
www.SoftGozar.Com

Communications
in Computer and Information Science 117

www.SoftGozar.Comwww.SoftGozar.Comwww.SoftGozar.Com

Tai-hoon Kim Haeng-kon Kim
Muhammad Khurram Khan Akingbehin Kiumi
Wai-chi Fang Dominik Ślęzak (Eds.)

Advances in
Software Engineering

International Conference, ASEA 2010
Held as Part of the Future Generation
Information Technology Conference, FGIT 2010
Jeju Island, Korea, December 13-15, 2010
Proceedings

13

www.SoftGozar.Com

www.SoftGozar.Com

Volume Editors

Tai-hoon Kim
Hannam University, Daejeon, South Korea
E-mail: taihoonn@hnu.kr

Haeng-kon Kim
Catholic University of Daegu, South Korea
E-mail: hangkon@cu.ac.kr

Muhammad Khurram Khan
King Saud University, Riyadh, Saudi Arabia
E-mail: mkhurram@ksu.edu.sa

Akingbehin Kiumi
University of Michigan-Dearborn, USA
E-mail: kiumi@umich.edu

Wai-chi Fang
National Chiao Tung University, Hsinchu, Taiwan
E-mail: wfang@mail.nctu.edu.tw

Dominik Ślęzak
University of Warsaw & Infobright, Warsaw, Poland
E-mail: dominik.slezak@infobright.com

Library of Congress Control Number: 2010940172

CR Subject Classification (1998): D.2, H.3.3, I.2, H.4, J.1, D.2.1

ISSN 1865-0929
ISBN-10 3-642-17577-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-17577-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

www.SoftGozar.Com

www.SoftGozar.Com

Preface

Welcome to the Proceedings of the 2010 International Conference on Advanced
Software Engineering and Its Applications (ASEA 2010) – one of the partnering events
of the Second International Mega-Conference on Future Generation Information
Technology (FGIT 2010).

ASEA brings together researchers from academia and industry as well as
practitioners to share ideas, problems and solutions relating to the multifaceted aspects
of software engineering, including its links to computational sciences, mathematics and
information technology.

In total, 1,630 papers were submitted to FGIT 2010 from 30 countries, which
includes 175 papers submitted to ASEA 2010. The submitted papers went through a
rigorous reviewing process: 395 of the 1,630 papers were accepted for FGIT 2010,
while 40 papers were accepted for ASEA 2010. Of the 640 papers were selected for
the special FGIT 2010 volume published by Springer in the LNCS series. 32 papers
are published in this volume, and 2 papers were withdrawn due to technical reasons.

We would like to acknowledge the great effort of the ASEA 2010 International
Advisory Board and members of the International Program Committee, as well as all
the organizations and individuals who supported the idea of publishing this volume of
proceedings, including SERSC and Springer. Also, the success of the conference
would not have been possible without the huge support from our sponsors and the
work of the Chairs and Organizing Committee.

We are grateful to the following keynote speakers who kindly accepted our
invitation: Hojjat Adeli (Ohio State University), Ruay-Shiung Chang (National Dong
Hwa University), and Andrzej Skowron (University of Warsaw). We would also like
to thank all plenary and tutorial speakers for their valuable contributions.

We would like to express our greatest gratitude to the authors and reviewers of all
paper submissions, as well as to all attendees, for their input and participation.

Last but not least, we give special thanks to Rosslin John Robles and Maricel
Balitanas. These graduate school students of Hannam University contributed to the
editing process of this volume with great passion.

December 2010 Tai-hoon Kim
Haeng-kon Kim

Muhammad Khurram Khan
Akingbehin Kiumi

Wai-chi Fang
Dominik l zak

Organization

Organizing Committee

General Chair Haeng-kon Kim (Catholic University of Daegu, Korea)

Program Co-chairs Muhammad Khurram Khan (King Saud University,
Saudi Arabia)

Tai-hoon Kim (Hannam University, Korea)
Akingbehin Kiumi (University of Michigan-Dearborn, USA)

Publicity Co-chairs Tao Jiang (Huazhong University of Science and Technology,
China)

Silvia Abrahao (Valencia University of Technology, Spain)
June Verner (University of New South Wales, Australia)

Publication Chair Yong-ik Yoon (Sookmyung Women's University, Korea)

International Advisory Board
 Jose Luis Arciniegas Herrera (Universidad del Cauca,
 Colombia)

Aboul Ella Hassanien (Cairo University, Egypt)
Byeong-Ho Kang (University of Tasmania, Australia)
Tien N. Nguyen (Iowa State University, USA)

Program Committee

A. Hamou-Lhadj
Ami Marowka
Carmine Gravino
Chia-Chu Chiang
Chima Adiele
Dinesh Verma
Doo-Hwan Bae
Emilia Mendes
Fausto Fasano
Giuseppe Scanniello
Gongzhu Hu
Harvey Siy
Hironori Washizaki
Hyeon Soo Kim
Jennifer Pérez Benedí

Jiro Tanaka
Jonathan Lee
Jongmoon Baik
Jose L. Arciniegas
Joseph Balikuddembe
Karel Richta
Kendra Cooper
Kin Fun Li
Kurt Wallnau
Laurence Duchien
Lerina Aversano
Luigi Buglione
Maria Bielikova
Maria Tortorella
Mokhtar Beldjehem

Morshed Chowdhury
Olga Ormandjieva
P.R. Srivastava
Rattikorn Hewett
Ricardo Campos
Rita Francese
Robert Glass
Rocco Oliveto
Rudolf Ferenc
Shawkat Ali
Silvia Abrahao
Tokuro Matsuo
Vincenzo Deufemia
Wuwei Shen
Yijun Yu

