_year

	 from t1

	CURR_YEAR

	01-JAN-2005

Now that you have the first day of the current year, your next step is to add one year to it to get the first day of next year. Then subtract the beginning of the current year from the beginning of the next year. The result is the number of days in the current year.

[bookmark: sqlckbk-CHP-9-SECT-2.3.5]

SQL Server

Your first step is to find the first day of the current year. Use DATEADD and [bookmark: idx-CHP-9-0450]DATEPART to subtract from the current date the number of days into the year the current date is, and add 1:

	

	select dateadd(d,-datepart(dy,getdate())+1,getdate()) curr_year

	 from t1

	CURR_YEAR

	01-JAN-2005

Now that you have the first day of the current year, your next step is to add one year to it get the first day of the next year. Then subtract the beginning of the current year from the beginning of the next year. The result is the number of days in the current year.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-3]

Recipe 9.3. Extracting Units of Time from a Date

[bookmark: idx-CHP-9-0451]

[bookmark: sqlckbk-CHP-9-SECT-3.1]

Problem

You want to break the current date down into six parts: day, month, year, second, minute, and hour. You want the results to be returned as numbers.

[bookmark: sqlckbk-CHP-9-SECT-3.2]

Solution

My use of the current date is arbitrary. Feel free to use this recipe with other dates. In Chapter 1, I mention the importance of learning and taking advantage of the built-in functions provided by your RDBMS; this is especially true when it comes to working with dates. There are different ways of extracting units of time from a date than those presented in this recipe, and it would benefit you to experiment with different techniques and functions.

[bookmark: sqlckbk-CHP-9-SECT-3.2.1]

DB2

DB2 implements a set of built-in functions that make it easy for you to extract portions of a date. The function names [bookmark: idx-CHP-9-0452]HOUR, [bookmark: idx-CHP-9-0453]MINUTE, [bookmark: idx-CHP-9-0454]SECOND, [bookmark: idx-CHP-9-0455]DAY, [bookmark: idx-CHP-9-0456]MONTH, and [bookmark: idx-CHP-9-0457]YEAR conveniently correspond to the units of time you can return: if you want the day use DAY, hour use HOUR, etc. For example:

	

	1 select hour(current_timestamp) hr,

	2 minute(current_timestamp) min,

	3 second(current_timestamp) sec,

	4 day(current_timestamp) dy,

	5 month(current_timestamp) mth,

	6 year(current_timestamp) yr

	7 from t1

	 HR MIN SEC DY MTH YR

	---- ----- ----- ----- ----- -----

	 20 28 36 15 6 2005

[bookmark: sqlckbk-CHP-9-SECT-3.2.2]

Oracle

Use functions [bookmark: idx-CHP-9-0458]TO_CHAR and [bookmark: idx-CHP-9-0459]TO_NUMBER to return specific units of time from a date:

	

	1 select to_number(to_char(sysdate,'hh24')) hour,

	2 to_number(to_char(sysdate,'mi')) min,

	3 to_number(to_char(sysdate,'ss')) sec,

	4 to_number(to_char(sysdate,'dd')) day,

	5 to_number(to_char(sysdate,'mm')) mth,

	6 to_number(to_char(sysdate,'yyyy')) year

	7 from dual

	 HOUR MIN SEC DAY MTH YEAR

	 ---- ----- ----- ----- ----- -----

	 20 28 36 15 6 2005

[bookmark: sqlckbk-CHP-9-SECT-3.2.3]

PostgreSQL

Use functions TO_CHAR and TO_NUMBER to return specific units of time from a date:

	

	1 select to_number(to_char(current_timestamp,'hh24'),'99') as hr,

	2 to_number(to_char(current_timestamp,'mi'),'99') as min,

	3 to_number(to_char(current_timestamp,'ss'),'99') as sec,

	4 to_number(to_char(current_timestamp,'dd'),'99') as day,

	5 to_number(to_char(current_timestamp,'mm'),'99') as mth,

	6 to_number(to_char(current_timestamp,'yyyy'),'9999') as yr

	7 from t1

	

	 HR MIN SEC DAY MTH YR

	 ---- ----- ----- ----- ----- -----

	 20 28 36 15 6 2005

[bookmark: sqlckbk-CHP-9-SECT-3.2.4]

MySQL

Use the [bookmark: idx-CHP-9-0460]DATE_FORMAT function to return specific units of time from a date:

	

	1 select date_format(current_timestamp,'%k') hr,

	2 date_format(current_timestamp,'%i') min,

	3 date_format(current_timestamp,'%s') sec,

	4 date_format(current_timestamp,'%d') dy,

	5 date_format(current_timestamp,'%m') mon,

	6 date_format(current_timestamp,'%Y') yr

	7 from t1

	 HR MIN SEC DAY MTH YR

	---- ----- ----- ----- ----- -----

	 20 28 36 15 6 2005

[bookmark: sqlckbk-CHP-9-SECT-3.2.5]

SQL Server

Use the function [bookmark: idx-CHP-9-0461]DATEPART to return specific units of time from a date:

	

	1 select datepart(hour, getdate()) hr,

	2 datepart(minute,getdate()) min,

	3 datepart(second,getdate()) sec,

	4 datepart(day, getdate()) dy,

	5 datepart(month, getdate()) mon,

	6 datepart(year, getdate()) yr

	7 from t1

	 HR MIN SEC DAY MTH YR

	---- ----- ----- ----- ----- -----

	 20 28 36 15 6 2005

[bookmark: sqlckbk-CHP-9-SECT-3.3]

Discussion

There's nothing fancy in these solutions; just take advantage of what you're already paying for. Take the time to learn the date functions available to you. This recipe only scratches the surface of the functions presented in each solution. You'll find that each of the functions takes many more arguments and can return more information than what this recipe provides you.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-4]

Recipe 9.4. Determining the First and Last Day of a Month

[bookmark: idx-CHP-9-0462]

[bookmark: sqlckbk-CHP-9-SECT-4.1]

Problem

You want to determine the first and last days for the current month.

[bookmark: sqlckbk-CHP-9-SECT-4.2]

Solution

The solutions presented here are for finding first and last days for the current month. Using the current month is arbitrary. With a bit of adjustment, you can make the solutions work for any month.

[bookmark: sqlckbk-CHP-9-SECT-4.2.1]

DB2

Use the [bookmark: idx-CHP-9-0463]DAY function to return the number of days into the current month the current date represents. Subtract this value from the current date, and then add 1 to get the first of the month. To get the last day of the month, add one month to the current date, then subtract from it the value returned by the DAY function as applied to the current date:

	1 select (current_date - day(current_date) day +1 day) firstday,

	2 (current_date +1 month -day(current_date) day) lastday

	3 from t1

[bookmark: sqlckbk-CHP-9-SECT-4.2.2]

Oracle

Use the function TRUNC to find the first of the month, and the function [bookmark: idx-CHP-9-0464]LAST_DAY to find the last day of the month:

	1 select trunc(sysdate,'mm') firstday,

	2 last_day(sysdate) lastday

	3 from dual

						[image:]			

Using TRUNC as decribed here will result in the loss of any time-of-day component, whereas LAST_DAY will preserve the time of day.

[bookmark: sqlckbk-CHP-9-SECT-4.2.3]

PostgreSQL

Use the DATE_TRUNC function to truncate the current date to the first of the current month. Once you have the first day of the month, add one month and subtract one day to find the end of the current month:

	1 select firstday,

	2 cast(firstday + interval '1 month'

	3 - interval '1 day' as date) as lastday

	4 from (

	5 select cast(date_trunc('month',current_date) as date) as firstday

	6 from t1

	7) x

[bookmark: sqlckbk-CHP-9-SECT-4.2.4]

MySQL

Use the DATE_ADD and [bookmark: idx-CHP-9-0465]DAY functions to find the number of days into the month the current date is. Then subtract that value from the current date and add 1 to find the first of the month. To find the last day of the current month, use the LAST_[bookmark: idx-CHP-9-0466]DAY function:

	1 select date_add(current_date,

	2 interval -day(current_date)+1 day) firstday,

	3 last_day(current_date) lastday

	4 from t1

[bookmark: sqlckbk-CHP-9-SECT-4.2.5]

SQL Server

Use the DATEADD and [bookmark: idx-CHP-9-0467]DAY functions to find the number of days into the month represented by the current date. Then subtract that value from the current date and add 1 to find the first of the month. To get the last day of the month, add one month to the current date, and then subtract from that result the value returned by the DAY function applied to the current date, again using the functions DAY and DATEADD:

	1 select dateadd(day,-day(getdate())+1,getdate()) firstday,

	2 dateadd(day,

	3 -day(getdate()),

	4 dateadd(month,1,getdate())) lastday

	5 from t1

[bookmark: sqlckbk-CHP-9-SECT-4.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-4.3.1]

DB2

To find the first day of the month, use the DAY function. The DAY function conveniently returns the day of the month for the date passed. If you subtract the value returned by DAY(CURRENT_DATE) from the current date, you get the last day of the prior month; add one day to get the first day of the current month. To find the last day of the month, add one month to the current date. That will get you the same number of days into the following month as you are into the current month (the math will still work out if the following month is shorter than the current). Then subtract the value returned by DAY(CURRENT_DATE) to get the last day of the current month.

[bookmark: sqlckbk-CHP-9-SECT-4.3.2]

Oracle

To find the first day of the current month, use the [bookmark: idx-CHP-9-0468]TRUNC function with "mm" as the second argument to "truncate" the current date down to the first of the month. To find the last day of the current month, simply use the LAST_DAY function.

[bookmark: sqlckbk-CHP-9-SECT-4.3.3]

PostgreSQL

To find the first day of the current month, use the [bookmark: idx-CHP-9-0469]DATE_TRUNC function with "month" as the second argument to "truncate" the current date down to the first of the month. To find the last day of the current month, add one month to the first day of the month, and then subtract one day.

[bookmark: sqlckbk-CHP-9-SECT-4.3.4]

MySQL

To find the first day of the month, use the [bookmark: idx-CHP-9-0470]DAY function. The [bookmark: idx-CHP-9-0471]DAY function conveniently returns the day of the month for the date passed. If you subtract the value returned by DAY(CURRENT_DATE) from the current date, you get the last day of the prior month; add one day to get the first day of the current month. To find the last day of the current month, simply use the [bookmark: idx-CHP-9-0472]LAST_DAY function.

[bookmark: sqlckbk-CHP-9-SECT-4.3.5]

SQL Server

To find the first day of the month, use the DAY function. The DAY function conveniently returns the day of the month for the date passed. If you subtract the value returned by DAY(GETDATE()) from the current date, you get the last day of the prior month; add one day to get the first day of the current month. To find the last day of the current month, use the [bookmark: idx-CHP-9-0473]DATEADD function. Add one month to the current date, then subtract from it the value returned by DAY(GETDATE()) to get the last day of the current month.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-5]

Recipe 9.5. Determining All Dates for a Particular Weekday Throughout a Year

[bookmark: sqlckbk-CHP-9-SECT-5.1]

Problem

You want to find all the dates in a year that correspond to a given day of the week. For example, you may wish to generate a list of Fridays for the current year.

[bookmark: sqlckbk-CHP-9-SECT-5.2]

Solution

Regardless of vendor, the key to the solution is to return each day for the current year and keep only those dates corresponding to the day of the week that you care about. The solution examples retain all the Fridays.

[bookmark: sqlckbk-CHP-9-SECT-5.2.1]

DB2

Use the recursive WITH clause to return each day in the current year. Then use the function DAYNAME to keep only Fridays:

	1 with x (dy,yr)

	2 as (

	3 select dy, year(dy) yr

	4 from (

	5 select (current_date -

	6 dayofyear(current_date) days +1 days) as dy

	7 from t1

	8) tmp1

	9 union all

 10 select dy+1 days, yr

 11 from x

 12 where year(dy +1 day) = yr

 13)

 14 select dy

 15 from x

 16 where dayname(dy) = 'Friday'

[bookmark: sqlckbk-CHP-9-SECT-5.2.2]

Oracle

Use the recursive CONNECT BY clause to return each day in the current year. Then use the function TO_CHAR to keep only Fridays:

	1 with x

	2 as (

	3 select trunc(sysdate,'y')+level-1 dy

	4 from t1

	5 connect by level <=

	6 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')

	7)

	8 select *

	9 from x

 10 where to_char(dy, 'dy') = 'fri'

[bookmark: sqlckbk-CHP-9-SECT-5.2.3]

PostgreSQL

Use the function GENERATE_SERIES to return each day in the current year. Then use the function TO_CHAR to keep only Fridays:

	 1 select cast(date_trunc('year',current_date) as date)

	 2 + x.id as dy

	 3 from generate_series (

	 4 0,

	 5 (select cast(

	 6 cast(

	 7 date_trunc('year',current_date) as date)

	 8 + interval '1 years' as date)

	 9 - cast(

	10 date_trunc('year',current_date) as date))-1

	11) x(id)

	12 where to_char(

	13 cast(

	14 date_trunc('year',current_date)

	15 as date)+x.id,'dy') = 'fri'

[bookmark: sqlckbk-CHP-9-SECT-5.2.4]

MySQL

Use the pivot table T500 to return each day in the current year. Then use the function DAYNAME to keep only Fridays:

	 1 select dy

	 2 from (

	 3 select adddate(x.dy,interval t500.id-1 day) dy

	 4 from (

	 5 select dy, year(dy) yr

	 6 from (

	 7 select adddate(

	 8 adddate(current_date,

	 9 interval -dayofyear(current_date) day),

	10 interval 1 day) dy

	11 from t1

	12) tmp1

	13) x,

	14 t500

	15 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr

	16) tmp2

	17 where dayname(dy) = 'Friday'

[bookmark: sqlckbk-CHP-9-SECT-5.2.5]

SQL Server

Use the recursive WITH clause to return each day in the current year. Then use the function DAYNAME to keep only Fridays:

	 1 with x (dy,yr)

	 2 as (

	 3 select dy, year(dy) yr

	 4 from (

	 5 select getdate()-datepart(dy,getdate())+1 dy

	 6 from t1

	 7) tmp1

	 8 union all

	 9 select dateadd(dd,1,dy), yr

	10 from x

	11 where year(dateadd(dd,1,dy)) = yr

	12)

	13 select x.dy

	14 from x

	15 where datename(dw,x.dy) = 'Friday'

	16 option (maxrecursion 400)

[bookmark: sqlckbk-CHP-9-SECT-5.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-5.3.1]

DB2

To find all the Fridays in the current year, you must be able to return every day in the current year. The first step is to find the first day of the year by using the DAYOFYEAR function. Subtract the value returned by DAYOFYEAR(CURRENT_DATE) from the current date to get December 31 of the prior year, and then add 1 to get the first day of the current year:

	

	select (current_date

	 dayofyear(current_date) days +1 days) as dy

	 from t1

	DY

	01-JAN-2005

Now that you have the first day of the year, use the WITH clause to repeatedly add one day to the first day of the year until you are no longer in the current year. The result set will be every day in the current year (a portion of the rows returned by the recursive view X is shown below):

	

	 with x (dy,yr)

	 as (

	select dy, year(dy) yr

	 from (

	select (current_date

	 dayofyear(current_date) days +1 days) as dy

	 from t1

) tmp1

	union all

	select dy+1 days, yr

	 from x

	 where year(dy +1 day) = yr

)

	select dy

	 from x

	DY

	01-JAN-2005

	…

	15-FEB-2005

	…

	22-NOV-2005

	…

	31-DEC-2005

The final step is to use the DAYNAME function to keep only rows that are Fridays.

[bookmark: sqlckbk-CHP-9-SECT-5.3.2]

Oracle

To find all the Fridays in the current year, you must be able to return every day in the current year. Begin by using the TRUNC function to find the first day of the year:

	select trunc(sysdate,'y') dy

	 from t1

	DY

	01-JAN-2005

Next, use the CONNECT BY clause to return every day in the current year (to understand how to use CONNECT BY to generate rows, see "Generating Consecutive Time and Numeric Values" in Chapter 13).

						[image:]			

As an aside, this recipe uses the WITH clause, but you can also use an inline view.

At the time of this writing, Oracle's [bookmark: idx-CHP-9-0474]WITH clause is not meant for recursive operations (unlike the case with DB2 and SQL Server); recursive operations are done using CONNECT BY. A portion of the result set returned by view X is shown below:

	

	 with x

	 as (

	select trunc(sysdate,'y')+level-1 dy

	from t1

	 connect by level <=

	 add_months(trunc(sysdate,'y'),12)-trunc(sysdate,'y')

)

	select *

	from x

	DY

	01-JAN-2005

	…

	15-FEB-2005

	…

	22-NOV-2005

	…

	31-DEC-2005

The final step is to use the TO_CHAR function to keep only Fridays.

[bookmark: sqlckbk-CHP-9-SECT-5.3.3]

PostgreSQL

To find all the Fridays in the current year, you must be able to return a row for every day in the current year. To do that, use the GENERATE_SERIES function. The start and end values to be returned by GENERATE_SERIES are 0 and the number of days in the current year minus 1. The first parameter passed to GENERATE_SERIES is 0, while the second is a query that determines the number of days in the current year (because you are adding to the first day of the current year, you actually want to add 1 less than the number of days in the current year, so as to not spill over into the next year). The result returned by the second parameter of the GENERATE_SERIES function is shown below:

	

	select cast(

	 cast(

	 date_trunc('year',current_date) as date)

	 + interval '1 years' as date)

	 -cast(

	 date_trunc('year',current_date) as date)-1 as cnt

	 from t1

	CNT

	364

Keeping in mind the result set above, the call to GENERATE_SERIES in the FROM clause will look like this: GENERATE_SERIES (0, 364). If you are in a leap year, such as 2004, the second parameter would be 365.

The next step after generating a list of dates in the year is to add the values returned by GENERATE_SERIES to the first day of the current year. A portion of the results is shown below:

	

	select cast(date_trunc('year',current_date) as date)

	 + x.id as dy

	 from generate_series (

	 0,

	 (select cast(

	 cast(

	 date_trunc('year',current_date) as date)

	 + interval '1 years' as date)

	 -cast(

	 date_trunc('year',current_date) as date))-1

) x(id)

	DY

	01-JAN-2005

	…

	15-FEB-2005

	…

	22-NOV-2005

	…

	31-DEC-2005

The final step is to use the TO_CHAR function to keep only the Fridays.

[bookmark: sqlckbk-CHP-9-SECT-5.3.4]

MySQL

To find all the Fridays in the current year, you must be able to return every day in the current year. The first step is to find the first day of the year by using the DAYOF-YEAR function. Subtract the value returned by DAYOFYEAR(CURRENT_DATE) from the current date, and then add 1 to get the first day of the current year:

	

	select adddate(

	 adddate(current_date,

	 interval -dayofyear(current_date) day),

	 interval 1 day) dy

	 from t1

	DY

	01-JAN-2005

Then use table T500 to generate enough rows to return each day in the current year. You can do this by adding each value of T500.ID to the first day of the year until you break out of the current year. Partial results of this operation are shown below:

	

	select adddate(x.dy,interval t500.id-1 day) dy

	 from (

	select dy, year(dy) yr

	 from (

	select adddate(

	 adddate(current_date,

	 interval -dayofyear(current_date) day),

	 interval 1 day) dy

	 from t1

) tmp1

) x,

	 t500

	 where year(adddate(x.dy,interval t500.id-1 day)) = x.yr

	DY

	01-JAN-2005

	…

	15-FEB-2005

	…

	22-NOV-2005

	…

	31-DEC-2005

The final step is to use the DAYNAME function to keep only Fridays.

[bookmark: sqlckbk-CHP-9-SECT-5.3.5]

SQL Server

To find all the Fridays in the current year, you must be able to return every day in the current year. The first step is to find the first day of the year by using the [bookmark: idx-CHP-9-0475]DATEPART function. Subtract the value returned by DATEPART(DY,GETDATE()) from the current date, and then add 1 to get the first day of the current year:

	

	select getdate()-datepart(dy,getdate())+1 dy

	 from t1

	DY

	01-JAN-2005

Now that you have the first day of the year, use the WITH clause and the DATEADD function to repeatedly add one day to the first day of the year until you are no longer in the current year. The result set will be every day in the current year (a portion of the rows returned by the recursive view X is shown below):

	

	with x (dy,yr)

	 as (

	select dy, year(dy) yr

	 from (

	select getdate()-datepart(dy,getdate())+1 dy

	 from t1

) tmp1

	 union all

	select dateadd(dd,1,dy), yr

	 from x

	 where year(dateadd(dd,1,dy)) = yr

)

	select x.dy

	 from x

	option (maxrecursion 400)

	DY

	01-JAN-2005

	…

	15-FEB-2005

	…

	22-NOV-2005

	…

	31-DEC-2005

Finally, use the DATENAME function to keep only rows that are Fridays. For this solution to work, you must set MAXRECURSION to at least 366 (the filter on the year portion of the current year, in recursive view X, guarantees you will never generate more than 366 rows).

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-6]

Recipe 9.6. Determining the Date of the First and Last Occurrence of a Specific Weekday in a Month

[bookmark: sqlckbk-CHP-9-SECT-6.1]

Problem

You want to find, for example, the first and last Mondays of the current month.

[bookmark: sqlckbk-CHP-9-SECT-6.2]

Solution

The choice to use Monday and the current month is arbitrary; you can use the solutions presented in this recipe for any weekday and any month. Because each weekday is seven days apart from itself, once you have the first instance of a weekday, you can add 7 days to get the second and 14 days to get the third. Likewise, if you have the last instance of a weekday in a month, you can subtract 7 days to get the third and subtract 14 days to get the second.

[bookmark: sqlckbk-CHP-9-SECT-6.2.1]

DB2

Use the recursive WITH clause to generate each day in the current month and use a CASE expression to flag all Mondays. The first and last Mondays will be the earliest and latest of the flagged dates:

	 1 with x (dy,mth,is_monday)

	 2 as (

	 3 select dy,month(dy),

	 4 case when dayname(dy)='Monday'

	 5 then 1 else 0

	 6 end

	 7 from (

	 8 select (current_date-day(current_date) day +1 day) dy

	 9 from t1

	10) tmp1

	11 union all

	12 select (dy +1 day), mth,

	13 case when dayname(dy +1 day)='Monday'

	14 then 1 else 0

	15 end

	16 from x

	17 where month(dy +1 day) = mth

	18)

	19 select min(dy) first_monday, max(dy) last_monday

	20 from x

	21 where is_monday = 1

[bookmark: sqlckbk-CHP-9-SECT-6.2.2]

Oracle

Use the functions [bookmark: idx-CHP-9-0476]NEXT_DAY and [bookmark: idx-CHP-9-0477]LAST_DAY, together with a bit of clever date arithmetic, to find the first and last Mondays of the current month:

	select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday,

	 next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday

	 from dual

[bookmark: sqlckbk-CHP-9-SECT-6.2.3]

PostgreSQL

Use the function DATE_TRUNC to find the first day of the month. Once you have the first day of the month, you can use simple arithmetic involving the numeric values of [bookmark: idx-CHP-9-0478]weekdays (SunSat is 17) to find the first and last Mondays of the current month:

	 1 select first_monday,

	 2 case to_char(first_monday+28,'mm')

	 3 when mth then first_monday+28

	 4 else first_monday+21

	 5 end as last_monday

	 6 from (

	 7 select case sign(cast(to_char(dy,'d') as integer)-2)

	 8 when 0

	 9 then dy

	10 when -1

	11 then dy+abs(cast(to_char(dy,'d') as integer)-2)

	12 when 1

	13 then (7-(cast(to_char(dy,'d') as integer)-2))+dy

	14 end as first_monday,

	15 mth

	16 from (

	17 select cast(date_trunc('month',current_date) as date) as dy,

	18 to_char(current_date,'mm') as mth

	19 from t1

	20) x

	21) y

[bookmark: sqlckbk-CHP-9-SECT-6.2.4]

MySQL

Use the ADDDATE function to find the first day of the month. Once you have the first day of the month, you can use simple arithmetic on the numeric values of [bookmark: idx-CHP-9-0479]weekdays (SunSat is 06) to find the first and last Mondays of the current month:

	 1 select first_monday,

	 2 case month(adddate(first_monday,28))

	 3 when mth then adddate(first_monday,28)

	 4 else adddate(first_monday,21)

	 5 end last_monday

	 6 from (

	 7 select case sign(dayofweek(dy)-2)

	 8 when 0 then dy

	 9 when -1 then adddate(dy,abs(dayofweek(dy)-2))

	10 when 1 then adddate(dy,(7-(dayofweek(dy)-2)))

	11 end first_monday,

	12 mth

	13 from (

	14 select adddate(adddate(current_date,-day(current_date)),1) dy,

	15 month(current_date) mth

	16 from t1

	17) x

	18) y

[bookmark: sqlckbk-CHP-9-SECT-6.2.5]

SQL Server

Use the recursive WITH clause to generate each day in the current month, and then use a CASE expression to flag all Mondays. The first and last Mondays will be the earliest and latest of the flagged dates:

	 1 with x (dy,mth,is_monday)

	 2 as (

	 3 select dy,mth,

	 4 case when datepart(dw,dy) = 2

	 5 then 1 else 0

	 6 end

	 7 from (

	 8 select dateadd(day,1,dateadd(day,-day(getdate()),getdate())) dy,

	 9 month(getdate()) mth

	10 from t1

	11) tmp1

	12 union all

	13 select dateadd(day,1,dy),

	14 mth,

	15 case when datepart(dw,dateadd(day,1,dy)) = 2

	16 then 1 else 0

	17 end

	18 from x

	19 where month(dateadd(day,1,dy)) = mth

	20)

	21 select min(dy) first_monday,

	22 max(dy) last_monday

	23 from x

	24 where is_monday = 1

[bookmark: sqlckbk-CHP-9-SECT-6.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-6.3.1]

DB2 and SQL Server

DB2 and SQL Server use different functions to solve this problem, but the technique is exactly the same. If you eyeball both solutions you'll see the only difference between the two is the way dates are added. This discussion will cover both solutions, using the DB2 solution's code to show the results of intermediate steps.

						[image:]			

If you do not have access to the recursive WITH clause in the version of SQL Server or DB2 that you are running, you can use the PostgreSQL technique instead.

The first step in finding the first and last Mondays of the current month is to return the first day of the month. Inline view TMP1 in recursive view X finds the first day of the current month by first finding the current date, specifically, the day of the month for the current date. The day of the month for the current date represents how many days into the month you are (e.g., April 10th is the 10th day of the April). If you subtract this day of the month value from the current date, you end up at the last day of the previous month (e.g., subtracting 10 from April 10th puts you at the last day of March). After this subtraction, simply add one day to arrive at the first day of the current month:

	

	select (current_date-day(current_date) day +1 day) dy

	 from t1

	DY

	01-JUN-2005

Next, find the month for the current date using the MONTH function and a simple CASE expression to determine whether or not the first day of the month is a Monday:

	

	select dy, month(dy) mth,

	 case when dayname(dy)='Monday'

	 then 1 else 0

	 end is_monday

	 from (

	select (current_date-day(current_date) day +1 day) dy

	 from t1

) tmp1

	DY MTH IS_MONDAY

	----------- --- ----------

	01-JUN-2005 6 0

Then use the recursive capabilities of the WITH clause to repeatedly add one day to the first day of the month until you're no longer in the current month. Along the way, you will use a CASE expression to determine which days in the month are Mondays (Mondays will be flagged with "1"). A portion of the output from recursive view X is shown below:

	

	with x (dy,mth,is_monday)

	 as (

	 select dy,month(dy) mth,

	 case when dayname(dy)='Monday'

	 then 1 else 0

	 end is_monday

	 from (

	 select (current_date-day(current_date) day +1 day) dy

	 from t1

) tmp1

	 union all

	 select (dy +1 day), mth,

	 case when dayname(dy +1 day)='Monday'

	 then 1 else 0

	 end

	 from x

	 where month(dy +1 day) = mth

)

	 select *

	 from x

	DY MTH IS_MONDAY

	----------- --- ----------

	01-JUN-2005 6 0

	02-JUN-2005 6 0

	03-JUN-2005 6 0

	04-JUN-2005 6 0

	05-JUN-2005 6 0

	06-JUN-2005 6 1

	07-JUN-2005 6 0

	08-JUN-2005 6 0

	…

Only Mondays will have a value of 1 for IS_MONDAY, so the final step is to use the aggregate functions MIN and MAX on rows where IS_MONDAY is 1 to find the first and last Mondays of the month.

[bookmark: sqlckbk-CHP-9-SECT-6.3.2]

Oracle

The function [bookmark: idx-CHP-9-0480]NEXT_DAY makes this problem easy to solve. To find the first Monday of the current month, first return the last day of the prior month via some date arithmetic involving the TRUNC function:

	

	select trunc(sysdate,'mm')-1 dy

	 from dual

	DY

	31-MAY-2005

Then use the [bookmark: idx-CHP-9-0481]NEXT_DAY [bookmark: idx-CHP-9-0482]function to find the first Monday that comes after the last day of the previous month (i.e., the first Monday of the current month):

	

	select next_day(trunc(sysdate,'mm')-1,'MONDAY') first_monday

	 from dual

	FIRST_MONDAY

	06-JUN-2005

To find the last Monday of the current month, start by returning the first day of the current month by using the TRUNC [bookmark: idx-CHP-9-0483]function:

	

	select trunc(sysdate,'mm') dy

	 from dual

	DY

	01-JUN-2005

The next step is to find the last week (the last seven days) of the month. Use the LAST_DAY function to find the last day of the month, and then subtract seven days:

	

	select last_day(trunc(sysdate,'mm'))-7 dy

	 from dual

	DY

	23-JUN-2005

If it isn't immediately obvious, you go back seven days from the last day of the month to ensure that you will have at least one of any weekday left in the month. The last step is to use the function NEXT_DAY to find the next (and last) Monday of the month:

	

	select next_day(last_day(trunc(sysdate,'mm'))-7,'MONDAY') last_monday

	 from dual

	LAST_MONDAY

	27-JUN-2005

[bookmark: sqlckbk-CHP-9-SECT-6.3.3]

PostgreSQL and MySQL

PostgreSQL and MySQL also share the same solution approach. The difference is in the functions that you invoke. Despite their lengths, the respective queries are extremely simple; little overhead is involved in finding the first and last Mondays of the current month.

The first step is to find the first day of the current month. The next step is to find the first Monday of the month. Since there is no function to find the next date for a given weekday, you need to use a little arithmetic. The CASE expression beginning on line 7 (of either solution) evaluates the difference between the numeric value for the weekday of the first day of the month and the numeric value corresponding to Monday. Given that the function [bookmark: idx-CHP-9-0484]TO_CHAR (PostgresSQL), when called with the 'D' or 'd' format, and the function [bookmark: idx-CHP-9-0485]DAYOFWEEK (MySQL) will return a numeric value from 1 to 7 representing days Sunday to Saturday; Monday is always represented by 2. The first test evaluated by CASE is the [bookmark: idx-CHP-9-0486]SIGN of the numeric value of the first day of the month (whatever it may be) minus the numeric value of Monday (2). If the result is 0, then the first day of the month falls on a Monday and that is the first Monday of the month. If the result is1, then the first day of the month falls on a Sunday and to find the first Monday of the month simply add the difference in days between 2 and 1 (numeric values of Monday and Sunday, respectively) to the first day of the month.

						[image:]			

If you are having trouble understanding how this works, forget the weekday names and just do the math. For example, say you happen to be starting on a Tuesday and you are looking for the next Friday. When using TO_CHAR with the 'd' format, or DAYOFWEEK, Friday is 6 and Tuesday is 3. To get to 6 from 3, simply take the difference (63 = 3) and add it to the smaller value ((63) + 3 = 6). So, regardless of the actual dates, if the numeric value of the day you are starting from is less than the numeric value of the day you are searching for, adding the difference between the two dates to the date you are starting from will get you to the date you are searching for.

If the result from SIGN is 1, then the first day of the month falls between Tuesday and Saturday (inclusive). When the first day of the month has a numeric value greater than 2 (Monday), subtract from 7 the difference between the numeric value of the first day of the month and the numeric value of Monday (2), and then add that value to the first day of the month. You will have arrived at the day of the week that you are after, in this case Monday.

						[image:]			

Again, if you are having trouble understanding how this works, forget the weekday names and just do the math. For example, suppose you want to find the next Tuesday and you are starting from Friday. Tuesday (3) is less than Friday (6). To get to 3 from 6 subtract the difference between the two values from 7 (7(|36|) = 4) and add the result (4) to the start day Friday. (The vertical bars in |3-6| generate the absolute value of that difference.) Here, you're not adding 4 to 6 (which will give you 10), you are adding four days to Friday, which will give you the next Tuesday.

The idea behind the CASE expression is to create a sort of a "next day" function for PostgreSQL and MySQL. If you do not start with the first day of the month, the value for DY will be the value returned by [bookmark: idx-CHP-9-0487]CURRENT_DATE and the result of the CASE expression will return the date of the next Monday starting from the current date (unless CURRENT_DATE is a Monday, then that date will be returned).

Now that you have the first Monday of the [bookmark: idx-CHP-9-0488]month, add either 21 or 28 days to find the last Monday of the month. The CASE expression in lines 25 determines whether to add 21 or 28 days by checking to see whether 28 days takes you into the next month. The CASE expression does this through the following process:

			It adds 28 to the value of FIRST_MONDAY.

			Using	either TO_CHAR (PostgreSQL) or MONTH, the CASE expression extracts the name of the current month from result of FIRST_MONDAY + 28.

			The result from Step 2 is compared to the value MTH from the inline view. The value MTH is the name of the current month as derived from CURRENT_ DATE. If the two month values match, then the month is large enough for you to need to add 28 days, and the CASE expression returns FIRST_MONDAY + 28. If the two month values do not match, then you do not have room to add 28 days, and the CASE expression returns FIRST_MONDAY + 21 days instead. It is convenient that our months are such that 28 and 21 are the only two possible values you need worry about adding.

						[image:]			

You can extend the solution by adding 7 and 14 days to find the second and third Mondays of the month, respectively.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-7]

Recipe 9.7. Creating a Calendar

[bookmark: idx-CHP-9-0489]

[bookmark: sqlckbk-CHP-9-SECT-7.1]

Problem

You want to create a calendar for the current month. The calendar should be formatted like a calendar you might have on your desk seven columns across, (usually) five rows down.

[bookmark: sqlckbk-CHP-9-SECT-7.2]

Solution

Each solution will look a bit different, but they all solve the problem the same way: return each day for the current month, and then pivot on the day of the week for each week in the month to create a calendar.

There are different formats available for [bookmark: idx-CHP-9-0490]calendars. For example, the Unix cal command formats the days from Sunday to Saturday. The examples in this recipe are based on ISO weeks, so the Monday through Friday format is the most convenient to generate. Once you become comfortable with the solutions, you'll see that reformatting however you like is simply a matter of modifying the values assigned by the ISO week before pivoting.