Table of Contents

Effective Web and Desktop Retrieval with Enhanced Semantic
Spaces . 1

Amjad M. Daoud

Considering Patterns in Class Interactions Prediction 11
Nazri Kama, Tim French, and Mark Reynolds

Design of an Unattended Monitoring System Using Context-Aware
Technologies Based on 3 Screen . 23

Seoksoo Kim

Requirements Elicitation Using Paper Prototype . 30
Jaya Vijayan and G. Raju

Quality-Driven Architecture Conformance . 38
Jose L. Arciniegas and Juan C. Dueñas

Trends in M2M Application Services Based on a Smart Phone 50
Jae Young Ahn, Jae-gu Song, Dae-Joon Hwang, and Seoksoo Kim

Using ERP and WfM Systems for Implementing Business Processes:
An Empirical Study . 57

Lerina Aversano and Maria Tortorella

Mining Design Patterns in Object Oriented Systems by a Model-Driven
Approach . 67

Mario Luca Bernardi and Giuseppe Antonio Di Lucca

Exploring Empirically the Relationship between Lack of Cohesion and
Testability in Object-Oriented Systems . 78

Linda Badri, Mourad Badri, and Fadel Toure

The Study of Imperfection in Rough Set on the Field of Engineering
and Education . 93

Tian-Wei Sheu, Jung-Chin Liang, Mei-Li You, and Kun-Li Wen

The Software Industry in the Coffee Triangle of Colomiba 103
Albeiro Cuesta, Luis Joyanes, and Marcelo López

Towards Maintainability Prediction for Relational Database-Driven
Software Applications: Evidence from Software Practitioners 110

Mehwish Riaz, Emilia Mendes, and Ewan Tempero

X Table of Contents

Software and Web Process Improvement – Predicting SPI Success for
Small and Medium Companies . 120

Muhammad Sulayman and Emilia Mendes

Test Prioritization at Different Modeling Levels . 130
Fevzi Belli and Nida Gökçe

Adoption of Requirements Engineering Practices in Malaysian Software
Development Companies . 141

Badariah Solemon, Shamsul Sahibuddin, and Abdul Azim Abd Ghani

Minimum Distortion Data Hiding . 151
Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Yoojin Chung

Model-Based Higher-Order Mutation Analysis . 164
Fevzi Belli, Nevin Güler, Axel Hollmann, Gökhan Suna, and
Esra Yıldız

ISARE: An Integrated Software Architecture Reuse and Evaluation
Framework . 174

Rizwan Ahmad, Saif ur Rehman Khan, Aamer Nadeem, and
Tai-hoon Kim

Cognitive Informatics for New Classes of Economic and Financial
Information Systems . 188

Lidia Ogiela and Marek R. Ogiela

An Automated Approach to Testing Polymorphic Features Using
Object-Z . 195

Mahreen Ahmad, Aamer Nadeem, and Tai-hoon Kim

IDMS: A System to Verify Component Interface Completeness and
Compatibility for Product Integration . 208

Wantana Areeprayolkij, Yachai Limpiyakorn, and
Duangrat Gansawat

Software Framework for Flexible User Defined Metaheuristic
Hybridization . 218

Suraya Masrom, Siti Zaleha Zainal Abidin,
Puteri Norhashimah Megat Abdul Rahman, and Abdullah
Sani Abd. Rahman

Program Visualization for Debugging Deadlocks in Multithreaded
Programs . 228

Byung-Chul Kim and Yong-Kee Jun

A Fast PDE Algorithm Using Adaptive Scan and Search for Video
Coding . 237

Jong-Nam Kim

Table of Contents XI

Evolvability Characterization in the Context of SOA 242
Jose L. Arciniegas and Juan C. Dueñas

Design and Implementation of an Enterprise Internet of Things 254
Jing Sun, Huiqun Zhao, Ka Wang, Houyong Zhang, and Gongzhu Hu

Aggregating Expert-Driven Causal Maps for Web Effort Estimation 264
Simon Baker and Emilia Mendes

Bug Forecast: A Method for Automatic Bug Prediction 283
Rudolf Ferenc

TCD: A Text-Based UML Class Diagram Notation and Its Model
Converters . 296

Hironori Washizaki, Masayoshi Akimoto, Atsushi Hasebe,
Atsuto Kubo, and Yoshiaki Fukazawa

SQL-Based Compound Object Comparators: A Case Study of Images
Stored in ICE . 303

Dominik Śl ↪ezak and �Lukasz Sosnowski

Intermediate Structure Reduction Algorithms for Stack Based Query
Languages . 317

Marta Burzańska, Krzysztof Stencel, and Piotr Wísniewski

Service-Oriented Software Framework for Network Management 327
Dongcheul Lee and Byungjoo Park

Author Index . 337

www.SoftGozar.Com

www.SoftGozar.Com

Effective Web and Desktop Retrieval with
Enhanced Semantic Spaces

Amjad M. Daoud

American University of the Middle East, Kuwait

Abstract. We describe the design and implementation of the NET-

BOOK prototype system for collecting, structuring and efficiently cre-

ating semantic vectors for concepts, noun phrases, and documents from

a corpus of free full text ebooks available on the World Wide Web. Au-

tomatic generation of concept maps from correlated index terms and

extracted noun phrases are used to build a powerful conceptual index of

individual pages. To ensure scalabilty of our system, dimension reduction

is performed using Random Projection [13]. Furthermore, we present a

complete evaluation of the relative effectiveness of the NETBOOK sys-

tem versus the Google Desktop [8].

Keywords: Semantic Vectors, NETBOOK, Dimension Reduction, Re-

trieval Effectiveness.

1 Introduction

The problem of storing, managing, and accessing information is a classic problem
in human society, where the ultimate goal is constructing information retrieval
systems that can understand, in a non-trivial sense, texts as humans. So, en-
hancing conventional search techniques with semantic understanding has taken
on an even greater significance and true progress would be far-reaching.

For the last four decades, researchers have explored the statistical, lexical, and
semantic characteristics of various collections of messages, bibliographic cita-
tions, HTML and XML pages, TREC collections, and other types of documents.
They developed automatic indexing techniques [11], prepared lexical-relational
thesauri [7], devised efficient storage structures and algorithms [5], and proposed
and evaluated retrieval approaches [10].

Currently, novice information seekers depend on search engines such as
GOOGLE and YAHOO to handle the explosion of information available on the
world wide web, or browse through infinite maze of hyperlinks. Most internet
search engines, given a search query, try to find web documents containing the
terms listed in the query. Ranking algorithms such as the PageRank depends pri-
marily on the connectivity of pages it indexes. However, the search process treats
web pages as bag of unrelated words and words are treated purely as semantic-
less identifiers. These same search engines are unable to distinguish different

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.SoftGozar.Com

2 A.M. Daoud

word senses, not mentioning documents about different topical domains. Fre-
quently, users must manually scan through a long list of interleaved results in
order to zoom in onto the desired ones.

In section 2, we describe the design and implementation of the NETBOOK
system and survey related literature on context vector models for representing
concepts with vectors in a high dimensional vector space. In section 4, we evalu-
ate the NETBOOK system versus the GOOGLE Desktop system. In section 5,
we summarize our research findings.

2 The NETBOOK System

2.1 Early Work

In earlier versions of the NETBOOK system, we used information that is readily
available in chapter titles and index terms to build simple Concept Maps [9] [3]
[2]. Non-frequent single terms and noun phrases found in titles can be extracted
and filtered to label concept nodes.

Afterwards, the index term topical discriminating power (i.e. on the topic of
the page it occurs in) can be computed using the term discriminating power on
the page itself. A term is a good discriminator for a topic if most documents
that contain that term are topically related and finding these that tend to occur
in the context of a given topic is important to achieve higher precision.

Of course, a more elaborate scheme would be to rely on advanced NLP and
AI to derive elaborate Concept Maps and automatically generate good ones
efficiently for large collections. Although relationship links in concept maps are
perceived to be essential to semantic understanding, a recent study concluded
the sufficiency of concept labels to guide retrieval and refine queries [9].

One way to solve the problem is to figure out which one of the different word
senses or the topic that a document assumes. For instance, let’s say the term
“Jordan” carries two senses, the basketball player and the name of a country. A
short document or a page containing “Jordan” will use the term to denote either
the basketball player or the country, but probably not both. A GOOGLE query
on the topic “jordan basketball” will never yield anything about basketball in
Jordan. Modifying the query to “basketball in jordan” would face the same fate
as “in” is treated as a stopword.

2.2 The Context Vectors Model

Clearly, word sense discrimination and disambiguation [14] is required to ef-
fectively navigate the web. The core principle here is that the weighted sum of
vectors for words found in a particular region of text (called context vectors) can
be clustered, and the centroids of these clusters can be treated as word-senses:
occurrences of an ambiguous word can then be mapped to one of these word-
senses, with a confidence or probability derived from the similarity between the
context vector for this occurrence and the nearest centroids.

However, these early approaches often yielded high dimensional matrices that
required factorization that did not scale well for large collection such as the

www.SoftGozar.Com

Effective Web and Desktop Retrieval with Enhanced Semantic Spaces 3

web. [6] applied dimension reduction to a term-document matrix, in the hope
of creating a more semantically aware search engine (e.g., a search engine that
can locate documents based on synonyms and related terms as well as matching
keywords). Such systems would find documents that talk about H1N1 even if
the query was simply “swan flu”.

Using a powerful ontology of a few seed concepts and their relationships can
help to iteratively infer analogous relationships for other similar words that are
nearby in the vector space that denote potential cognitive significance. Moreover,
given that we can compute context vectors for regions of text, it is possible to
detect disfluencies [13] when context vectors leap from one part of the space to
a completely different part of the space. On the other hand, it would be easy
to make improvements by extra rounds of training.

2.3 The Ebooks Collection

Recent advances in computer hardware and dramatic improvements in CPU
speed and disk storage have enabled us to carry out evaluation experiments
regarding the most effective methods for the storage and retrieval of pages of
full text ebooks available online. The NETBOOK system represents on-going at-
tempts to answer many of these questions with a very large collection of computer
science, math, and physics resources. The collection of ebooks contains about
30000 unique ebooks with more than 18 million individual pages. Although, pre-
senting the NETBOOK system in terms of vector models suggests a strongly
geometric account, it is worth noting that probabilistic interpretations could be
applied rather than geometric insights. [12] points out that quantum mechanics
is already a clearly extant framework that combines both probabilistic and ge-
ometric insights, coordinates of vectors being related to probability amplitudes
and both are compatible ways of looking at related conceptual structures [13].

Let D be the ebooks collection consisting of n documents and T the dictionary
consisting of m index terms used for content identification. In the rest of the
paper, our unit of retrieval is a page in a book. A page is chosen rather than
paragraphs to simplify mapping author index terms to retrievable and browsable
pages. So D consists really of n pages. Also, the adoption of pages as units of
retrieval allows us to compute the recall and precision of each search based
on authors choice of index terms, and to automatically refine returned pages
to accomplish better ranking [see section 4] and to construct better automatic
relevance feedback.