						[image:]			

As you begin to use different types of formatting with SQL to create readable output, you will notice your queries becoming longer. Don't let those long queries intimidate you; the queries presented for this recipe are extremely simple once broken down and run piece by piece.

[bookmark: sqlckbk-CHP-9-SECT-7.2.1]

DB2

Use the recursive WITH clause to return every day in the current month. Then pivot on the day of the week using CASE and MAX:

	 1 with x(dy,dm,mth,dw,wk)

	 2 as (

	 3 select (current_date -day(current_date) day +1 day) dy,

	 4 day((current_date -day(current_date) day +1 day)) dm,

	 5 month(current_date) mth,

	 6 dayofweek(current_date -day(current_date) day +1 day) dw,

	 7 week_iso(current_date -day(current_date) day +1 day) wk

	 8 from t1

	 9 union all

	10 select dy+1 day, day(dy+1 day), mth,

	11 dayofweek(dy+1 day), week_iso(dy+1 day)

	12 from x

	13 where month(dy+1 day) = mth

	14)

	15 select max(case dw when 2 then dm end) as Mo,

	16 max(case dw when 3 then dm end) as Tu,

	17 max(case dw when 4 then dm end) as We,

	18 max(case dw when 5 then dm end) as Th,

	19 max(case dw when 6 then dm end) as Fr,

	20 max(case dw when 7 then dm end) as Sa,

	21 max(case dw when 1 then dm end) as Su

	22 from x

	23 group by wk

	24 order by wk

[bookmark: sqlckbk-CHP-9-SECT-7.2.2]

Oracle

Use the recursive CONNECT BY clause to return each day in the current month. Then pivot on the day of the week using CASE and MAX:

	 1 with x

	 2 as (

	 3 select *

	 4 from (

	 5 select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,

	 6 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,

	 7 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,

	 8 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,

	 9 to_char(sysdate,'mm') mth

	10 from dual

	11 connect by level <= 31

	12)

	13 where curr_mth = mth

	14)

	15 select max(case dw when 2 then dm end) Mo,

	16 max(case dw when 3 then dm end) Tu,

	17 max(case dw when 4 then dm end) We,

	18 max(case dw when 5 then dm end) Th,

	19 max(case dw when 6 then dm end) Fr,

	20 max(case dw when 7 then dm end) Sa,

	21 max(case dw when 1 then dm end) Su

	22 from x

	23 group by wk

	24 order by wk

[bookmark: sqlckbk-CHP-9-SECT-7.2.3]

PostgreSQL

Use the function GENERATE_SERIES to return every day in the current month. Then pivot on the day of the week using MAX and CASE:

	 1 select max(case dw when 2 then dm end) as Mo,

	 2 max(case dw when 3 then dm end) as Tu,

	 3 max(case dw when 4 then dm end) as We,

	 4 max(case dw when 5 then dm end) as Th,

	 5 max(case dw when 6 then dm end) as Fr,

	 6 max(case dw when 7 then dm end) as Sa,

	 7 max(case dw when 1 then dm end) as Su

	 8 from (

	 9 select *

	10 from (

	11 select cast(date_trunc('month',current_date) as date)+x.id,

	12 to_char(

	13 cast(

	14 date_trunc('month',current_date)

	15 as date)+x.id,'iw') as wk,

	16 to_char(

	17 cast(

	18 date_trunc('month',current_date)

	19 as date)+x.id,'dd') as dm,

	20 cast(

	21 to_char(

	22 cast(

	23 date_trunc('month',current_date)

	24 as date)+x.id,'d') as integer) as dw,

	25 to_char(

	26 cast(

	27 date_trunc('month',current_date)

	28 as date)+x.id,'mm') as curr_mth,

	29 to_char(current_date,'mm') as mth

	30 from generate_series (0,31) x(id)

	31) x

	32 where mth = curr_mth

	33) y

	34 group by wk

	35 order by wk

[bookmark: sqlckbk-CHP-9-SECT-7.2.4]

Mysol

Use table T500 to return each day in the current month. Then pivot on the day of the week using MAX and CASE:

	 1 select max(case dw when 2 then dm end) as Mo,

	 2 max(case dw when 3 then dm end) as Tu,

	 3 max(case dw when 4 then dm end) as We,

	 4 max(case dw when 5 then dm end) as Th,

	 5 max(case dw when 6 then dm end) as Fr,

	 6 max(case dw when 7 then dm end) as Sa,

	 7 max(case dw when 1 then dm end) as Su

	 8 from (

	 9 select date_format(dy,'%u') wk,

	10 date_format(dy,'%d') dm,

	11 date_format(dy,'%w')+1 dw

	12 from (

	13 select adddate(x.dy,t500.id-1) dy,

	14 x.mth

	15 from (

	16 select adddate(current_date,-dayofmonth(current_date)+1) dy,

	17 date_format(

	18 adddate(current_date,

	19 -dayofmonth(current_date)+1),

	20 '%m') mth

	21 from t1

	22) x,

	23 t500

	24 where t500.id <= 31

	25 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth

	26) y

	27) z

	28 group by wk

	29 order by wk

[bookmark: sqlckbk-CHP-9-SECT-7.2.5]

SQL Server

Use the recursive WITH clause to return every day in the current month. Then pivot on the day of the week using CASE and MAX:

	 1 with x(dy,dm,mth,dw,wk)

	 2 as (

	 3 select dy,

	 4 day(dy) dm,

	 5 datepart(m,dy) mth,

	 6 datepart(dw,dy) dw,

	 7 case when datepart(dw,dy) = 1

	 8 then datepart(ww,dy)-1

	 9 else datepart(ww,dy)

	10 end wk

	11 from (

	12 select dateadd(day,-day(getdate())+1,getdate()) dy

	13 from t1

	14) x

	15 union all

	16 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,

	17 datepart(dw,dateadd(d,1,dy)),

	18 case when datepart(dw,dateadd(d,1,dy)) = 1

	19 then datepart(wk,dateadd(d,1,dy))-1

	20 else datepart(wk,dateadd(d,1,dy))

	21 end

	22 from x

	23 where datepart(m,dateadd(d,1,dy)) = mth

	24)

	25 select max(case dw when 2 then dm end) as Mo,

	26 max(case dw when 3 then dm end) as Tu,

	27 max(case dw when 4 then dm end) as We,

	28 max(case dw when 5 then dm end) as Th,

	29 max(case dw when 6 then dm end) as Fr,

	30 max(case dw when 7 then dm end) as Sa,

	31 max(case dw when 1 then dm end) as Su

	32 from x

	33 group by wk

	34 order by wk

[bookmark: sqlckbk-CHP-9-SECT-7.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-7.3.1]

DB2

The first step is to return each day in the month for which you want to create a [bookmark: idx-CHP-9-0491]calendar. Do that using the recursive WITH clause (if you don't have WITH available, you can use a pivot table, such as T500, as in the MySQL solution). Along with each day of the month (alias DM) you will need to return different parts of each date: the day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week for each day of the month (alias WK). The results of the recursive view X prior to recursion taking place (the upper portion of the UNION ALL) are shown below:

	

	select (current_date -day(current_date) day +1 day) dy,

	 day((current_date -day(current_date) day +1 day)) dm,

	 month(current_date) mth,

	 dayofweek(current_date -day(current_date) day +1 day) dw,

	 week_iso(current_date -day(current_date) day +1 day) wk

	 from t1

	DY DM MTH DW WK

	----------- -- --- ---------- --

	01-JUN-2005 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of the month) until you are no longer in the current month. As you move through each day in the month, you will also return the day of the week that each day is, and which ISO week the current day of the month falls into. Partial results are shown below:

	

	with x(dy,dm,mth,dw,wk)

	 as (

	select (current_date -day(current_date) day +1 day) dy,

	 day((current_date -day(current_date) day +1 day)) dm,

	 month(current_date) mth,

	 dayofweek(current_date -day(current_date) day +1 day) dw,

	 week_iso(current_date -day(current_date) day +1 day) wk

	 from t1

	 union all

	 select dy+1 day, day(dy+1 day), mth,

	 dayofweek(dy+1 day), week_iso(dy+1 day)

	 from x

	 where month(dy+1 day) = mth

)

	select *

	 from x

	DY DM MTH DW WK

	----------- -- --- ---------- --

	01-JUN-2005 01 06 4 22

	02-JUN-2005 02 06 5 22

	…

	21-JUN-2005 21 06 3 25

	22-JUN-2005 22 06 4 25

	…

	30-JUN-2005 30 06 5 26

What you are returning at this point are: each day for the current month, the two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the week (17 for SunSat), and the two-digit ISO week each day falls into. With all this information available, you can use a CASE expression to determine which day of the week each value of DM (each day of the month) falls into. A portion of the results is shown below:

	

	with x(dy,dm,mth,dw,wk)

	 as (

	select (current_date -day(current_date) day +1 day) dy,

	 day((current_date -day(current_date) day +1 day)) dm,

	 month(current_date) mth,

	 dayofweek(current_date -day(current_date) day +1 day) dw,

	 week_iso(current_date -day(current_date) day +1 day) wk

	 from t1

	 union all

	 select dy+1 day, day(dy+1 day), mth,

	 dayofweek(dy+1 day), week_iso(dy+1 day)

	 from x

	 where month(dy+1 day) = mth

)

	 select wk,

	 case dw when 2 then dm end as Mo,

	 case dw when 3 then dm end as Tu,

	 case dw when 4 then dm end as We,

	 case dw when 5 then dm end as Th,

	 case dw when 6 then dm end as Fr,

	 case dw when 7 then dm end as Sa,

	 case dw when 1 then dm end as Su

	 from x

	WK MO TU WE TH FR SA SU

	-- -- -- -- -- -- -- --

	22 01

	22 02

	22 03

	22 04

	22 05

	23 06

	23 07

	23 08

	23 09

	23 10

	23 11

	23 12

As you can see from the partial output, every day in each week is returned as a row. What you want to do now is to group the days by week, and then collapse all the days for each week into a single row. Use the aggregate function MAX, and group by WK (the ISO week) to return all the days for a week as one row. To properly format the [bookmark: idx-CHP-9-0492]calendar and ensure that the days are in the right order, order the results by WK. The final output is shown below:

	

	with x(dy,dm,mth,dw,wk)

	 as (

	select (current_date -day(current_date) day +1 day) dy,

	 day((current_date -day(current_date) day +1 day)) dm,

	 month(current_date) mth,

	 dayofweek(current_date -day(current_date) day +1 day) dw,

	 week_iso(current_date -day(current_date) day +1 day) wk

	 from t1

	 union all

	 select dy+1 day, day(dy+1 day), mth,

	 dayofweek(dy+1 day), week_iso(dy+1 day)

	 from x

	 where month(dy+1 day) = mth

)

	select max(case dw when 2 then dm end) as Mo,

	 max(case dw when 3 then dm end) as Tu,

	 max(case dw when 4 then dm end) as We,

	 max(case dw when 5 then dm end) as Th,

	 max(case dw when 6 then dm end) as Fr,

	 max(case dw when 7 then dm end) as Sa,

	 max(case dw when 1 then dm end) as Su

	 from x

	 group by wk

	 order by wk

	MO TU WE TH FR SA SU

	-- -- -- -- -- -- --

	 01 02 03 04 05

	06 07 08 09 10 11 12

	13 14 15 16 17 18 19

	20 21 22 23 24 25 26

	27 28 29 30

[bookmark: sqlckbk-CHP-9-SECT-7.3.2]

Oracle

Begin by using the recursive [bookmark: idx-CHP-9-0493]CONNECT BY clause to generate a row for each day in the month for which you wish to generate a [bookmark: idx-CHP-9-0494]calendar. If you aren't running at least Oracle9i Database, you can't use CONNECT BY this way. Instead, you can use a pivot table, such as T500 in the MySQL solution.

Along with each day of the month, you will need to return different bits of information for each day: the day of the month (alias DM), the day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week for each day of the month (alias WK). The results of the WITH view X for the first day of the current month are shown below:

	

	select trunc(sysdate,'mm') dy,

	 to_char(trunc(sysdate,'mm'),'dd') dm,

	 to_char(sysdate,'mm') mth,

	 to_number(to_char(trunc(sysdate,'mm'),'d')) dw,

	 to_char(trunc(sysdate,'mm'),'iw') wk

	 from dual

	DY DM MT DW WK

	----------- -- -- ---------- --

	01-JUN-2005 01 06 4 22

The next step is to repeatedly increase the value for DM (move through the days of the month) until you are no longer in the current month. As you move through each day in the month, you will also return the day of the week for each day and the ISO week into which the current day falls. Partial results are shown below (the full date for each day is added below for readability):

	

	with x

	 as (

	select *

	 from (

	select trunc(sysdate,'mm')+level-1 dy,

	 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,

	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,

	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,

	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,

	 to_char(sysdate,'mm') mth

	 from dual

	 connect by level <= 31

)

	 where curr_mth = mth

)

	select *

	 from x

	DY WK DM DW CU MT

	----------- -- -- ---------- -- --

	01-JUN-2005 22 01 4 06 06

	02-JUN-2005 22 02 5 06 06

	…

	21-JUN-2005 25 21 3 06 06

	22-JUN-2005 25 22 4 06 06

	…

	30-JUN-2005 26 30 5 06 06

What you are returning at this point is one row for each day of the current month. In that row you have: the two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the week (17 for SunSat), and the two-digit ISO week number. With all this information available, you can use a CASE expression to determine which day of the week each value of DM (each day of the month) falls into. A portion of the results is shown below:

	

	with x

	 as (

	select *

	 from (

	select trunc(sysdate,'mm')+level-1 dy,

	 to_char(trunc(sysdate,'mm')+level-1,'iw') wk,

	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,

	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,

	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,

	 to_char(sysdate,'mm') mth

	 from dual

	 connect by level <= 31

)

	 where curr_mth = mth

)

	select wk,

	 case dw when 2 then dm end as Mo,

	 case dw when 3 then dm end as Tu,

	 case dw when 4 then dm end as We,

	 case dw when 5 then dm end as Th,

	 case dw when 6 then dm end as Fr,

	 case dw when 7 then dm end as Sa,

	 case dw when 1 then dm end as Su

	 from x

	WK MO TU WE TH FR SA SU

	-- -- -- -- -- -- -- --

	22 01

	22 02

	22 03

	22 04

	22 05

	23 06

	23 07

	23 08

	23 09

	23 10

	23 11

	23 12

As you can see from the partial output, every day in each week is returned as a row, but the day number is in one of seven columns corresponding [bookmark: idx-CHP-9-0495]to the day of the week. Your task now is to consolidate the days into one row for each week. Use the aggregate function MAX and group by WK (the ISO week) to return all the days for a week as one row. To ensure the days are in the right order, order the results by WK. The final output is shown below:

	

	with x

	 as (

	select *

	 from (

	select to_char(trunc(sysdate,'mm')+level-1,'iw') wk,

	 to_char(trunc(sysdate,'mm')+level-1,'dd') dm,

	 to_number(to_char(trunc(sysdate,'mm')+level-1,'d')) dw,

	 to_char(trunc(sysdate,'mm')+level-1,'mm') curr_mth,

	 to_char(sysdate,'mm') mth

	 from dual

	 connect by level <= 31

)

	 where curr_mth = mth

)

	select max(case dw when 2 then dm end) Mo,

	 max(case dw when 3 then dm end) Tu,

	 max(case dw when 4 then dm end) We,

	 max(case dw when 5 then dm end) Th,

	 max(case dw when 6 then dm end) Fr,

	 max(case dw when 7 then dm end) Sa,

	 max(case dw when 1 then dm end) Su

	 from x

	 group by wk

	 order by wk

	MO TU WE TH FR SA SU

	-- -- -- -- -- -- --

	 01 02 03 04 05

	06 07 08 09 10 11 12

	13 14 15 16 17 18 19

	20 21 22 23 24 25 26

	27 28 29 30

[bookmark: sqlckbk-CHP-9-SECT-7.3.3]

PostgreSQL

Use the GENERATE_SERIES function to return one row for each day in the month. If your version of PostgreSQL doesn't support GENERATE_SERIES, then query a pivot table as shown in the MySQL solution.