Define an indexing function I(Di) that returns a subset of weighted index
terms and their topics given the text of a document Di, its table of contents
that defines possible topics, and concordance that defines terms found in its
index and pages they occur in:

I(Di) = {(tij , wij , λij)|1 ≤ j ≤ m; tj ∈ T }
where tij represents the assignment of term tj to the document Di, wij is a
real number in the interval [0, 1] which reflects the discriminating power

www.SoftGozar.Com

4 A.M. Daoud

(i.e. importance) of the term tj for identifying the document Di, λij which
reflects the discriminating power of the term tj for identifying the topic of
the document Di chosen from the set of topics automatically generated from
the documents table of contents. λij is the average of the similarity of Di to
other documents discriminated by tj .

The same indexing function can be applied to the text of a query to get a
comparable query representative

I(Q) = {(qj , wqj)|1 ≤ j ≤ m; qj ∈ T }
An inverted list associated with the term tj is the set of documents indexed

by such a term and their topics

Dtj = {Di|tj ∈ I(Di)}
Given a query Q, the set PQ of documents which possibly satisfy the query is

given by

P (Q) =
⋃

qj∈Q

Dqj

The set PQ represents the union of the inverted lists associated with each of
the query terms, (i.e., the set of documents which share at least one term in
common with the query).

The set R(Q, h) of the r = |R(Q, h)| documents which best satisfy the query
is given by

R(Q, h) = {Di|S(Di, Q) ≥ h; Di ∈ P (Q)}
where S is a similarity function which returns a real number such that a high
value implies a high degree of resemblance and h is a threshold value. A ranked
output can be obtained by arranging the retrieved items in decreasing order of
query-document similarity as measured by the S-values.

2.4 The Retrieval Process

A straightforward procedure to obtain best match documents is to match the
query against each of the documents in the collection, compute similarities, sort
the similarities into descending order and take the r highest rank documents.
Obviously, it would require O(n) computations, which is impractical for large
collections. More practical approaches are the cluster approach and the inverted
approach which we discuss next:

Cluster Approach. In this approach, the collection is preprocessed and parti-
tioned into clusters, each cluster containing similar documents. The first stage of
the retrieval process is to find those similar clusters that are most significantly
correlated with the given query and then the query is matched against each
document contained in all identified clusters. Clustering has been applied suc-
cessfully to web search retrieval and when applied to few document (top ranked)

Effective Web and Desktop Retrieval with Enhanced Semantic Spaces 5

snippets could be effective. However for large collections of millions of pages;
preprocessing is quite prohibitive.

Inverted File Approach. If the inverted file is available, it can be used to build
a sparser Initial Document Concepts Matrix as the number of documents that
must be considered is reduced. Most of the commonly used similarity functions
that have been used in IR systems (i.e. Vector Space Model (VSM)) involve the
terms in common between the query and the document. Hence,

S(Di, Q) �= 0

iff the query and the document vectors have at least one common term. Thus, we
have to process only the set Di ∈ PQ of documents which appear at least once
in the postings corresponding to the query terms, while all other documents can
be discarded.

The weight wtij which reflects the presumed importance of term tj for quali-
fying the content of document Di is defined as

wtij = (0.5 + 0.5Fij)/Fmaxi

where Fij represents the occurrence frequency of the term tj in the document
Dj normalized by Fmaxi , the maximum occurrence frequency among the terms
associated with Di [1]. The effect of such normalization is that longer documents
do not produce higher term weights than shorter ones.

The same indexing and weighting process is performed on the text of the
query; producing a query representation consisting of a set of pairs (qj , wqj) with
wqj denoting the degree of importance of the term qj . The weight attached to
each query term is determined also by its IDF (Inverse Document Frequency).
For each term j, it is computed as IDFj = log n

nj
where n is the number of

documents in the collection and nj is the number of documents in which the
term j appears: nj = |Dtj |.

Using this approach, query terms are assigned weights inversely proportional
to their frequency of occurrence in the collection. Thus, infrequently occurring
terms are assigned larger weights than terms which occur in many documents.
Furthermore, the local occurrence of a term within a document, reflects its im-
portance, and the total occurrence of the same term within the collection reflects
its discrimination power. In the next section, we discuss how to enhance the re-
trieval process further by using random projections for dimensionality reduction.

3 Enhancing the Retrieval Process

3.1 Reducing Dimensions Using Random Projection

Reducing dimensions is one of the key features that is used to uncover the
underlying concepts. Random Projection main hypothesis is that high dimen-
sional vectors chosen at random are nearly orthogonal and much computationally

6 A.M. Daoud

cheaper to produce than methods such as Singular Value Decomposition [10].
Singular value decomposition is the algorithm used in latent semantic indexing
[6]. For an M ×N matrix A, the full singular value decomposition complexity is
quadratic [4].

3.2 Scaling Context Vectors Model

Because Random Projection uses nearly orthogonal context vectors that are be
created independently of one another. This is crucial for indexing large collections
of individual pages and computations can be distributed over a large network of
computers.

3.3 Incremental Updates

Related to distributed or parallelizable model creation is the consideration of
incremental updates. It is easy to update a basic Random Projection model
incrementally: each time we add a new document, we create an independent new
Random Vector for it, and it does not matter if this is batched separately from
previous additions. Therefore, incremental addition of new terms and documents
to the context vector models does not require rebuilding them from scratch.

4 Effectiveness Results

In this section, we present a complete evaluation of the relative effectiveness of
the NETBOOK system versus the GOOGLE Desktop search engine.

The standard formulation for recall and precision [11] were used; if A is the set
of relevant documents for a given query, and B is the set of retrieved documents,
then

Recall =
|A ∩ B|
|A|

Precision =
|A ∩ B|
|B|

where “|x|” denotes the number of documents in set x.
To validate our NETBOOK technical choices, we have collected the top ten

searches [15] in the areas of computer science, math, and physics. Then, for each
search, we identified relevant pages by manually checking the book indexes. If
the retrieved page has a search term in the index of the book pointing at the
retrieved page, the page was judged “definitely relevant”; and if the book has the
search item on other pages of the same chapter, it was judged “likely relevant”;
otherwise, it was judged “irrelevant”. All judgments were averaged and fed into
the SMART evaluation package [11] at two cutoff points: 3 (likely relevant)
and 4 (definitely relevant). The rational behind this relevance judgments is that
authors know their material best.