For each day of the month, return the following information: the day of the month (alias DM), the day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week for each day of the month (alias WK). The formatting and explicit casting makes this solution tough on the eyes, but it's really quite simple. Partial results from inline view X are shown below:

	

	select cast(date_trunc('month',current_date) as date)+x.id as dy,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'iw') as wk,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'dd') as dm,

	 cast(

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'d') as integer) as dw,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'mm') as curr_mth,

	 to_char(current_date,'mm') as mth

	 from generate_series (0,31) x(id)

	DY WK DM DW CU MT

	----------- -- -- ---------- -- --

	01-JUN-2005 22 01 4 06 06

	02-JUN-2005 22 02 5 06 06

	…

	21-JUN-2005 25 21 3 06 06

	22-JUN-2005 25 22 4 06 06

	…

	30-JUN-2005 26 30 5 06 06

Notice that as you move through each day in the month, you will also return the day of the week and the ISO week number. To ensure you return days only for the month you are interested in, return only rows where CURR_MTH = MTH (the month each day belongs to should be the month the current date belongs to). What you are returning at this point is, for each day for the current month: the two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the week (17 for Sun Sat), and the two-digit ISO week. Your next step is to use a CASE expression to determine which day of the week each value of DM (each day of the month) falls into. A portion of the results is shown below:

	

	select case dw when 2 then dm end as Mo,

	 case dw when 3 then dm end as Tu,

	 case dw when 4 then dm end as We,

	 case dw when 5 then dm end as Th,

	 case dw when 6 then dm end as Fr,

	 case dw when 7 then dm end as Sa,

	 case dw when 1 then dm end as Su

	 from (

	select *

	 from (

	select cast(date_trunc('month',current_date) as date)+x.id,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'iw') as wk,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'dd') as dm,

	 cast(

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'d') as integer) as dw,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'mm') as curr_mth,

	 to_char(current_date,'mm') as mth

	 from generate_series (0,31) x(id)

) x

	 where mth = curr_mth

) y

	

	WK MO TU WE TH FR SA SU

	-- -- -- -- -- -- -- --

	22 01

	22 02

	22 03

	22 04

	22 05

	23 06

	23 07

	23 08

	23 09

	23 10

	23 11

	23 12

As you can see from the partial output, every day in each week is returned as a row, and each day number falls into the column corresponding to its day of the week. Your job now is to collapse the days into one row for each week. To that end, use the aggregate function MAX and group the rows by WK (the ISO week). The result will be all the days for each week returned as one row as you would see on a [bookmark: idx-CHP-9-0496]calendar. To ensure the days are in the right order, order the results by WK. The final output is shown below:

	

	select max(case dw when 2 then dm end) as Mo,

	 max(case dw when 3 then dm end) as Tu,

	 max(case dw when 4 then dm end) as We,

	 max(case dw when 5 then dm end) as Th,

	 max(case dw when 6 then dm end) as Fr,

	 max(case dw when 7 then dm end) as Sa,

	 max(case dw when 1 then dm end) as Su

	 from (

	select *

	 from (

	select cast(date_trunc('month',current_date) as date)+x.id,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'iw') as wk,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'dd') as dm,

	 cast(

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'d') as integer) as dw,

	 to_char(

	 cast(

	 date_trunc('month',current_date)

	 as date)+x.id,'mm') as curr_mth,

	 to_char(current_date,'mm') as mth

	 from generate_series (0,31) x(id)

) x

	 where mth = curr_mth

) y

	 group by wk

	 order by wk

	MO TU WE TH FR SA SU

	-- -- -- -- -- -- --

	 01 02 03 04 05

	06 07 08 09 10 11 12

	13 14 15 16 17 18 19

	20 21 22 23 24 25 26

	27 28 29 30

[bookmark: sqlckbk-CHP-9-SECT-7.3.4]

MySQL

The first step is to return a row for each day in the month for which you want to create a [bookmark: idx-CHP-9-0497]calendar. To that end, query against table T500. By adding each value returned by T500 to the first day of the month, you can return each day in the month.

For each date, you will need to return the following bits of information: the day of the month (alias DM), the day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week for each day of the month (alias WK). Inline view X returns the first day of the current month along with the two-digit numeric value for the current month. Results are shown below:

	

	select adddate(current_date,-dayofmonth(current_date)+1) dy,

	 date_format(

	 adddate(current_date,

	 -dayofmonth(current_date)+1),

	 '%m') mth

	 from t1

	DY MT

	----------- --

	01-JUN-2005 06

The next step is to move through the month, starting from the first day and returning each day in the month. Notice that as you move through each day in the month, you will also return the corresponding day of the week and ISO week number. To ensure you return days only for the month you are interested in, return only rows where the month of the day returned is equal to the current month (the month each day belongs to should be the month the current date belongs to). A portion of the rows from inline view Y is shown below:

	

	select date_format(dy,'%u') wk,

	 date_format(dy,'%d') dm,

	 date_format(dy,'%w')+1 dw

	 from (

	select adddate(x.dy,t500.id-1) dy,

	 x.mth

	 from (

	select adddate(current_date,-dayofmonth(current_date)+1) dy,

	 date_format(

	 adddate(current_date,

	 -dayofmonth(current_date)+1),

	 '%m') mth

	 from t1

) x,

	 t500

	 where t500.id <= 31

	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth

) y

	WK DM DW

	-- -- ----------

	22 01 4

	22 02 5

	…

	25 21 3

	25 22 4

	…

	26 30 5

For each day for the current month you now have: the two-digit numeric day of the month (DM), the one-digit day of the week (DW), and the two-digit ISO week number (WK). Using this information, you can write a CASE expression to determine which day of the week each value of DM (each day of the month) falls into. A portion of the results is shown below:

	

	select case dw when 2 then dm end as Mo,

	 case dw when 3 then dm end as Tu,

	 case dw when 4 then dm end as We,

	 case dw when 5 then dm end as Th,

	 case dw when 6 then dm end as Fr,

	 case dw when 7 then dm end as Sa,

	 case dw when 1 then dm end as Su

	 from (

	select date_format(dy,'%u') wk,

	 date_format(dy,'%d') dm,

	 date_format(dy,'%w')+1 dw

	 from (

	select adddate(x.dy,t500.id-1) dy,

	 x.mth

	 from (

	select adddate(current_date,-dayofmonth(current_date)+1) dy,

	 date_format(

	 adddate(current_date,

	 -dayofmonth(current_date)+1),

	 '%m') mth

	 from t1

) x,

	 t500

	 where t500.id <= 31

	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth

) y

) z

	WK MO TU WE TH FR SA SU

	-- -- -- -- -- -- -- --

	22 01

	22 02

	22 03

	22 04

	22 05

	23 06

	23 07

	23 08

	23 09

	23 10

	23 11

	23 12

As you can see from the partial output, every day in each week is returned as a row. Within each row, the day number falls into the column corresponding to the appropriate weekday. Now you need to consolidate the days into one row for each week. To do that, use the aggregate function MAX, and group the rows by WK (the ISO week). To ensure the days are in the right order, order the results by WK. The final output is shown below:

	

	select max(case dw when 2 then dm end) as Mo,

	 max(case dw when 3 then dm end) as Tu,

	 max(case dw when 4 then dm end) as We,

	 max(case dw when 5 then dm end) as Th,

	 max(case dw when 6 then dm end) as Fr,

	 max(case dw when 7 then dm end) as Sa,

	 max(case dw when 1 then dm end) as Su

	 from (

	select date_format(dy,'%u') wk,

	 date_format(dy,'%d') dm,

	 date_format(dy,'%w')+1 dw

	 from (

	select adddate(x.dy,t500.id-1) dy,

	 x.mth

	 from (

	select adddate(current_date,-dayofmonth(current_date)+1) dy,

	 date_format(

	 adddate(current_date,

	 -dayofmonth(current_date)+1),

	 '%m') mth

	 from t1

) x,

	 t500

	 where t500.id <= 31

	 and date_format(adddate(x.dy,t500.id-1),'%m') = x.mth

) y

) z

	 group by wk

	 order by wk

	MO TU WE TH FR SA SU

	-- -- -- -- -- -- --

	 01 02 03 04 05

	06 07 08 09 10 11 12

	13 14 15 16 17 18 19

	20 21 22 23 24 25 26

	27 28 29 30

[bookmark: sqlckbk-CHP-9-SECT-7.3.5]

SQL Server

Begin by returning one row for each day of the month. You can do that using the recursive WITH clause. Or, if your version of SQL Server doesn't support recursive WITH, you can use a pivot table in the same manner as the MySQL solution. For each row that you return, you will need the following items: the day of the month (alias DM), the day of the week (alias DW), the current month you are working with (alias MTH), and the ISO week for each day of the month (alias WK). The results of the recursive view X prior to recursion taking place (the upper portion of the UNION ALL) are shown below:

	

	select dy,

	 day(dy) dm,

	 datepart(m,dy) mth,

	 datepart(dw,dy) dw,

	 case when datepart(dw,dy) = 1

	 then datepart(ww,dy)-1

	 else datepart(ww,dy)

	 end wk

	 from (

	select dateadd(day,-day(getdate())+1,getdate()) dy

	 from t1

) x

	DY DM MTH DW WK

	----------- -- --- ---------- --

	01-JUN-2005 1 6 4 23

Your next step is to repeatedly increase the value for DM (move through the days of the month) until you are no longer in the current month. As you move through each day in the month, you will also return the day of the week and the ISO week number. Partial results are shown below:

	

	 with x(dy,dm,mth,dw,wk)

	 as (

	select dy,

	 day(dy) dm,

	 datepart(m,dy) mth,

	 datepart(dw,dy) dw,

	 case when datepart(dw,dy) = 1

	 then datepart(ww,dy)-1

	 else datepart(ww,dy)

	 end wk

	 from (

	select dateadd(day,-day(getdate())+1,getdate()) dy

	 from t1

) x

	 union all

	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,

	 datepart(dw,dateadd(d,1,dy)),

	 case when datepart(dw,dateadd(d,1,dy)) = 1

	 then datepart(wk,dateadd(d,1,dy))-1

	 else datepart(wk,dateadd(d,1,dy))

	 end

	 from x

	 where datepart(m,dateadd(d,1,dy)) = mth

)

	select *

	 from x

	DY DM MTH DW WK

	----------- -- --- ---------- --

	01-JUN-2005 01 06 4 23

	02-JUN-2005 02 06 5 23

	…

	21-JUN-2005 21 06 3 26

	22-JUN-2005 22 06 4 26

	…

	30-JUN-2005 30 06 5 27

You now have, for each day in the current month: the two-digit numeric day of the month, the two-digit numeric month, the one-digit day of the week (17 for Sun Sat), and the two-digit ISO week number.

Now, use a CASE expression to determine which day of the week each value of DM (each day of the month) falls into. A portion of the results is shown below:

	

	 with x(dy,dm,mth,dw,wk)

	 as (

	select dy,

	 day(dy) dm,

	 datepart(m,dy) mth,

	 datepart(dw,dy) dw,

	 case when datepart(dw,dy) = 1

	 then datepart(ww,dy)-1

	 else datepart(ww,dy)

	 end wk

	 from (

	select dateadd(day,-day(getdate())+1,getdate()) dy

	 from t1

) x

	 union all

	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,

	 datepart(dw,dateadd(d,1,dy)),

	 case when datepart(dw,dateadd(d,1,dy)) = 1

	 then datepart(wk,dateadd(d,1,dy))-1

	 else datepart(wk,dateadd(d,1,dy))

	 end

	 from x

	 where datepart(m,dateadd(d,1,dy)) = mth

)

	select case dw when 2 then dm end as Mo,

	 case dw when 3 then dm end as Tu,

	 case dw when 4 then dm end as We,

	 case dw when 5 then dm end as Th,

	 case dw when 6 then dm end as Fr,

	 case dw when 7 then dm end as Sa,

	 case dw when 1 then dm end as Su

	 from x

	WK MO TU WE TH FR SA SU

	-- -- -- -- -- -- -- --

	22 01

	22 02

	22 03

	22 04

	22 05

	23 06

	23 07

	23 08

	23 09

	23 10

	23 11

	23 12

Every day in each week is returned as a separate row. In each row, the column containing the day number corresponds to the day of the week. You now need to consolidate the days for each week into one row. Do that by grouping the rows by WK (the ISO week) and applying the MAX function to the different columns. The results will be in [bookmark: idx-CHP-9-0498]calendar format as shown below:

	

	with x(dy,dm,mth,dw,wk)

	 as (

	select dy,

	 day(dy) dm,

	 datepart(m,dy) mth,

	 datepart(dw,dy) dw,

	 case when datepart(dw,dy) = 1

	 then datepart(ww,dy)-1

	 else datepart(ww,dy)

	 end wk

	 from (

	select dateadd(day,-day(getdate())+1,getdate()) dy

	 from t1

) x

	 union all

	 select dateadd(d,1,dy), day(dateadd(d,1,dy)), mth,

	 datepart(dw,dateadd(d,1,dy)),

	 case when datepart(dw,dateadd(d,1,dy)) = 1

	 then datepart(wk,dateadd(d,1,dy))-1

	 else datepart(wk,dateadd(d,1,dy))

	 end

	 from x

	 where datepart(m,dateadd(d,1,dy)) = mth

)

	select max(case dw when 2 then dm end) as Mo,

	 max(case dw when 3 then dm end) as Tu,

	 max(case dw when 4 then dm end) as We,

	 max(case dw when 5 then dm end) as Th,

	 max(case dw when 6 then dm end) as Fr,

	 max(case dw when 7 then dm end) as Sa,

	 max(case dw when 1 then dm end) as Su

	 from x

	 group by wk

	 order by wk

	MO TU WE TH FR SA SU

	-- -- -- -- -- -- --

	 01 02 03 04 05

	06 07 08 09 10 11 12

	13 14 15 16 17 18 19

	20 21 22 23 24 25 26

	27 28 29 30

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-8]

Recipe 9.8. Listing Quarter Start and End Dates for the Year

[bookmark: idx-CHP-9-0499]

[bookmark: sqlckbk-CHP-9-SECT-8.1]

Problem

You want to return the start and end dates for each of the four quarters of a given year.

[bookmark: sqlckbk-CHP-9-SECT-8.2]

Solution

There are four [bookmark: idx-CHP-9-0500]quarters to a year, so you know you will need to generate four rows. After generating the desired number of rows, simply use the date functions supplied by your RDBMS to return the quarter the start and end dates fall into. Your goal is to produce the following result set (one again, the choice to use the current year is arbitrary):

	QTR Q_START Q_END

	--- ----------- -----------

	 1 01-JAN-2005 31-MAR-2005

	 2 01-APR-2005 30-JUN-2005

	 3 01-JUL-2005 30-SEP-2005

	 4 01-OCT-2005 31-DEC-2005

[bookmark: sqlckbk-CHP-9-SECT-8.2.1]

DB2

Use table EMP and the window function ROW_NUMBER OVER to generate four rows. Alternatively, you can use the WITH clause to generate rows (as many of the recipes do), or you can query against any table with at least four rows. The following solution [bookmark: idx-CHP-9-0501]uses the ROW_NUMBER OVER approach:

	 1 select quarter(dy-1 day) QTR,

	 2 dy-3 month Q_start,

	 3 dy-1 day Q_end

	 4 from (

	 5 select (current_date -

	 6 (dayofyear(current_date)-1) day

	 7 + (rn*3) month) dy

	 8 from (

	 9 select row_number()over() rn

	10 from emp

	11 fetch first 4 rows only

	12) x

	13) y

[bookmark: sqlckbk-CHP-9-SECT-8.2.2]

Oracle

Use the function [bookmark: idx-CHP-9-0502]ADD_MONTHS to find the start and end dates for each quarter. Use ROWNUM to represent the quarter the start and end dates belong to. The following solution uses table EMP to generate four rows.

	1 select rownum qtr,

	2 add_months(trunc(sysdate,'y'),(rownum-1)*3) q_start,

	3 add_months(trunc(sysdate,'y'),rownum*3)-1 q_end

	4 from emp

	5 where rownum <= 4

[bookmark: sqlckbk-CHP-9-SECT-8.2.3]

PostgreSQL

Use the function GENERATE_SERIES to generate the required four quarters. Use the DATE_TRUNC function to truncate the dates generated for each quarter down to year and month. Use the TO_CHAR function to determine which [bookmark: idx-CHP-9-0503]quarter the start and end dates belong to:

	 1 select to_char(dy,'Q') as QTR,

	 2 date(

	 3 date_trunc('month',dy)-(2*interval '1 month')

	 4) as Q_start,

	 5 dy as Q_end

	 6 from (

	 7 select date(dy+((rn*3) * interval '1 month'))-1 as dy

	 8 from (

	 9 select rn, date(date_trunc('year',current_date)) as dy

	10 from generate_series(1,4) gs(rn)

	11) x

	12) y

[bookmark: sqlckbk-CHP-9-SECT-8.2.4]

MySQL

Use table T500 to generate four rows (one for each quarter). Use functions DATE_ ADD and [bookmark: idx-CHP-9-0504]ADDDATE to create the start and end dates for each quarter. Use the [bookmark: idx-CHP-9-0505]QUARTER function to determine which quarter the start and end dates belong to:

	 1 select quarter(adddate(dy,-1)) QTR,

	 2 [bookmark: idx-CHP-9-0506]date_add(dy,interval -3 month) Q_start,

	 3 adddate(dy,-1) Q_end

	 4 from (

	 5 select date_add(dy,interval (3*id) month) dy

	 6 from (

	 7 select id,

	 8 adddate(current_date,-dayofyear(current_date)+1) dy

	 9 from t500

	10 where id <= 4

	11) x

	12) y

[bookmark: sqlckbk-CHP-9-SECT-8.2.5]

SQL Server

Use the recursive WITH clause to generate four rows. Use the function DATEADD to find the start and end dates. Use the function [bookmark: idx-CHP-9-0507]DATEPART to determine which quarter the start and end dates belong to:

	 1 with x (dy,cnt)

	 2 as (

	 3 select dateadd(d,-(datepart(dy,getdate())-1),getdate()),

	 4 1

	 5 from t1

	 6 union all

	 7 select dateadd(m,3,dy), cnt+1

	 8 from x

	 9 where cnt+1 <= 4

	10)

	11 select datepart(q,dateadd(d,-1,dy)) QTR,

	1 dateadd(m,-3,dy) Q_start,

	13 dateadd(d,-1,dy) Q_end

	14 from x

	15 order by 1

[bookmark: sqlckbk-CHP-9-SECT-8.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-8.3.1]

DB2

The first step is to generate four rows (with values 1 through 4) for each [bookmark: idx-CHP-9-0508]quarter in the year. Inline view X uses the window function ROW_NUMBER OVER and the FETCH FIRST clause to return only four rows from EMP. The results are shown below:

	

	select row_number()over() rn

	 from emp

	 fetch first 4 rows only

	RN

	--

	 1

	 2

	 3

	 4

The next step is to find the first day of the year, then add n months to it, where n is three times RN (you are adding 3, 6, 9, and 12 months to the first day of the year). The results are shown below:

	

	select (current_date

	 (dayofyear(current_date)-1) day

	 + (rn*3) month) dy

	 from (

	select row_number()over() rn

	 from emp

	 fetch first 4 rows only

) x

	DY

	01-APR-2005

	01-JUL-2005

	01-OCT-2005

	01-JAN-2005

At this point, the values for DY are one day after the end date for each quarter. The next step is to get the start and end dates for each quarter. Subtract one day from DY to get the end of each quarter, and subtract three months from DY to get the start of each quarter. Use the [bookmark: idx-CHP-9-0509]QUARTER function on DY-1 (the end date for each quarter) to determine which quarter the start and end dates belong to.