Effective Web and Desktop Retrieval with Enhanced Semantic Spaces 7

Table 1. Total Retrieved, Total Relevant-Retrieved, Precision, and Recall for the NET-

BOOK system and the GOOGLE Desktop, out of 1298 Manually Judged Relevant

System Retrieved Rel-ret Precision Recall

NETBOOK 1873 901 0.4810 0.6941
GOOGLE 3814 632 0.1657 0.4869

Table 2. Average Retrieved, Average Relevant-Retrieved, Precision, and Recall for

the NETBOOK system and the GOOGLE Desktop for Queries of Length 3, out of 161

Relevant

System Retrieved Rel-ret Precision Recall

NETBOOK 12.67 7.34 0.5783 0.0456

GOOGLE 22.27 6.78 0.304 0.042

Table 3. Recall Values for the NETBOOK system and the GOOGLE Desktop

System Exact at 5 docs at 10 docs at 15 docs at 30 docs

NETBOOK 0.3631 0.0035 0.0126 0.0271 0.0672
GOOGLE 0.5320 0.0055 0.0110 0.0194 0.0346

In Tables 1 and 2, we show the number of retrieved documents, and the
number of relevant retrieved documents, then we compute the precision and
recall for each system and for question lengths of three terms. We notice that
NETBOOK retrieved more relevant items than GOOGLE Desktop.

In Table 3, we show recall values for the NETBOOK system and the GOOGLE
Desktop. The exact recall is the recall for exactly the retrieved document set, av-
eraged over all queries (num rel docs with rank less than or equal to num wanted
/ num rel docs). Also, we show recall values after 5, 10, 15, and 30 documents
have been retrieved. Generally, we notice that the NETBOOK system generally
achieves better recall values.

In Table 4, we show precision values for the NETBOOK system and the
GOOGLE Desktop. The exact precision is the precision for exactly the retrieved
document set (i.e., after num wanted documents were retrieved). Also, we show
precision values after 5, 10, 15, and 30 documents have been retrieved. We notice
that the NETBOOK system generally achieves higher precision.

4.1 SAS Tests

Relevant Retrieved Test. The Relevant Retrieved test revealed a statistically
significant difference between the for the NETBOOK system and the GOOGLE
Desktop at the p = 0.01 level. We tested the hypothesis that there is no differ-
ence in the number of relevant documents retrieved by both systems. Table 5
shows the LSMEAN results of this metric for for the NETBOOK system and the

8 A.M. Daoud

Table 4. Precision Values for the NETBOOK system and the GOOGLE Desktop

System Exact at 5 docs at 10 docs at 15 docs at 30 docs

GOOGLE 0.33 0.49 0.45 0.47 0.46

NETBOOK 0.31 0.34 0.35 0.39 0.42

Table 5. Means for RelevantRetrieved for the NETBOOK system and the GOOGLE

desktop system

GLM Procedure Least Squares Means

System LSMEAN Pr > |T | H0 : LSMEAN(i) = LSMEAN(j)
1 (NETBOOK) 2 (GOOGLE)

NETBOOK 15.56 1 - 0.0002

GOOGLE 8.46 2 0.0002 -

Table 6. LSMEAN Results of the Relevant Retrieved Metric for Different Query

Lengths

Question Length GOOGLE NETBOOK

2 6.3 16.1

3 8.2 23.2

4 4.3 16.5

6 6.3 18.4

GOOGLE Desktop. There is a significant difference between both systems. We
observe that the NETBOOK system retrieved more relevant documents than
the GOOGLE desktop system.

Also there is evidence that the Relevant Retrieved metric is dependent on the
query length. The LSMEAN results are tabulated in Table 6. Query length 3
seems generally best.

NumRetrieved (Number of Documents Retrieved) Test. The NumRe-
trieved test revealed a statistically significant difference between the for the
NETBOOK system and the GOOGLE Desktop at the p = 0.01 level. We tested
the hypothesis that there is no difference in the number of retrieved documents
by different systems. Table 7 shows the LSMEAN results of this metric for the
Two retrieval systems. There is a significant difference between the NETBOOK
system and the GOOGLE Desktop, as the NETBOOK system retrieved more
documents.

Also there is evidence that the Relevant Retrieved metric is dependent on the
query length. The LSMEAN results are tabulated in Table 6. As expected, the
NETBOOK system retrieved more documents than the GOOGLE Desktop. In
all cases, longer queries retrieved more documents.

Effective Web and Desktop Retrieval with Enhanced Semantic Spaces 9

Table 7. Means for NumRetrieved for the NETBOOK system and the GOOGLE

Desktop

GLM Procedure Least Squares Means

System LSMEAN Pr > |T | H0 : LSMEAN(i) = LSMEAN(j)
1 (NETBOOK) 2 (GOOGLE DESKTOP)

GOOGLE 16.06 1 - 0.0467

NETBOOK 25.75 2 0.0467 -

Table 8. LSMEAN Results of the NumRetrieved Metric for Different Query Lengths

Question Length GOOGLE NETBOOK

2 9.85 21.51

3 13.02 27.36

4 15.71 28.42

6 21.69 28.42

Table 9. Means for Average Precision for the NETBOOK system and the GOOGLE

Desktop

GLM Procedure Least Squares Means

System LSMEAN Pr > |T | H0 : LSMEAN(i) = LSMEAN(j)
1 (NETBOOK) 2 (GOOGLE DESKTOP)

GOOGLE 0.11 1 - 0.0303

NETBOOK 0.20 2 0.0303 -

Average Precision Test. Table 9 shows the LSMEAN results of the 11-point
average precision test for the NETBOOK system and the GOOGLE desktop.
There is a significant difference both systems at the 0.01 level.