[bookmark: sqlckbk-CHP-9-SECT-8.3.2]

Oracle

The combination of [bookmark: idx-CHP-9-0510]ROWNUM, [bookmark: idx-CHP-9-0511]TRUNC, and ADD_MONTHS makes this solution very easy. To find the start of each quarter simply add n months to the first day of the year, where n is (ROWNUM-1)*3 (giving you 0,3,6,9). To find the end of each [bookmark: idx-CHP-9-0512]quarter add n months to the first day of the year, where n is ROWNUM*3, and subtract one day. As an aside, when working with quarters, you may also find it useful to use TO_CHAR and/or TRUNC with the 'q' formatting option.

[bookmark: sqlckbk-CHP-9-SECT-8.3.3]

PostgreSQL

The first step is to truncate the current date to the first day of the year using the DATE_TRUNC function. Next, add n months, where n is RN (the values returned by GENERATE_SERIES) times three, and subtract one day. The results are shown below:

	

	select date(dy+((rn*3) * interval '1 month'))-1 as dy

	 from (

	select rn, date(date_trunc('year',current_date)) as dy

	 from generate_series(1,4) gs(rn)

) x

	DY

	31-MAR-2005

	30-JUN-2005

	30-SEP-2005

	31-DEC-2005

Now that you have the end dates for each quarter, the final step is to find the start date by subtracting two months from DY then truncating to the first day of the month by using the DATE_TRUNC function. Use the TO_CHAR function on the end date for each quarter (DY) to determine which quarter the start and end dates belong to.

[bookmark: sqlckbk-CHP-9-SECT-8.3.4]

MySQL

The first step is to find the first day of the year by using functions ADDDATE and DAYOFYEAR, then adding n months to the first day of the year, where n is T500.ID times three, by using the [bookmark: idx-CHP-9-0513]DATE_ADD function. The results are shown below:

	

	select date_add(dy,interval (3*id) month) dy

	 from (

	select id,

	 adddate(current_date,-dayofyear(current_date)+1) dy

	 from t500

	 where id <= 4

) x

 	DY

	01-APR-2005

	01-JUL-2005

	01-OCT-2005

	01-JAN-2005

At this point the dates are one day after the end of each [bookmark: idx-CHP-9-0514]quarter; to find the end of each quarter, simply subtract one day from DY. The next step is to find the start of each quarter by subtracting three months from DY. Use the [bookmark: idx-CHP-9-0515]QUARTER function on the end date of each quarter to determine which quarter the start and end dates belong to.

[bookmark: sqlckbk-CHP-9-SECT-8.3.5]

SQL Server

The first step is to find the first day of the year, then recursively add n months, where n is three times the current iteration (there are four iterations, therefore, you are adding 3*1 months, 3*2 months, etc.), using the DATEADD function. The results are shown below:

	

	with x (dy,cnt)

	 as (

	select dateadd(d,-(datepart(dy,getdate())-1),getdate()),

	 1

	 from t1

	 union all

	select dateadd(m,3,dy), cnt+1

	 from x

	 where cnt+1 <= 4

)

	select dy

	 from x

	DY

	01-APR-2005

	01-JUL-2005

	01-OCT-2005

	01-JAN-2005

The values for DY are one day after the end of each quarter. To get the end of each quarter, simply subtract one day from DY by using the DATEADD function. To find the start of each quarter, use the DATEADD function to subtract three months from DY. Use the [bookmark: idx-CHP-9-0516]DATEPART function on the end date for each quarter to determine which quarter the start and end dates belong to.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9-SECT-9]

Recipe 9.9. Determining Quarter Start and End Dates for a Given Quarter

[bookmark: sqlckbk-CHP-9-SECT-9.1]

Problem

When given a year and quarter in the format of YYYYQ (four-digit year, one-digit quarter), you want to return the quarter's start and end dates.

[bookmark: sqlckbk-CHP-9-SECT-9.2]

Solution

The key to this solution is to find the [bookmark: idx-CHP-9-0517]quarter by using the modulus function on the YYYYQ value. (As an alternative to modulo, since the year format is four digits, you can simply substring out the last digit to get the quarter.) Once you have the quarter, simply multiply by 3 to get the ending month for the quarter. In the solutions that follow, inline view X will return all four year and quarter combinations. The result set for inline view X is as follows:

	

	select 20051 as yrq from t1 union all

	select 20052 as yrq from t1 union all

	select 20053 as yrq from t1 union all

	select 20054 as yrq from t1

	 YRQ

	 20051

	 20052

	 20053

	 20054

[bookmark: sqlckbk-CHP-9-SECT-9.2.1]

DB2

Use the function SUBSTR to return the year from inline view X. Use the MOD function to determine which quarter you are looking for:

	 1 select (q_end-2 month) q_start,

	 2 (q_end+1 month)-1 day q_end

	 3 from (

	 4 select date(substr(cast(yrq as char(4)),1,4) ||'-'||

	 5 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end

	 6 from (

	 7 select 20051 yrq from t1 union all

	 8 select 20052 yrq from t1 union all

	 9 select 20053 yrq from t1 union all

	10 select 20054 yrq from t1

	11) x

	12) y

[bookmark: sqlckbk-CHP-9-SECT-9.2.2]

Oracle

Use the function SUBSTR to return the year from inline view X. Use the MOD function to determine which quarter you are looking for:

	 1 select add_months(q_end,-2) q_start,

	 2 last_day(q_end) q_end

	 3 from (

	 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end

	 5 from (

	 6 select 20051 yrq from dual union all

	 7 select 20052 yrq from dual union all

	 8 select 20053 yrq from dual union all

	 9 select 20054 yrq from dual

	10) x

	11) y

[bookmark: sqlckbk-CHP-9-SECT-9.2.3]

PostgreSQL

Use the function SUBSTR to return the year from the inline view X. Use the MOD function to determine which [bookmark: idx-CHP-9-0518]quarter you are looking for:

	 1 select date(q_end-(2*interval '1 month')) as q_start,

	 2 date(q_end+interval '1 month'-interval '1 day') as q_end

	 3 from (

	 4 select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') as q_end

	 5 from (

	 6 select 20051 as yrq from t1 union all

	 7 select 20052 as yrq from t1 union all

	 8 select 20053 as yrq from t1 union all

	 9 select 20054 as yrq from t1

	10) x

	11) y

[bookmark: sqlckbk-CHP-9-SECT-9.2.4]

MySQL

Use the function SUBSTR to return the year from the inline view X. Use the MOD function to determine which quarter you are looking for:

	 1 select date_add(

	 2 adddate(q_end,-day(q_end)+1),

	 3 interval -2 month) q_start,

	 4 q_end

	 5 from (

	 6 select last_day(

	 7 str_to_date(

	 8 concat(

	 9 substr(yrq,1,4),mod(yrq,10)*3),'[bookmark: idx-CHP-9-0519]%Y%m')) q_end

	10 from (

	11 select 20051 as yrq from t1 union all

	12 select 20052 as yrq from t1 union all

	13 select 20053 as yrq from t1 union all

	14 select 20054 as yrq from t1

	15) x

	16) y

[bookmark: sqlckbk-CHP-9-SECT-9.2.5]

SQL Server

Use the function [bookmark: idx-CHP-9-0520]SUBSTRING to return the year from the inline view X. Use the [bookmark: idx-CHP-9-0521]modulus function (%) to determine which quarter you are looking for:

	 1 select dateadd(m,-2,q_end) q_start,

	 2 dateadd(d,-1,dateadd(m,1,q_end)) q_end

	 3 from (

	 4 select cast(substring(cast(yrq as varchar),1,4)+'-'+

	 5 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end

	 6 from (

	 7 select 20051 as yrq from t1 union all

	 8 select 20052 as yrq from t1 union all

	 9 select 20052 as yrq from t1 union all

	10 select 20054 as yrq from t1

	11) x

	12) y

[bookmark: sqlckbk-CHP-9-SECT-9.3]

Discussion

[bookmark: sqlckbk-CHP-9-SECT-9.3.1]

DB2

The first step is to find the year and [bookmark: idx-CHP-9-0522]quarter you are working with. Substring out the year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

	

	select substr(cast(yrq as char(4)),1,4) yr,

	 mod(yrq,10)*3 mth

	 from (

	select 20051 yrq from t1 union all

	select 20052 yrq from t1 union all

	select 20053 yrq from t1 union all

	select 20054 yrq from t1

) x

	YR MTH

	---- ------

	2005 3

	2005 6

	2005 9

	2005 12

At this point you have the year and end month for each quarter. Use those values to construct a date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||" to glue together the year and month, then use the [bookmark: idx-CHP-9-0523]DATE function to convert to a date:

	

	select date(substr(cast(yrq as char(4)),1,4) ||'-'||

	 rtrim(cast(mod(yrq,10)*3 as char(2))) ||'-1') q_end

	 from (

	select 20051 yrq from t1 union all

	select 20052 yrq from t1 union all

	select 20053 yrq from t1 union all

	select 20054 yrq from t1

) x

	Q_END

	01-MAR-2005

	01-JUN-2005

	01-SEP-2005

	01-DEC-2005

The values for Q_END are the first day of the last month of each [bookmark: idx-CHP-9-0524]quarter. To get to the last day of the month add one month to Q_END, then subtract one day. To find the start date for each quarter subtract two months from Q_END.

[bookmark: sqlckbk-CHP-9-SECT-9.3.2]

Oracle

The first step is to find the year and quarter you are working with. Substring out the year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

	

	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	YR MTH

	---- ------

	2005 3

	2005 6

	2005 9

	2005 12

At this point you have the year and end month for each quarter. Use those values to construct a date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||" to glue together the year and month, then use the [bookmark: idx-CHP-9-0525]TO_DATE function to convert to a date:

	

	select to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	Q_END

	01-MAR-2005

	01-JUN-2005

	01-SEP-2005

	01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the month use the LAST_DAY function on Q_END. To find the start date for each quarter subtract two months from Q_END using the ADD_MONTHS function.

[bookmark: sqlckbk-CHP-9-SECT-9.3.3]

PostgreSQL

The first step is to find the year and [bookmark: idx-CHP-9-0526]quarter you are working with. Substring out the year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use modulus 10 on YRQ. Once you have the quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

	

	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	YR MTH

	---- -------

	2005 3

	2005 6

	2005 9

	2005 12

At this point you have the year and end month for each quarter. Use those values to construct a date, specifically, the first day of the last month for each quarter. Use the concatenation operator "||" to glue together the year and month, then use the TO_ DATE function to convert to a date:

	

	select [bookmark: idx-CHP-9-0527]to_date(substr(yrq,1,4)||mod(yrq,10)*3,'yyyymm') q_end

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	Q_END

	01-MAR-2005

	01-JUN-2005

	01-SEP-2005

	01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the month add one month to Q_END and subtract one day. To find the start date for each quarter subtract two months from Q_END. Cast the final result as dates.

[bookmark: sqlckbk-CHP-9-SECT-9.3.4]

MySQL

The first step is to find the year and quarter you are working with. Substring out the year from inline view X (X.YRQ) using the SUBSTR function. To get the quarter, use [bookmark: idx-CHP-9-0528]modulus 10 on YRQ. Once you have the [bookmark: idx-CHP-9-0529]quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

	

	select substr(yrq,1,4) yr, mod(yrq,10)*3 mth

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	YR MTH

	---- ------

	2005 3

	2005 6

	2005 9

	2005 12

At this point you have the year and end month for each quarter. Use those values to construct a date, specifically, the last day of each quarter. Use the [bookmark: idx-CHP-9-0530]CONCAT function to glue together the year and month, then use the [bookmark: idx-CHP-9-0531]STR_TO_DATE function to convert to a date. Use the LAST_[bookmark: idx-CHP-9-0532]DAY function to find the last day for each quarter:

	

	select last_day(

	 str_to_date(

	 concat(

	 substr(yrq,1,4),mod(yrq,10)*3),'[bookmark: idx-CHP-9-0533]%Y%m')) q_end

	 from (

	select 20051 as yrq from t1 union all

	select 20052 as yrq from t1 union all

	select 20053 as yrq from t1 union all

	select 20054 as yrq from t1

) x

	Q_END

	31-MAR-2005

	30-JUN-2005

	30-SEP-2005

	31-DEC-2005

Because you already have the end of each quarter, all that's left is to find the start date for each quarter. Use the DAY function to return the day of the month the end of each quarter falls on, and subtract that from Q_END using the [bookmark: idx-CHP-9-0534]ADDDATE function to give you the end of the prior month; add one day to bring you to the first day of the last month of each quarter. The last step is to use the DATE_ADD function to subtract two months from the first day of the last month of each quarter to get you to the start date for each quarter.

[bookmark: sqlckbk-CHP-9-SECT-9.3.5]

SQL Server

The first step is to find the year and quarter you are working with. Substring out the year from inline view X (X.YRQ) using the [bookmark: idx-CHP-9-0535]SUBSTRING function. To get the quarter, use modulus 10 on YRQ. Once you have the [bookmark: idx-CHP-9-0536]quarter, multiply by 3 to get the end month for the quarter. The results are shown below:

	

	select substring(yrq,1,4) yr, yrq%10*3 mth

	 from (

	select 20051 yrq from dual union all

	select 20052 yrq from dual union all

	select 20053 yrq from dual union all

	select 20054 yrq from dual

) x

	YR MTH

	---- ------

	2005 3

	2005 6

	2005 9

	2005 12

At this point, you have the year and end month for each quarter. Use those values to construct a date, specifically, the first day of the last month for each quarter. Use the concatenation operator "+" to glue together the year and month, then use the [bookmark: idx-CHP-9-0537]CAST function to convert to a date:

	

	select cast(substring(cast(yrq as varchar),1,4)+'-'+

	 cast(yrq%10*3 as varchar)+'-1' as datetime) q_end

	 from (

	select 20051 yrq from t1 union all

	select 20052 yrq from t1 union all

	select 20053 yrq from t1 union all

	select 20054 yrq from t1

) x

	Q_END

	01-MAR-2005

	01-JUN-2005

	01-SEP-2005

	01-DEC-2005

The values for Q_END are the first day of the last month of each quarter. To get to the last day of the month add one month to Q_END and subtract one day using the DATEADD function. To find the start date for each quarter subtract two months from Q_END using the DATEADD function.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-CHP-9]

Chapter 9. Date Manipulation

[bookmark: idx-CHP-9-0421]

This chapter introduces recipes for searching and modifying dates. Queries involving dates are very common. Thus, you need to know how to think when working with dates, and you need to have a good understanding of the functions that your RDBMS platform provides for manipulating them. The recipes in this chapter form an important foundation for future work as you move on to more complex queries involving not only dates, but times too.

Before getting into the recipes, I want to reinforce the concept (that I mentioned in the Preface) of using these solutions as guidelines to solving your specific problems. Try to think "big picture." For example, if a recipe solves a problem for the current month, keep in mind that you may be able to use the recipe for any month (with minor modifications), not just the month used in the recipe. Again, I want you to use these recipes as guidelines, not as the absolute final option. There's no possible way a book can contain an answer for all your problems, but if you understand what is presented here, modifying these solutions to fit your needs is trivial. I also urge you to consider alternative versions of the solutions I've provided. For instance, if I solve a problem using one particular function provided by your RDBMS, it is worth the time and effort to find out if there is an alternativemaybe one that is more or less efficient than what is presented here. Knowing what options you have will make you a better SQL programmer.

						[image:]			

The recipes presented in this chapter use simple date data types. If you are using more complex date data types you will need to adjust the solutions accordingly.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-1]

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

[bookmark: sqlckbk-PREF-1-TABLE-1]

			Editor:

			Jonathan Gennick

			Production Editor:

			Darren Kelly

			Production Services:

			nSight, Inc.

			Cover Designer:

			Karen Montgomery

			Interior Designer:

			David Futato

			Printing History:

			

			December 2005:

			First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The Cookbook series designations, SQL Cookbook, the image of an Agamid lizard, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-00976-3

[M]

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			

About the Author

Anthony Molinaro is a database developer at Wireless Generation, Inc. with many years of experience in helping developers improve their SQL queries. SQL is a particular passion of Anthony's, and he's become known as the go-to guy among his clients when it comes to solving difficult SQL query problems. He's well-read, understands relational theory well, and has nine years of hands-on experience solving tough SQL problems. Anthony is particularly well-acquainted with new and powerful SQL features such as the windowing function syntax that was added to the most recent SQL standard.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-1]

Why I Wrote This Book

Queries, queries, queries. My goal from the beginning of this project has not been so much to write a "SQL Cookbook" as to write a "Query Cookbook." I've aimed to create a book comprised of queries ranging from the relatively easy to the relatively difficult in hopes the reader will grasp the techniques behind those queries and use them to solve his own particular business problems. I hope to pass on many of the SQL programming techniques I've used in my career so that you, the reader, will take them, learn from them, and eventually improve upon them; through this cycle we all benefit. Being able to retrieve data from a database seems so simple, yet in the world of Information Technology (IT) it's crucial that the operation of data retrieval be done as efficiently as possible. Techniques for efficient data retrieval should be shared so that we can all be efficient and help each other improve.

Consider for a moment the outstanding contribution to mathematics by Georg Cantor, who was the first to realize the vast benefit of studying sets of elements (studying the set itself rather than its constituents). At first, Cantor's work wasn't accepted by many of his peers. In time, though, it was not only accepted, but set theory is now considered the foundation of mathematics! More importantly, however, it was not through Cantor's work alone that set theory became what it is today; rather, by sharing his ideas, others such as Ernst Zermelo, Gottlob Frege, Abraham Fraenkel, Thoralf Skolem, Kurt Gödel, and John von Neumann developed and improved the theory. Such sharing not only provided everyone with a better understanding of the theory, it made for a better set theory than was first conceived.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-10]

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You do not need to contact O'Reilly for permission unless you're reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: SQL Cookbook, by Anthony Molinaro. Copyright 2006 O'Reilly Media, Inc., 0-596-00976-3.

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-11]

Comments and Questions

We have tested and verified the information in this book to the best of our ability, but you may find that features have changed or that we have made mistakes. If so, please notify us by writing to:

			O'Reilly Media, Inc.

			1005 Gravenstein Highway North

			Sebastopol, CA 95472

			(800) 998-9938 (in the United States or Canada)

			(707) 829-0515 (international or local)

			(707) 829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send email to:

			

info@oreilly.com

To ask technical questions or comment on the book, or to suggest additional recipes for future editions, send email to:

			

bookquestions@oreilly.com

We have a web site for this book where you can find examples and errata (previously reported errors and corrections are available for public view there). You can access this page at:

			

http://www.oreilly.com/catalog/sqlckbk

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-12]

Safari® Enabled

[image:]When you see a Safari® Enabled icon on the cover of your favorite technology book, it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top technology books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-13]

Acknowledgments

This book would not exist without all the support I've received from a great many people. I would like to thank my mother, Connie, to whom this book is dedicated. Without your hard work and sacrifice I would not be where I am today. Thank you for everything, Mom. I am thankful and appreciative of everything you've done for my brother and me. I have been blessed to have you as my mother.

To my brother, Joe: every time I came home from Baltimore to take a break from writing, you were there to remind me how great things are when we're not working, and how I should finish writing so I can get back to the more important things in life. You're a good man and I respect you. I am extremely proud of you, and proud to call you my brother.

To my wonderful fiancee, Georgia: Without your support I would not have made it through all 600-plus pages of this book. You were here sharing this experience with me, day after day. I know it was just as hard on you as it was on me. I spent all day working and all night writing, but you were great through it all. You were understanding and supportive and I am forever grateful. Thank you. I love you.

To my future in-laws: to my mother-in-law and father-in-law, Kiki and George. Thank you for your support throughout this whole experience. You always made me feel at home whenever I took a break and came to visit, and you made sure Georgia and I were always well fed. To my sister-in-laws, Anna and Kathy, it was always fun coming home and hanging out with you guys, giving Georgia and I a much needed break from the book and from Baltimore.

To my editor Jonathan Gennick, without whom this book would not exist. Jonathan, you deserve a tremendous amount of credit for this book. You went above and beyond what an editor would normally do and for that you deserve much thanks. From supplying recipes, to tons of rewrites, to keeping things humorous despite oncoming deadlines, I could not have done it without you. I am grateful to have had you as my editor and grateful for the opportunity you have given me. An experienced DBA and author yourself, it was a pleasure to work with someone of your technical level and expertise. I can't imagine there are too many editors out there that can, if they decided to, stop editing and work practically anywhere as a database administrator (DBA); Jonathan can. Being a DBA certainly gives you an edge as an editor as you usually know what I want to say even when I'm having trouble expressing it. O'Reilly is lucky to have you on staff and I am lucky to have you as an editor.

I would like to thank Ales Spetic and Jonathan Gennick for Transact-SQL Cookbook. Isaac Newton famously said, "If I have seen a little further it is by standing on the shoulders of giants." In the acknowledgments section of the Transact-SQL Cookbook, Ales Spetic wrote something that is a testament to this famous quote and I feel should be in every SQL book. I include it here:

I hope that this book will complement the exiting opuses of outstanding authors like Joe Celko, David Rozenshtein, Anatoly Abramovich, Eugine Berger, Iztik Ben-Gan, Richard Snodgrass, and others. I spent many nights studying their work, and I learned almost everything I know from their books. As I am writing these lines, I'm aware that for every night I spent discovering their secrets, they must have spent 10 nights putting their knowledge into a consistent and readable form. It is an honor to be able to give something back to the SQL community.

I would like to thank Sanjay Mishra for his excellent Mastering Oracle SQL book, and also for putting me in touch with Jonathan. If not for Sanjay, I may have never been in touch with Jonathan and never would have written this book. Amazing how a simple email can change your life. I would like to thank David Rozenshtein, especially, for his Essence of SQL book, which provided me with a solid understanding of how to think and problem solve in sets/SQL. I would like to thank David Rozenshtein, Anatoly Abramovich, and Eugene Birger for their book Optimizing Transact-SQL, from which I learned many of the advanced SQL techniques I use today.

I would like to thank the whole team at Wireless Generation, a great company with great people. A big thank you to all of the people who took the time to review, critique, or offer advice to help me complete this book: Jesse Davis, Joel Patterson, Philip Zee, Kevin Marshall, Doug Daniels, Otis Gospodnetic, Ken Gunn, John Stewart, Jim Abramson, Adam Mayer, Susan Lau, Alexis Le-Quoc, and Paul Feuer. I would like to thank Maggie Ho for her careful review of my work and extremely useful feedback regarding the window function refresher. I would like to thank Chuck Van Buren and Gillian Gutenberg for their great advice about running. Early morning workouts helped me clear my mind and unwind. I don't think I would have been able to finish this book without getting out a bit. I would like to thank Steve Kang and Chad Levinson for putting up with all my incessant talk about different SQL techniques on the nights when all they wanted was to head to Union Square to get a beer and a burger at Heartland Brewery after a long day of work. I would like to thank Aaron Boyd for all his support, kind words, and, most importantly, good advice. Aaron is honest, hardworking, and a very straightforward guy; people like him make a company better. I would like to thank Olivier Pomel for his support and help in writing this book, in particular for the DB2 solution for creating delimited lists from rows. Olivier contributed that solution without even having a DB2 system to test it with! I explained to him how the WITH clause worked, and minutes later he came up with the solution you see in this book.

Jonah Harris and David Rozenshtein also provided helpful technical review feedback on the manuscript. And Arun Marathe, Nuno Pinto do Souto, and Andrew Odewahn weighed in on the outline and choice of recipes while this book was in its formative stages. Thanks, very much, to all of you.

I want to thank John Haydu and the MODEL clause development team at Oracle Corporation for taking the time to review the MODEL clause article I wrote for O'Reilly, and for ultimately giving me a better understanding of how that clause works. I would like to thank Tom Kyte of Oracle Corporation for allowing me to adapt his TO_BASE function into a SQL-only solution. Bruno Denuit of Microsoft answered questions I had regarding the functionality of the window functions introduced in SQL Server 2005. Simon Riggs of PostgreSQL kept me up to date about new SQL features in PostgreSQL (very big thanks: Simon, by knowing what was coming out and when, I was able to incorporate some new SQL features such as the ever-so-cool GENERATE_SERIES function, which I think made for more elegant solutions compared to pivot tables).

Last but certainly not least, I'd like to thank Kay Young. When you are talented and passionate about what you do, it is great to be able to work with people who are likewise as talented and passionate. Many of the recipes you see in this text have come from working with Kay and coming up with SQL solutions for everyday problems at Wireless Generation. I want to thank you and let you know I absolutely appreciate all the help you given me throughout all of this; from advice, to grammar corrections, to code, you played an integral role in the writing of this book. It's been great working with you, and Wireless Generation is a better company because you are there.

Anthony Molinaro

September 2005

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-2]

Objectives of This Book

Ultimately, the goal of this book is to give you, the reader, a glimpse of what can be done using SQL outside of what is considered the typical SQL problem domain. SQL has come a very long way in the last ten years. Problems typically solved using a procedural language such as C or JAVA can now be solved directly in SQL, but many developers are simply unaware of this fact. This book is to help make you aware.

Now, before you take what I just said the wrong way, let me state that I am a firm believer in, "If it ain't broke, don't fix it." For example, let's say you have a particular business problem to solve, and you currently use SQL to simply retrieve your data while applying your complex business logic using a language other than SQL. If your code works and performance is acceptable, then great. I am in no way suggesting that you scrap your code for a SQL-only solution; I only ask that you open your mind and realize that the SQL you programmed with in 1995 is not the same SQL being used in 2005. Today's SQL can do so much more.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-3]

Audience for This Book

This text is unique in that the target audience is wide, but the quality of the material presented is not compromised. Consider that both complex and simple solutions are provided, and that solutions for five different vendors are available when a common solution does not exist. The target audience is indeed wide:

			
The SQL novice

			

Perhaps you have just purchased a text on learning SQL, or you are fresh into your first semester of a required database course and you want to supplement your new knowledge with some challenging real world examples. Maybe you've seen a query that magically transforms rows to columns, or that parses a serialized string into a result set. The recipes in this book explain techniques for performing these seemingly impossible queries.

			
The non-SQL programmer

			

Perhaps your background is in another language and you've been thrown into the fire at your current job and are expected to support complex SQL written by someone else. The recipes shown in this book, particularly in the later chapters, break down complex queries and provide a gentle walk-through to help you understand complex code that you may have inherited.

			
The SQL journeyman

			

For the intermediate SQL developer, this book is the gold at the end of the rainbow (OK, maybe that's too strong; please forgive an author's enthusiasm for his topic). In particular, if you've been coding SQL for quite some time and have not found your way onto window functions, you're in for a treat. For example, the days of needing temporary tables to store intermediate results are over; window functions can get you to an answer in a single query! Allow me to again state that I have no intention of trying to force-feed my ideas to an already experienced practitioner. Instead, consider this book as a way to update your skill set if you haven't caught on to some of the newer additions to the SQL language.

			
The SQL expert

			

Undoubtedly you've seen these recipes before, and you probably have your own variations. Why, then, is this book useful to you? Perhaps you've been a SQL expert on one platform your whole career, say, SQL Server, and now wish to learn Oracle. Perhaps you've only ever used MySQL, and you wonder what the same solutions in PostgreSQL would look like. This text covers different relational database management systems (RDBMSs) and displays their solutions side by side. Here's your chance to expand your knowledge base.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-4]

How to Use This Book

Be sure to read this preface thoroughly. It contains necessary background and other information that you might otherwise miss if you dive into individual recipes. The section on "Platform and Version" tells you what RDBMSs this book covers. Pay special attention to "Tables Used in This Book," so that you become familiar with the example tables used in most of the recipes. You'll also find important coding and font conventions in "Conventions Used in This Book." All these sections come later in this preface.

Remember that this is a cookbook, a collection of code examples to use as guidelines for solving similar (or identical) problems that you may have. Do not try to learn SQL from this book, at least not from scratch. This book should act as a supplement to, not a replacement for, a complete text on learning SQL. Additionally, following the tips below will help you use this book more productively:

			This book takes advantage of vendor-specific functions. SQL Pocket Guide by Jonathan Gennick has all of them and is convenient to have close to you in case you don't know what some of the functions in my recipes do.

			If you've never used window functions, or have had problems with queries using GROUP BY, read Appendix A first. It will define and prove what a group is in SQL. More importantly, it gives a basic idea of how window functions work. Window functions are one of the most important SQL developments of the past decade.

			Use common sense! Realize that it is impossible to write a book that provides a solution to every possible business problem in existence. Instead, use the recipes from this book as templates or guidelines to teach yourself the techniques required to solve your own specific problems. If you find yourself saying, "Great, this recipe works for this particular data set, but mine is different and thus the recipe doesn't work quite correctly," that's expected. In that case, try to find commonality between the data in the book and your data. Break down the book's query to its simplest form and add complexity as you go. All queries start with SELECT…FROM…, so in their simplest form, all queries are the same. If you add complexity as you go, "building" a query one step, one function, one join at a time, you will not only understand how those constructs change the result set, but you will see how the recipe is different from what you actually need. And from there you can modify the recipe to work for your particular data set.

			Test, test, and test. Undoubtedly any table of yours is bigger than the 14 row EMP table used in this book, so please test the solutions against your data, at the very least to ensure that they perform well. I can't possibly know what your tables look like, what columns are indexed, and what relationships are present in your schema. So please, do not blindly implement these techniques in your production code until you fully understand them and how they will perform against your particular data.

			Don't be afraid to experiment. Be creative! Feel free to use techniques different from what I've used. I make it a point to use many of the functions supplied by the different vendors in this book, and often there are several other functions that may work as well as the one I've chosen to use in a particular recipe. Feel free to plug your own variations into the recipes of this book.

			Newer does not always mean better. If you're not using some of the more recent features of the SQL language (for example, window functions), that does not necessarily mean your code is not as efficient as it can be. There are many cases in which traditional SQL solutions are as good or better than any new solution. Please keep this in mind, particularly in the Appendix B, Rozenshtein Revisited. After reading this book, you should not come away with the idea that you need to update or change all your existing code. Instead, only realize there are many new and extremely efficient features of SQL available now that were not available 10 years ago, and they are worth the time taken to learn them.

			Don't be intimidated. When you get to the solution section of a recipe and a query looks impossible to understand, don't fear. I've gone to great lengths to not only break down each query starting from its simplest form, but to show the intermediate results of each portion of a query as we work our way to the complete solution. You may not be able to see the big picture immediately, but once you follow the discussion and see not only how a query is built, but the results of each step, you'll find that even convoluted-looking queries are not hard to grasp.

			Program defensively when necessary. In an effort to make the queries in this book as terse as humanly possible without obscuring their meaning, I've removed many "defensive measures" from the recipes. For example, consider a query computing a running total for a number of employee salaries. It could be the case that you have declared the column of type VARCHAR and are (sadly) storing a mix of numeric and string data in one field. You'll find the running total recipe in this book does not check for such a case (and it will fail as the function SUM doesn't know what to do with character data), so if you have this type of "data" ("problem" is a more accurate description), you will need to code around it or (hopefully) fix your data, because the recipes provided do not account for such design practices as the mixing of character and numeric data in the same column. The idea is to focus on the technique; once you understand the technique, sidestepping such problems is trivial.

			Repetition is the key. The best way to master the recipes in this book is to sit down and code them. When it comes to code, reading is fine, but actually coding is even better. You must read to understand why things are done a certain way, but only by coding will you be able to create these queries yourself.

Be advised that many of the examples in this book are contrived. The problems are not contrived. They are real. However, I've built all examples around a small set of tables containing employee data. I've done that to help you get familiar with the example data, so that, having become familiar with the data, you can focus on the technique that each recipe illustrates. You might look at a specific problem and think: "I would never need to do that with employee data." But try to look past the example data in those cases and focus on the technique that I'm illustrating. The techniques are useful. My colleagues and I use them daily. We think you will too.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-5]

What's Missing from This Book

Due to constraints on time and book size, it isn't possible for a single book to provide solutions for all the possible SQL problems you may encounter. That said, here are some additional items that did not make the list:

			
Data Definition

			

Aspects of SQL such as creating indexes, adding constraints, and loading data are not covered in this book. Such tasks typically involve syntax that is highly vendor-specific, so you're best off referring to vendor manuals. In addition, such tasks do not represent the type of "hard" problem for which one would purchase a book to solve. Chapter 4, however, does provide recipes for common problems involving the insertion, updating, and deleting of data.

			
XML

			

It is my strong opinion that XML recipes do not belong in a book on SQL. Storing XML documents in relational databases is becoming increasingly popular, and each RDBMS has their own extensions and tools for retrieving and manipulating such data. XML manipulation often involves code that is procedural and thus outside the scope of this book. Recent developments such as XQUERY represent completely separate topics from SQL and belong in their own book (or books).

			
Object-Oriented Extensions to SQL

			

Until a language more suitable for dealing with objects comes along, I am strongly against using object-oriented features and designs in relational databases. At the present time, the object-oriented features available from some vendors are more suitable for use in procedural programming than in the sort of setoriented problem-solving for which SQL is designed.

			
Debates on Points of Theory

			

You won't find arguments in this book about whether SQL is relational, or about whether NULL values should exist. These sort of theoretical discussions have their place, but not in a book centered on delivering SQL solutions to real-life problems. To solve real-life problems, you simply have to work with the tools available to you at the time. You have to deal with what you have, not what you wish you had.

						[image:]			

If you wish to learn more about theory, any of Chris Date's "Relational Database Writings" books would be a good start. You might also pick up a copy of his most recent book, Database in Depth (O'Reilly).

			
Vendor Politics

			

This text provides solutions for five different RDBMSs. It is only natural to want to know which vendor's solution is "best" or "fastest." There is plenty of information that each vendor would gladly provide to show that their product is "best"; I have no intention of doing so here.

			
ANSI Politics

			

Many texts shy away from the proprietary functions supplied by different vendors. This text embraces proprietary functions. I have no intention of writing convoluted, poorly performing SQL code simply for the sake of portability. I have never worked in an environment where the use of vendor-specific extensions was prohibited. You are paying for these features; why not use them?