5 Conclusions

We have described the design and implementation of the NETBOOK prototype
system for collecting, structuring and using semantic information derived from
full text ebooks available on the World Wide Web. Furthermore, we presented
a complete evaluation of the relative effectiveness of the NETBOOK system
versus the GOOGLE Desktop search system [8]. Our results shows clearly the
increased effectiveness of our approach. We are planning to check the NETBOOK
system against other available search engines such as Indri/Lemur in the near
future.

10 A.M. Daoud

References

1. Belkin, N.J., Croft, W.B.: Retrieval techniques. Annual Review of Information

Science and Technology 22, 109–145 (1987)

2. Briggs, G., Shamma, D., Caas, A.J., Carff, R., Scargle, J., Novak, J.D.: Concept

Maps Applied to Mars Exploration Public Outreach. In: Caas, A.J., Novak, J.D.,

Gonzlez, F. (eds.) Concept Maps: Theory, Methodology, Technology, Proceedings

of the First International Conference on Concept Mapping. Universidad Pblica de

Navarra, Pamplona (2004)

3. Caas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Eskridge, T., Gmez, G., Arroyo,

M., Carvajal, R.: CmapTools: A Knowledge Modeling and Sharing Environment.

In: Caas, A.J., Novak, J.D., Gonzlez, F.M. (eds.) Concept Maps: Theory, Method-

ology, Technology, Proceedings of the First International Conference on Concept

Mapping. Universidad Pblica de Navarra, Pamplona (2004)

4. Brand, M.: Incremental singular value decomposition of uncertain data with miss-

ing values. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002.

LNCS, vol. 2350, pp. 707–720. Springer, Heidelberg (2002)

5. Broder, A.Z.: On the resemblance and containment of documents. Compression

and Complexity of Sequences (1997)

6. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing

by latent semantic analysis. Journal of the American Society for Information Sci-

ence 41(6), 391–407 (1990)

7. Edward, A.F.: Lexical relations: Enhancing effectiveness of IR systems. ACM

SIGIR Forum 15(3), 5–36 (Winter 1980)

8. http://desktop.google.com/

9. Leake, D., Maguitman, A., Reichherzer, T., Caas, A., Carvalho, M., Arguedas, M.,

Brenes, S., Eskridge, T.: Aiding knowledge capture by searching for extensions

of knowledge models. In: Proceedings of KCAP-2003. ACM Press, St. Augustine

(2003)

10. Sahlgren, M.: The Word-Space Model: Using distributional analysis to represent

syntagmatic and paradigmatic relations between words in high-dimensional vector

spaces. PhD thesis, Department of Linguistics, Stockholm University (2006)

11. Salton, G.: The SMART system 1961-1976: Experiments in dynamic document

processing. In: Encyclopedia of Library and Information Science, pp. 1–36 (1980)

12. Van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge Univer-

sity Press, Cambridge (2004)

13. Widdows, D., Ferraro, K.: Semantic Vectors: A Scalable Open Source Package and

Online Technology Management Application, Google Code (2009)

14. Hinrich Schutze, H.: Automatic word sense discrimination. Computational Linguis-

tics 24(1), 97–124 (1998)

15. Spink, A., Wolfram, D., Jansen, B.J., Saracevic, T.: Searching the Web: The Public

and their Queries. Journal of the American Society for Information Sciences and

Technology 52(3), 226–234

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 11–22, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Considering Patterns in Class Interactions Prediction

Nazri Kama1,2, Tim French2, and Mark Reynolds2

1 Advanced Informatics School, Universiti Teknologi Malaysia, Malaysia
2 Computer Science and Software Engineering, The University of Western Australia, Australia

{nazri,tim,mark}@csse.uwa.edu.au

Abstract. Impact analysis has been defined as an activity of assessing the
potential consequences of making a set of changes to software artifacts. Several
approaches have been developed including performing impact analysis on a
reflected model of class interactions analysis using class interactions prediction.
One of the important elements in developing the reflected model is a
consideration of any design pattern that the software employs. In this paper we
propose a new class interactions prediction approach that includes a basic
pattern analysis i.e., Boundary-Controller-Entity (BCE) pattern in its prediction
process. To demonstrate the importance of the pattern consideration in the
prediction process, a comparison between the new approach (with pattern
consideration) and two selected current approaches (without pattern
consideration) were conducted. The contributions of the paper are two-fold: (1)
a new class interactions prediction approach; and (2) evaluation results show
the new approach gives better accuracy of class interactions prediction than the
selected current approaches.

Keywords: impact analysis; requirement interactions; class interactions;
pattern; traceability; requirement; class.

1 Introduction

A typical problem with software is that when changes happen to any part of the
software, it may produce unintended, expensive or even disastrous effects [1,2].
Change impact analysis or impact analysis has been used to manage these problems
[1-5]. According to Bohner [1], impact analysis is an activity of assessing the effect
before making changes to the software. This activity is also known as a predictive
impact analysis.

The predictive impact analysis is partitioned into two categories which are low
level analysis and high level analysis. The low level analysis category focuses on
predicting a change impact based on low level artifacts analysis e.g., class interactions
analysis [2,3]. The class interactions analysis provides reasonable accurate results
since the class represent final implementation of user requirements. However, despite
giving good results, class interactions analysis faces several challenges: (1) it requires
detailed understanding of the system and its implementation; and (2) the amount of
information to be analyzed can be so overwhelming that it may lead the analysis
results to error [6,7].

12 N. Kama, T. French, and M. Reynolds

As an alternative, the high level analysis category has been introduced [6-10]. This
category performs change impact prediction using high level artifacts analysis e.g.,
high level model [4-8]. One of the high level models is a class interaction prediction
[7,8]. Results by performing the change impact prediction on the class interaction
prediction are considered reflect to the low level analysis or actual class interactions
analysis. Therefore, the accuracy of the class interaction prediction is critically
important as it reflects the accuracy of the change impact prediction.

One of the techniques to develop the class interaction prediction is through
reflection of significant object interactions in requirement artifacts [7,8]. The
significant object refers to an object that has a traceability link with any class name in
class artifacts. This technique is based on the precept that the interactions between
significant objects in requirement artifacts reflect the actual class interactions in
coding artifacts.

However, this technique faces a challenge when the software employs pattern or
design pattern [9,10] in its implementation. This will make the reflection of the
significant object interactions to class interactions is inaccurate as the design pattern
class has no reflection with the significant object in requirement artifacts. For
example in the Boundary-Controller-Entity (BCE) pattern [9], this pattern does not
allow any interaction between Boundary and Entity classes. It creates a Controller
class that acts as a mediator class to manage interactions between these classes. Since
the Controller class is independently created to support the pattern implementation,
this class has no reflection with any significant object in requirement artifacts. This
situation leads to inaccurate reflection results.

To support the above challenge, we introduce a new class interactions prediction
approach that includes pattern consideration in its prediction process. This approach
composes two main steps which are reflecting the significant object interactions to
predict actual class interactions and performing pattern analysis. As a preliminary
work, we have selected the BCE pattern as the pattern to be considered in the
prediction process.

This paper is laid out as follows: Section 2 briefly describes the related work.
Then, Section 3 comprehensively explains the new class interactions prediction
approach. Subsequently, Section 4 and Section 5 present the evaluation strategy and
evaluation results. Thereafter, Section 6 discusses the results. Next, Section 7 presents
the conclusion and future works.

2 Related Works

There has not been much work related to development of class interactions or class
diagram from requirement artifacts. There are two categories of class interactions
development which are requirement artifacts analysis and non-requirement artifacts
analysis. For the requirement artifacts analysis, typically noun and noun phrase
keyword analysis has been used to reflect the class name. Interactions between the
keywords are then reflected to class interactions. Liang [11] proposes a use case goal
analysis rather than a use case description analysis. Sharble and and Cohen introduce
grammatical analysis [12]. There are two approaches for grammatical analysis which
are data-driven which emphasis on information that the keyword possesses and

 Considering Patterns in Class Interactions Prediction 13

responsibility-driven that focuses on services provided by the keyword. Premerlani
[9] shows a structured approach using Unified Modeling Language (UML) object
interactions diagram to build the object model.

For the non-requirement artifacts analysis, Bahrami [13] introduces “common class
pattern” approach that is based on identification of various kinds of classes, of which
a system will typically consist. Among the classes are physical classes, business
classes, logical classes, application classes, computer classes and behavioral classes.
Wirfs-Brock et al [14] show a Class-Responsibility-Collaborator (CRC) card that is
used in brainstorming sessions. Each developer plays one or more cards where new
classes are identified from the message passing between the developers.

3 A New Class Interactions Prediction Approach

The following Figure 1 shows the overall structure of the new approach.

Fig. 1. Class Interactions Prediction Approach

Looking at the above figure, the new class interaction prediction approach consists
of three main steps. The first step is to extract significant object from requirement
artifacts. The extraction of the significant object is important as not all objects in
requirement artifacts contributes to class interaction. As described earlier, the
significant object refers to an object that only has traceability link with class name in
class artifacts. The second step is to reflect the detected significant object and its
interactions to develop an initial class interactions prediction. This reflection is based
on the precept that the interactions between significant objects in requirement artifacts
reflect the actual class interactions. Finally, the initial class interactions prediction is
modified based on pattern analysis. The modification is based on the precept that
design pattern class that exists in actual class interactions has no reflection from the
significant object in requirement artifacts. A detailed explanation of each step is
described in the following sub-sections:

3.1 Step 1: Extract Significant Object from Requirement Artifacts

This step focuses on extracting significant objects in requirement artifacts. As
described earlier, the significant object is an object in requirement artifacts that has

14 N. Kama, T. French, and M. Reynolds

traceability link with any class name in class artifacts. We have developed a new
traceability link detection technique that is based on similarity analysis concept
between: (1) the object name in requirement artifacts and class name in class artifacts;
and (2) the object name in requirement artifacts and class attribute name in class
artifacts. If the analysis detects similarity in (1) or (2), a traceability link is considered
exist and the object name is considered as the significant object.

There are two types of similarity analysis: (1) SA1: Similarity analysis between
object name in requirement artifacts and class name; and (2) SA2: Similarity analysis
between object name in requirement artifacts and class attribute name. In brief for
SA1, there are three types of sub-analyses which are: (1) SA1.1: Similarity analysis of
an object name that has three nouns with a class name; (2) SA1.2: Similarity analysis
of an object name that has two nouns with a class name and; (3) SA1.3: Similarity
analysis of an object name that has a noun with a class name. For the SA2, there are
two types of sub-analyses which are: (1) SA2.1: Similarity analysis of an object name
that has three nouns with a class attribute name; (2) SA2.2: Similarity analysis of an
object name that has two nouns with a class attribute name. A detailed explanation of
the similarity analysis concept can be found in [15].

3.2 Step 2: Reflect Significant Object Interactions to Class Interactions

This step focuses on reflecting the significant object interactions to class interactions.
Prior to reflecting the significant object interactions, the interactions among the
significant objects are detected. There are two situations where the significant object
interactions can be detected.