Vendor extensions exist for a reason, and many times offer better performance and readability than you could otherwise achieve using standard SQL. If you prefer ANSI-only solutions, fine. As I mentioned before, I am not here to tell you to turn all your code upside down. If what you have is strictly ANSI and it works for you, great. When it comes down to it, we all go to work, we all have bills to pay, and we all want to go home at a reasonable time and enjoy what's still left of our days. So, I'm not suggesting that ANSI-only is wrong. Do what works and is best for you. But, I want to make clear that if you're looking for ANSI-only solutions, you should look elsewhere.

			
Legacy Politics

			

The recipes in this text make use of the newest features available at the time of writing. If you are using old versions of the RDBMSs that I cover, many of my solutions will simply not work for you. Technology does not stand still, and neither should you. If you need older solutions, you'll find that many of the SQL texts available from years past have plenty of examples using older versions of the RDBMSs covered in this book.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-6]

Structure of This Book

This book is divided into 14 chapters and 2 appendices:

			Chapter 1, Retrieving Records, introduces very simple queries. Examples include how to use a WHERE clause to restrict rows from your result set, providing aliases for columns in your result set, using an inline view to reference aliased columns, using simple conditional logic, limiting the number of rows returned by a query, returning random records, and finding NULL values. Most of the examples are very simple, but some of them appear in more complex recipes, so it's a good idea to read this chapter if you're relatively new to SQL or aren't familiar with any of the examples listed for this chapter.

			Chapter 2, Sorting Query Results, introduces recipes for sorting query results. The ORDER BY clause is introduced and is used to sort query results. Examples increase in complexity ranging from simple, single-column ordering, to ordering by substrings, to ordering based on conditional expressions.

			Chapter 3, Working with Multiple Tables, introduces recipes for combining data from multiple tables. If you are new to SQL or are a bit rusty on joins, I strongly recommend you read this chapter before reading Chapter 5 and later. Joining tables is what SQL is all about; you must understand joins to be successful. Examples in this chapter include performing both inner and outer joins, identifying Cartesian productions, basic set operations (set difference, union, intersection), and the effects of joins on aggregate functions.

			Chapter 4, Inserting, Updating, Deleting, introduces recipes for inserting, updating, and deleting data, respectively. Most of the examples are very straightforward (perhaps even pedestrian). Nevertheless, operations such as inserting rows into one table from another table, the use of correlated subqueries in updates, an understanding of the effects of NULLs, and knowledge of new features such as multi-table inserts and the MERGE command are extremely useful for your toolbox.

			Chapter 5, Metadata Queries, introduces recipes for getting at your database metadata. It's often very useful to find the indexes, constraints, and tables in your schema. The simple recipes here allow you to gain information about your schema. Additionally, "dynamic" SQL examples are shown here as well, i.e., SQL generated by SQL.

			Chapter 6, Working with Strings, introduces recipes for manipulating strings. SQL is not known for its string parsing capabilities, but with a little creativity (usually involving Cartesian products) along with the vast array of vendor-specific functions, you can accomplish quite a bit. This chapter is where the book begins to get interesting. Some of the more interesting examples include counting the occurrences of a character in a string, creating delimited lists from table rows, converting delimited lists and strings into rows, and separating numeric and character data from a string of alphanumeric characters.

			Chapter 7, Working with Numbers, introduces recipes for common number crunching. The recipes found here are extremely common and you'll learn how easily window functions solve problems involving moving calculations and aggregations. Examples include creating running totals; finding mean, median, and mode; calculating percentiles; and accounting for NULL while performing aggregations.

			Chapter 8, Date Arithmetic, is the first of two chapters dealing with dates. Being able to perform simple date arithmetic is crucial to everyday tasks. Examples include determining the number of business days between two dates, calculating the difference between two dates in different units of time (day, month, year, etc.), and counting occurrences of days in a month.

			Chapter 9, Date Manipulation, is the second of the two chapters dealing with dates. In this chapter you will find recipes for some of the most common date operations you will encounter in a typical work day. Examples include returning all days in a year, finding leap years, finding first and last days of a month, creating a calendar, and filling in missing dates for a range of dates.

			Chapter 10, Working with Ranges, introduces recipes for identifying values in ranges, and for creating ranges of values. Examples include automatically generating a sequence of rows, filling in missing numeric values for a range of values, locating the beginning and end of a range of values, and locating consecutive values.

			Chapter 11, Advanced Searching, introduces recipes that are crucial for everyday development and yet sometimes slip through the cracks. These recipes are not any more difficult than others, yet I see many developers making very inefficient attempts at solving the problems these recipes solve. Examples from this chapter include finding knight values, paginating through a result set, skipping rows from a table, finding reciprocals, selecting the top n records, and ranking results.

			Chapter 12, Reporting and Warehousing, introduces queries typically used in warehousing or generating complex reports. This chapter was meant to be the majority of the book as it existed in my original vision. Examples include converting rows into columns and vice versa (cross-tab reports), creating buckets or groups of data, creating histograms, calculating simple and complete subtotals, performing aggregations over a moving window of rows, and grouping rows based on given units of time.

			Chapter 13, Hierarchical Queries, introduces hierarchical recipes. Regardless of how your data is modeled, at some point you will be asked to format data such that it represents a tree or parent-child relationship. This chapter provides recipes accomplishing these tasks. Creating tree-structured result sets can be cumbersome with traditional SQL, so vendor-supplied functions are particularly useful in this chapter. Examples include expressing a parent-child relationship, traversing a hierarchy from root to leaf, and rolling up a hierarchy.

			Chapter 14, Odds 'n' Ends, is a collection of miscellaneous recipes that didn't seem to fit into any other problem domain, but that nevertheless are interesting and useful. This chapter is different from the rest in that it focuses on vendor-spe-cific solutions only. This is the only chapter of the book where each recipe highlights only one vendor. The reasons are twofold: first, this chapter was meant to serve as more of a fun, geeky chapter. Second, some recipes exist only to highlight a vendor-specific function that has no equivalent in the other RDBMSs (examples include SQL Server's PIVOT/UNPIVOT operators and Oracle's MODEL clause). In some cases, though, you'll be able to easily tweak a solution provided in this chapter to work for a platform not covered in the recipe.

			Appendix A, Window Function Refresher, is a window function refresher along with a solid discussion of groups in SQL. Window functions are new to most, so it is appropriate that this appendix serves as a brief tutorial. Additionally, in my experience I have noticed that the use of GROUP BY in queries is a source of confusion for many developers. This chapter defines exactly what a SQL group is, and then proceeds to use various queries as proofs to validate that definition. The chapter then goes into the effects of NULLs on groups, aggregates, and partitions. Lastly, you'll find discussion on the more obscure and yet extremely powerful syntax of the window function's OVER clause (i.e., the "framing" or "windowing" clause).

			Appendix B, Rozenshtein Revisited, is a tribute to David Rozenshtein, to whom I owe my success in SQL development. Rozenshtein's book, The Essence of SQL (Coriolis Group Books) was the first book I purchased on SQL that was not required by a class. It was from that book that I learned how to "think in SQL." To this day I attribute much of my understanding of how SQL works to David's book. It truly is different from any other SQL book I've read, and I'm grateful that it was the first one I picked up on my own volition. Appendix B focuses on some of the queries presented in The Essence of SQL, and provides alternative solutions using window functions (which weren't available when The Essence of SQL was written) for those queries.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-7]

Platform and Version

SQL is a moving target. Vendors are constantly pumping new features and functionality into their products. Thus you should know up front which versions of the various platforms were used in the preparation of this text:

			DB2 v.8

			Oracle Database 10g (with the exception of a handful of recipes, the solutions will work for Oracle8i Database and Oracle9i Database as well)

			PostgreSQL 8

			SQL Server 2005

			MySQL 5

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-8]

Tables Used in This Book

The majority of the examples in this book involve the use of two tables, EMP and DEPT. The EMP table is a simple 14-row table with only numeric, string, and date fields. The DEPT table is a simple four-row table with only numeric and string fields. These tables appear in many old database texts, and the many-to-one relationship between departments and employees is well understood.

While I'm on the topic of the example tables, I want to mention that all but a very few solutions in this book run against these tables. Nowhere do I tweak my example data to set up a solution that you would be unlikely to have a chance of implementing in the real world, as some books do.

And while I'm on the topic of solutions, let me just mention that whenever possible I've tried to provide a generic solution that will run on all five RDBMSs covered in this book. Often that's not possible. Even so, in many cases more than one vendor shares a solution. Because of their mutual support for window functions, for example, Oracle and DB2 often share solutions. Whenever solutions are shared, or at least are very similar, discussions are shared as well.

The contents of EMP and DEPT are shown below, respectively:

	

	select * from emp;

	EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

	----- ------ --------- ---- ----------- ---- ---- -------

	 7369 SMITH CLERK 7902 17-DEC-1980 800 20

	 7499 ALLEN SALESMAN 7698 20-FEB-1981 1600 300 30

	 7521 WARD SALESMAN 7698 22-FEB-1981 1250 500 30

	 7566 JONES MANAGER 7839 02-APR-1981 2975 20

	 7654 MARTIN SALESMAN 7698 28-SEP-1981 1250 1400 30

	 7698 BLAKE MANAGER 7839 01-MAY-1981 2850 30

	 7782 CLARK MANAGER 7839 09-JUN-1981 2450 10

	 7788 SCOTT ANALYST 7566 09-DEC-1982 3000 20

	 7839 KING PRESIDENT 17-NOV-1981 5000 10

	 7844 TURNER SALESMAN 7698 08-SEP-1981 1500 0 30

	 7876 ADAMS CLERK 7788 12-JAN-1983 1100 20

	 7900 JAMES CLERK 7698 03-DEC-1981 950 30

	 7902 FORD ANALYST 7566 03-DEC-1981 3000 20

	 7934 MILLER CLERK 7782 23-JAN-1982 1300 10

	

	

	select * from dept;

	

	DEPTNO DNAME LOC

	------ -------------- ---------

	 10 ACCOUNTING NEW YORK

	 20 RESEARCH DALLAS

	 30 SALES CHICAGO

	 40 OPERATIONS BOSTON

Additionally, you will find four pivot tables used in this book; T1, T10, T100, and T500. Because these tables exist only to facilitate pivots, I did not find it necessary to give them clever names. The number following the "T" in each of the pivot tables signifies the number of rows in each table starting from 1. For example, the values for T1 and T10:

	select id from t1;

	 ID

	 1

	select id from t10;

	 ID

	 1

	 2

	 3

	 4

	 5

	 6

	 7

	 8

	 9

	 10

As an aside, some vendors allow partial SELECT statements. For example, you can have SELECT without a FROM clause. I don't particularly like this, thus I select against a support table, T1, with a single row, rather than using partial queries.

Any other tables are specific to particular recipes and chapters, and will be introduced in the text when appropriate.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3-SECT-9]

Conventions Used in This Book

I use a number of typographical and coding conventions in this book. Take time to become familiar with them. Doing so will enhance your understanding of the text. Coding conventions in particular are important, because I can't discuss them anew for each recipe in the book. Instead, I list the important conventions here.

[bookmark: sqlckbk-PREF-3-SECT-9.1]

Typographical Conventions

The following typographical conventions are used in this book:

			
UPPERCASE

			

Used to indicate SQL keywords within text

			
lowercase

			

Used for all queries in code examples. Other languages such as C and JAVA use lowercase for most keywords and I find it infinitely more readable than uppercase. Thus all queries will be lowercase.

			

Constant width bold

			

Indicates user input in examples showing an interaction.

						[image:]			

Indicates a tip, suggestion, or general note.

						[image:]			

Indicates a warning or caution.

[bookmark: sqlckbk-PREF-3-SECT-9.2]

Coding Conventions

My preference for case in SQL statements is to always use lowercase, for both keywords and user-specified identifiers. For example:

	select empno, ename

	 from emp;

Your preference may be otherwise. For example, many prefer to uppercase SQL keywords. Use whatever coding style you prefer, or whatever your project requires.

Despite my use of lowercase in code examples, I consistently uppercase SQL keywords and identifiers in the text. I do this to make those items stand out as something other than regular prose. For example:

The preceding query represents a SELECT against the EMP table.

While this book covers databases from five different vendors, I've decided to use one format for all the output:

	 EMPNO ENAME

	 ----- ------

	 7369 SMITH

	 7499 ALLEN

	…

Many solutions make use of inline views, or subqueries in the FROM clause. The ANSI SQL standard requires that such views be given table aliases. (Oracle is the only vendor that lets you get away without specifying such aliases.) Thus, my solutions use aliases such as x and y to identify the result sets from inline views:

	select job, sal

	 from (select job, max(sal) sal

	 from emp

	 group by job) x;

Notice the letter X following the final, closing parenthesis. That letter X becomes the name of the "table" returned by the subquery in the FROM clause. While column aliases are a valuable tool for writing self-documenting code, aliases on inline views (for most recipes in this book) are simply formalities. They are typically given trivial names such as X, Y, Z, TMP1, and TMP2. In cases where I feel a better alias will provide more understanding, I do so.

You will notice that the SQL in the SOLUTION section of the recipes is typically numbered, for example:

	1 select ename

	2 from emp

	3 where deptno = 10

The number is not part of the syntax; I have included it so I can reference parts of the query by number in the discussion section.

[image:]

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[bookmark: sqlckbk-PREF-3]

Preface

SQL is the language in the database world. If you're developing for or reporting from relational databases, your ability to put data into a database and then get it back out again ultimately comes down to your knowledge of SQL. Yet many practitioners use SQL in a perfunctory manner, and are unaware of the power at their disposal. This book aims to change all that, by opening your eyes to what SQL can really do for you.

The book you're holding in your hands is a cookbook. It's a collection of common SQL problems and their solutions that I hope you'll find helpful in your day-to-day work. Recipes are categorized into chapters of related topics. When faced with a new SQL problem that you haven't solved before, find the chapter that best seems to apply, skim through the recipe titles, and hopefully you will find a solution, or at least inspiration for a solution.

More than 150 recipes are available in this 600-plus page book, and I've only scratched the surface of what can be done using SQL. The number of different SQL solutions available for solving our daily programming problems is eclipsed only by the number of problems we need to solve. You won't find all possible problems covered in this book. Indeed, such coverage would be impossible. You will, however, find many common problems and their solutions. And in those solutions lie techniques that you'll learn how to expand upon and apply to other, new problems that I never thought to cover.

						[image:]			

My publisher and I are constantly on the lookout for new, cookbook-worthy SQL recipes. If you come across a good or clever SQL solution to a problem, consider sharing it; consider sending it in for inclusion in the next edition of this book. See "Comments and Questions" for our contact information.

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 % (modulus) function (SQL Server) 2nd 3rd
 % (wildcard) operator
 * character in SELECT statements
 + (concatenation) operator (SQL Server) 2nd

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

tables
 creating and copying definition
 testing for existence of value within group 2nd 3rd
 The Essence of SQL (Rozenshtein)
time
 grouping rows by 2nd 3rd 4th
 TIMESTAMP types (Oracle)
 TO_BASE function (Oracle)
 TO_CHAR function (Oracle/PostgreSQL) 2nd 3rd 4th
 TO_DATE function (Oracle/PostgreSQL) 2nd
 TO_NUMBER function (Oracle/PostgreSQL) 2nd
 TRANSLATE function (DB2/Oracle/PostgreSQL) 2nd 3rd 4th 5th
 transposing result sets (Oracle) 2nd 3rd 4th
 TRUNC function (Oracle) 2nd 3rd 4th

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			[image: Book Cover]						SQL Cookbook

			By

											Anthony Molinaro

			...

			Publisher: O'Reilly

			Pub Date: December 2005

			Print ISBN-10: 0-596-00976-3

			Print ISBN-13: 978-0-59-600976-2

			

 Pages: 628

						

			

			Table of Contents

												 | Index						

			 			[image:]			Copyright

			 			[image:]			Dedication

			 			[image:]			Preface

			 			

 			[image:]			Why I Wrote This Book

			 			

 			[image:]			Objectives of This Book

			 			

 			[image:]			Audience for This Book

			 			

 			[image:]			How to Use This Book

			 			

 			[image:]			What's Missing from This Book

			 			

 			[image:]			Structure of This Book

			 			

 			[image:]			Platform and Version

			 			

 			[image:]			Tables Used in This Book

			 			

 			[image:]			Conventions Used in This Book

			 			

 			[image:]			Using Code Examples

			 			

 			[image:]			Comments and Questions

			 			

 			[image:]			Safari® Enabled

			 			

 			[image:]			Acknowledgments

			 			[image:]			

 Chapter 1.

 Retrieving Records

			 			

 			[image:]			Recipe 1.1.

 Retrieving All Rows and Columns from a Table

			 			

 			[image:]			Recipe 1.2.

 Retrieving a Subset of Rows from a Table

			 			

 			[image:]			Recipe 1.3.

 Finding Rows That Satisfy Multiple Conditions

			 			

 			[image:]			Recipe 1.4.

 Retrieving a Subset of Columns from a Table

			 			

 			[image:]			Recipe 1.5.

 Providing Meaningful Names for Columns

			 			

 			[image:]			Recipe 1.6.

 Referencing an Aliased Column in the WHERE Clause

			 			

 			[image:]			Recipe 1.7.

 Concatenating Column Values

			 			

 			[image:]			Recipe 1.8.

 Using Conditional Logic in a SELECT Statement

			 			

 			[image:]			Recipe 1.9.

 Limiting the Number of Rows Returned

			 			

 			[image:]			Recipe 1.10.

 Returning n Random Records from a Table

			 			

 			[image:]			Recipe 1.11.

 Finding Null Values

			 			

 			[image:]			Recipe 1.12.

 Transforming Nulls into Real Values

			 			

 			[image:]			Recipe 1.13.

 Searching for Patterns

			 			[image:]			

 Chapter 2.

 Sorting Query Results

			 			

 			[image:]			Recipe 2.1.

 Returning Query Results in a Specified Order

			 			

 			[image:]			Recipe 2.2.

 Sorting by Multiple Fields

			 			

 			[image:]			Recipe 2.3.

 Sorting by Substrings

			 			

 			[image:]			Recipe 2.4.

 Sorting Mixed Alphanumeric Data

			 			

 			[image:]			Recipe 2.5.

 Dealing with Nulls when Sorting

			 			

 			[image:]			Recipe 2.6.

 Sorting on a Data Dependent Key

			 			[image:]			

 Chapter 3.

 Working with Multiple Tables

			 			

 			[image:]			Recipe 3.1.

 Stacking One Rowset atop Another

			 			

 			[image:]			Recipe 3.2.

 Combining Related Rows

			 			

 			[image:]			Recipe 3.3.

 Finding Rows in Common Between Two Tables

			 			

 			[image:]			Recipe 3.4.

 Retrieving Values from One Table That Do Not Exist in Another

			 			

 			[image:]			Recipe 3.5.

 Retrieving Rows from One Table That Do Not Correspond to Rows in Another

			 			

 			[image:]			Recipe 3.6.

 Adding Joins to a Query Without Interfering with Other Joins

			 			

 			[image:]			Recipe 3.7.

 Determining Whether Two Tables Have the Same Data

			 			

 			[image:]			Recipe 3.8.

 Identifying and Avoiding Cartesian Products

			 			

 			[image:]			Recipe 3.9.

 Performing Joins when Using Aggregates

			 			

 			[image:]			Recipe 3.10.

 Performing Outer Joins when Using Aggregates

			 			

 			[image:]			Recipe 3.11.

 Returning Missing Data from Multiple Tables

			 			

 			[image:]			Recipe 3.12.

 Using NULLs in Operations and Comparisons

			 			[image:]			

 Chapter 4.

 Inserting, Updating, Deleting

			 			

 			[image:]			Recipe 4.1.

 Inserting a New Record

			 			

 			[image:]			Recipe 4.2.

 Inserting Default Values

			 			

 			[image:]			Recipe 4.3.

 Overriding a Default Value with NULL

			 			

 			[image:]			Recipe 4.4.

 Copying Rows from One Table into Another

			 			

 			[image:]			Recipe 4.5.

 Copying a Table Definition

			 			

 			[image:]			Recipe 4.6.

 Inserting into Multiple Tables at Once

			 			

 			[image:]			Recipe 4.7.

 Blocking Inserts to Certain Columns

			 			

 			[image:]			Recipe 4.8.

 Modifying Records in a Table

			 			

 			[image:]			Recipe 4.9.

 Updating when Corresponding Rows Exist

			 			

 			[image:]			Recipe 4.10.

 Updating with Values from Another Table

			 			

 			[image:]			Recipe 4.11.

 Merging Records

			 			

 			[image:]			Recipe 4.12.

 Deleting All Records from a Table

			 			

 			[image:]			Recipe 4.13.

 Deleting Specific Records

			 			

 			[image:]			Recipe 4.14.

 Deleting a Single Record

			 			

 			[image:]			Recipe 4.15.

 Deleting Referential Integrity Violations

			 			

 			[image:]			Recipe 4.16.

 Deleting Duplicate Records

			 			

 			[image:]			Recipe 4.17.

 Deleting Records Referenced from Another Table

			 			[image:]			

 Chapter 5.

 Metadata Queries

			 			

 			[image:]			Recipe 5.1.

 Listing Tables in a Schema

			 			

 			[image:]			Recipe 5.2.

 Listing a Table's Columns

			 			

 			[image:]			Recipe 5.3.

 Listing Indexed Columns for a Table

			 			

 			[image:]			Recipe 5.4.

 Listing Constraints on a Table

			 			

 			[image:]			Recipe 5.5.

 Listing Foreign Keys Without Corresponding Indexes

			 			

 			[image:]			Recipe 5.6.

 Using SQL to Generate SQL

			 			

 			[image:]			Recipe 5.7.

 Describing the Data Dictionary Views in an Oracle Database

			 			[image:]			

 Chapter 6.

 Working with Strings

			 			

 			[image:]			Recipe 6.1.

 Walking a String

			 			

 			[image:]			Recipe 6.2.

 Embedding Quotes Within String Literals

			 			

 			[image:]			Recipe 6.3.

 Counting the Occurrences of a Character in a String

			 			

 			[image:]			Recipe 6.4.

 Removing Unwanted Characters from a String

			 			

 			[image:]			Recipe 6.5.

 Separating Numeric and Character Data

			 			

 			[image:]			Recipe 6.6.

 Determining Whether a String Is Alphanumeric

			 			

 			[image:]			Recipe 6.7.

 Extracting Initials from a Name

			 			

 			[image:]			Recipe 6.8.

 Ordering by Parts of a String

			 			

 			[image:]			Recipe 6.9.

 Ordering by a Number in a String

			 			

 			[image:]			Recipe 6.10.

 Creating a Delimited List from Table Rows

			 			

 			[image:]			Recipe 6.11.

 Converting Delimited Data into a Multi-Valued IN-List

			 			

 			[image:]			Recipe 6.12.

 Alphabetizing a String

			 			

 			[image:]			Recipe 6.13.

 Identifying Strings That Can Be Treated as Numbers

			 			

 			[image:]			Recipe 6.14.

 Extracting the nth Delimited Substring

			 			

 			[image:]			Recipe 6.15.

 Parsing an IP Address

			 			[image:]			

 Chapter 7.

 Working with Numbers

			 			

 			[image:]			Recipe 7.1.

 Computing an Average

			 			

 			[image:]			Recipe 7.2.

 Finding the Min/Max Value in a Column

			 			

 			[image:]			Recipe 7.3.

 Summing the Values in a Column

			 			

 			[image:]			Recipe 7.4.

 Counting Rows in a Table

			 			

 			[image:]			Recipe 7.5.

 Counting Values in a Column

			 			

 			[image:]			Recipe 7.6.

 Generating a Running Total

			 			

 			[image:]			Recipe 7.7.

 Generating a Running Product

			 			

 			[image:]			Recipe 7.8.

 Calculating a Running Difference

			 			

 			[image:]			Recipe 7.9.

 Calculating a Mode

			 			

 			[image:]			Recipe 7.10.

 Calculating a Median

			 			

 			[image:]			Recipe 7.11.

 Determining the Percentage of a Total

			 			

 			[image:]			Recipe 7.12.

 Aggregating Nullable Columns

			 			

 			[image:]			Recipe 7.13.

 Computing Averages Without High and Low Values

			 			

 			[image:]			Recipe 7.14.

 Converting Alphanumeric Strings into Numbers

			 			

 			[image:]			Recipe 7.15.

 Changing Values in a Running Total

			 			[image:]			

 Chapter 8.

 Date Arithmetic

			 			

 			[image:]			Recipe 8.1.

 Adding and Subtracting Days, Months, and Years

			 			

 			[image:]			Recipe 8.2.

 Determining the Number of Days Between Two Dates

			 			

 			[image:]			Recipe 8.3.

 Determining the Number of Business Days Between Two Dates

			 			

 			[image:]			Recipe 8.4.

 Determining the Number of Months or Years Between Two Dates

			 			

 			[image:]			Recipe 8.5.

 Determining the Number of Seconds, Minutes, or Hours Between Two Dates

			 			

 			[image:]			Recipe 8.6.

 Counting the Occurrences of Weekdays in a Year

			 			

 			[image:]			Recipe 8.7.

 Determining the Date Difference Between the Current Record and the Next Record

			 			[image:]			

 Chapter 9.

 Date Manipulation

			 			

 			[image:]			Recipe 9.1.

 Determining if a Year Is a Leap Year

			 			

 			[image:]			Recipe 9.2.

 Determining the Number of Days in a Year

			 			

 			[image:]			Recipe 9.3.

 Extracting Units of Time from a Date

			 			

 			[image:]			Recipe 9.4.

 Determining the First and Last Day of a Month

			 			

 			[image:]			Recipe 9.5.

 Determining All Dates for a Particular Weekday Throughout a Year

			 			

 			[image:]			Recipe 9.6.

 Determining the Date of the First and Last Occurrence of a Specific Weekday in a Month

			 			

 			[image:]			Recipe 9.7.

 Creating a Calendar

			 			

 			[image:]			Recipe 9.8.

 Listing Quarter Start and End Dates for the Year

			 			

 			[image:]			Recipe 9.9.

 Determining Quarter Start and End Dates for a Given Quarter

			 			

 			[image:]			Recipe 9.10.

 Filling in Missing Dates

			 			

 			[image:]			Recipe 9.11.

 Searching on Specific Units of Time

			 			

 			[image:]			Recipe 9.12.

 Comparing Records Using Specific Parts of a Date

			 			

 			[image:]			Recipe 9.13.

 Identifying Overlapping Date Ranges

			 			[image:]			

 Chapter 10.

 Working with Ranges

			 			

 			[image:]			Recipe 10.1.

 Locating a Range of Consecutive Values

			 			

 			[image:]			Recipe 10.2.

 Finding Differences Between Rows in the Same Group or Partition

			 			

 			[image:]			Recipe 10.3.

 Locating the Beginning and End of a Range of Consecutive Values

			 			

 			[image:]			Recipe 10.4.

 Filling in Missing Values in a Range of Values

			 			

 			[image:]			Recipe 10.5.

 Generating Consecutive Numeric Values

			 			[image:]			

 Chapter 11.

 Advanced Searching

			 			

 			[image:]			Recipe 11.1.

 Paginating Through a Result Set

			 			

 			[image:]			Recipe 11.2.

 Skipping n Rows from a Table

			 			

 			[image:]			Recipe 11.3.

 Incorporating OR Logic when Using Outer Joins

			 			

 			[image:]			Recipe 11.4.

 Determining Which Rows Are Reciprocals

			 			

 			[image:]			Recipe 11.5.

 Selecting the Top n Records

			 			

 			[image:]			Recipe 11.6.

 Finding Records with the Highest and Lowest Values

			 			

 			[image:]			Recipe 11.7.

 Investigating Future Rows

			 			

 			[image:]			Recipe 11.8.

 Shifting Row Values

			 			

 			[image:]			Recipe 11.9.

 Ranking Results

			 			

 			[image:]			Recipe 11.10.

 Suppressing Duplicates

			 			

 			[image:]			Recipe 11.11.

 Finding Knight Values

			 			

 			[image:]			Recipe 11.12.

 Generating Simple Forecasts

			 			[image:]			

 Chapter 12.

 Reporting and Warehousing

			 			

 			[image:]			Recipe 12.1.

 Pivoting a Result Set into One Row

			 			

 			[image:]			Recipe 12.2.

 Pivoting a Result Set into Multiple Rows

			 			

 			[image:]			Recipe 12.3.

 Reverse Pivoting a Result Set

			 			

 			[image:]			Recipe 12.4.

 Reverse Pivoting a Result Set into One Column

			 			

 			[image:]			Recipe 12.5.

 Suppressing Repeating Values from a Result Set

			 			

 			[image:]			Recipe 12.6.

 Pivoting a Result Set to Facilitate Inter-Row Calculations

			 			

 			[image:]			Recipe 12.7.

 Creating Buckets of Data, of a Fixed Size

			 			

 			[image:]			Recipe 12.8.

 Creating a Predefined Number of Buckets

			 			

 			[image:]			Recipe 12.9.

 Creating Horizontal Histograms

			 			

 			[image:]			Recipe 12.10.

 Creating Vertical Histograms

			 			

 			[image:]			Recipe 12.11.

 Returning Non-GROUP BY Columns

			 			

 			[image:]			Recipe 12.12.

 Calculating Simple Subtotals

			 			

 			[image:]			Recipe 12.13.

 Calculating Subtotals for All Possible Expression Combinations

			 			

 			[image:]			Recipe 12.14.

 Identifying Rows That Are Not Subtotals

			 			

 			[image:]			Recipe 12.15.

 Using Case Expressions to Flag Rows

			 			

 			[image:]			Recipe 12.16.

 Creating a Sparse Matrix

			 			

 			[image:]			Recipe 12.17.

 Grouping Rows by Units of Time

			 			

 			[image:]			Recipe 12.18.

 Performing Aggregations over Different Groups/Partitions Simultaneously

			 			

 			[image:]			Recipe 12.19.

 Performing Aggregations over a Moving Range of Values

			 			

 			[image:]			Recipe 12.20.

 Pivoting a Result Set with Subtotals

			 			[image:]			

 Chapter 13.

 Hierarchical Queries

			 			

 			[image:]			Recipe 13.1.

 Expressing a Parent-Child Relationship

			 			

 			[image:]			Recipe 13.2.

 Expressing a Child-Parent-Grandparent Relationship

			 			

 			[image:]			Recipe 13.3.

 Creating a Hierarchical View of a Table

			 			

 			[image:]			Recipe 13.4.

 Finding All Child Rows for a Given Parent Row

			 			

 			[image:]			Recipe 13.5.

 Determining Which Rows Are Leaf, Branch, or Root Nodes

			 			[image:]			

 Chapter 14.

 Odds 'n' Ends

			 			

 			[image:]			Recipe 14.1.

 Creating Cross-Tab Reports Using SQL Server's PIVOT Operator

			 			

 			[image:]			Recipe 14.2.

 Unpivoting a Cross-Tab Report Using SQL Server's UNPIVOT Operator

			 			

 			[image:]			Recipe 14.3.

 Transposing a Result Set Using Oracle's MODEL Clause

			 			

 			[image:]			Recipe 14.4.

 Extracting Elements of a String from Unfixed Locations

			 			

 			[image:]			Recipe 14.5.

 Finding the Number of Days in a Year (an Alternate Solution for Oracle)

			 			

 			[image:]			Recipe 14.6.

 Searching for Mixed Alphanumeric Strings

			 			

 			[image:]			Recipe 14.7.

 Converting Whole Numbers to Binary Using Oracle

			 			

 			[image:]			Recipe 14.8.

 Pivoting a Ranked Result Set

			 			

 			[image:]			Recipe 14.9.

 Adding a Column Header into a Double Pivoted Result Set

			 			

 			[image:]			Recipe 14.10.

 Converting a Scalar Subquery to a Composite Subquery in Oracle

			 			

 			[image:]			Recipe 14.11.

 Parsing Serialized Data into Rows

			 			

 			[image:]			Recipe 14.12.

 Calculating Percent Relative to Total

			 			

 			[image:]			Recipe 14.13.

 Creating CSV Output from Oracle

			 			

 			[image:]			Recipe 14.14.

 Finding Text Not Matching a Pattern (Oracle)

			 			

 			[image:]			Recipe 14.15.

 Transforming Data with an Inline View

			 			

 			[image:]			Recipe 14.16.

 Testing for Existence of a Value Within a Group

			 			[image:]			

 Appendix A.

 Window Function Refresher

			 			

 			[image:]			Recipe A.1.

 Grouping

			 			

 			[image:]			Recipe A.2.

 Windowing

			 			[image:]			

 Appendix B.

 Rozenshtein Revisited

			 			

 			[image:]			Recipe B.1.

 Rozenshtein's Example Tables

			 			

 			[image:]			Recipe B.2.

 Answering Questions Involving Negation

			 			

 			[image:]			Recipe B.3.

 Answering Questions Involving "at Most"

			 			

 			[image:]			Recipe B.4.

 Answering Questions Involving "at Least"

			 			

 			[image:]			Recipe B.5.

 Answering Questions Involving "Exactly"

			 			

 			[image:]			Recipe B.6.

 Answering Questions Involving "Any" or "All"

			 			[image:]			About the Author

			 			[image:]			Colophon

			 			[image:]			Index

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 underscore (_) operator
 Understanding the WITH Clause(Gennick)
 UNION ALL operation 2nd 3rd
 UNION operation 2nd 3rd 4th
 UNPIVOT operator (SQL Server) 2nd 3rd
 UPDATE statement 2nd 3rd 4th 5th

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 VALUES clause
version differences
 Oracle
 CONNECT BY clause 2nd 3rd 4th
 DEFAULT keyword
 JOIN clause 2nd
 KEEP clause 2nd
 LEAD OVER window function
 MEDIAN/PERCENTILE_CONT functions 2nd
 MODEL clause 2nd
 outer joins

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 WHERE clause
 wildcard (%) operator
window functions
 aggregate functions versus
 evaluation order
 NULLs and 2nd
 ORDER BY subclause
 partitions
 reports and
 timing of 2nd 3rd
 WITH clause (DB2/SQL Server) 2nd 3rd
 WITH clause (Oracle)
 WITH ROLLUP (SQL Server/MySQL)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			

[image: Next Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 YEAR function (DB2/MySQL/SQL Server) 2nd 3rd 4th
 Young
 YS_CONNECT_BY_PATH function (Oracle)

			

[image: Previous Page]

			

[image: Next Page]

			

[image: Previous Page]

			
Index

										[SYMBOL]

									

										[A]

									

										[B]

									

										[C]

									

										[D]

									

										[E]

									

										[F]

									

										[G]

									

										[H]

									

										[I]

									

										[J]

									

										[K]

									

										[L]

									

										[M]

									

										[N]

									

										[O]

									

										[P]

									

										[Q]

									

										[R]

									

										[S]

									

										[T]

									

										[U]

									

										[V]

									

										[W]

									

										[Y]

									

										[Z]

									

 Zermelo

			

[image: Previous Page]