The first situation is the detection of the significant objects interaction in a
requirement description. Given an example of a requirement description (RD) “RD-
The student registers any courses using their StudentID”, this requirement
description consists of three significant objects that are interacting which are Student
object, Course object and StudentID object. According to the requirement
description, we interpret interactions between the significant objects as Student
object interacts with the Course object and the Course object interacts with the
StudentID object.

The second situation is the detection of the significant objects interaction in two
interacting requirements. Given an example of two interacting requirement
descriptions “RD1- the student must log in to the system using student card
information” and “RD2- the system registers any selected courses by the student”, the
RD1 and RD2 consist of two significant objects which are Student and Student Card
objects for the RD1 and Courses and Student objects for the RD2. These two
requirement descriptions are interacting between them since the Course object in the
RD2 can only add a new Course after the Student Card in the RD1 has been
successfully verified. Based on this situation, the Course object has interaction with
the Student Card object.

Based on the detected significant object interactions, the reflection process is then
performed. The following Figure 2 is used to describe the reflection process.

 Considering Patterns in Class Interactions Prediction 15

Fig. 2. Example of Reflecting from Significant Object Interactions to Class Interactions

Looking at the above figure, there are three interacting significant objects (SO)
which are SO1, SO2 and SO3. The interactions among these significant objects are:
(1) SO1 interacts with SO2; (2) SO1 interacts with SO3; and (3) SO2 interacts with
SO3. The traceability link between the significant objects and the class (CL) artifacts
are: (1) SO1 has traceability link with CL1; (2) SO2 has traceability with CL2; and
(3) SO3 has traceability with CL3. Given the interactions and traceability link data,
the class interactions prediction is then developed.

3.3 Step 3: Modify the Initial Class Interactions Prediction Based on Pattern
Analysis

This step concentrates on modifying the initial class interactions prediction based on
Pattern analysis. According to Gamma [16], Pattern is defined as a tested solution
structure for common occurring design problems. By having a tested solution, it
indirectly assists software developer to solve some common design problems. For
example, one of the design problems is the difficulty to maintain a software system
because of interdependencies of all components. The interdependencies cause ripple
effects when a change is made anywhere. A high coupling classes cause difficulty or
almost impossible to reuse them as they depend on various classes. Furthermore,
adding a new data often requires re-implementing of business logic classes which
then requires maintenance in various places.

One of the Patterns that solve the above problem is a Boundary-Controller-Entity
(BCE) pattern [16-18]. This pattern separates the application classes into three
categories which are Boundary class, Controller class and Entity class. The Entity
class is a class that possesses data or business rules that access to and updates data
from/to database. For the Boundary class, it is a class that renders the content of the
Entity class and presents the content to user. Finally the Controller class is responsible
for translating the message from Boundary class and passing it to the Entity class. By
separating these classes, any changes to the application can be easily managed. For
instance if change happens to user interface or Boundary class, the business logic
class or Entity class will not be affected as these two classes are separated by the
Controller class. Similarly if change happens to the Entity class, the Boundary class
will not be affected.

We introduce three sub-steps to modify the initial class interactions prediction. As
described earlier, we have selected the BCE pattern as the preliminary work for
pattern analysis. The modification steps are: (1) Step 3.1: Classify class into Pattern
class types; (2) Step 3.2: Categorize class into use case and; (3) Step 3.3: Establish
Controller class interactions. Details of each sub-step are described as follows:

 SO1 SO2 SO3
SO1
SO2 √
SO3 √ √

SO Name Class Name
SO1 CL1
SO2 CL2
SO3 CL3

Traceability link SO Interactions
 CL1 CL2 CL3
CL1
CL2 √
CL3 √ √

Class Interactions Prediction

16 N. Kama, T. French, and M. Reynolds

3.3.1 Step 3.1: Classify Class into Pattern Class Types
The BCE pattern consists of three types of classes which are Boundary class,
Controller class and Entity class. The classification is done by reviewing role of each
class. There are three types of roles that a class has potential to become the Boundary
class [18]. The roles are: (1) a class that communicate with human user of a software
system. This class is also known as user interface class; (2) a class that communicates
with other systems or external system. This class is also known as system interface
class or; (3) a class that communicates with devices to detect external events. This
class is also known as hardware interface class. For the Entity class, there are two
types of roles which are [18]: (1) a class that stores information or; (2) a class that
performs business logic or information processing. Finally, a class that manages
interactions between the Boundary class and Entity class is considered as the
Controller class.

3.3.2 Step 3.2: Categorize Class into Use Case
To categorize class into use case, each class is reviewed to identify which use case
that the class is coming from. To identify the use case, the detected horizontal
traceability links between class and significant object in requirement artifacts (from
Step 1) are analyzed. The analysis focuses on tracing which requirement artifacts that
the class belongs to. However, some significant objects may exist in different
requirement descriptions or different use case. If a class is coming from different use
cases, the class can be categorized in any of those use cases.

3.3.3 Step 3.3: Establish Controller Class Interactions
There are two types of Controller class interactions which are: (1) interactions
between Controller class and Boundary class and; (2) interactions between Controller
class and Boundary class. These types of interactions are developed based on use case
specification. The reason of developing the Controller class interactions based on the
use case specification are: (1) a Controller class is created per use case specification
and; (2) a Controller class is used to coordinate use case implementation [15,18].

Since the Controller class interactions are developed based on use case, Boundary
and Entity classes need to be categorized into use case. The categorization is needed
because of the Controller class interaction with the Boundary and Entity classes will
be developed based on use case. After classifying the Boundary and Entity classes,
the new Controller class interactions are then established. There are two scenarios
where the Controller class interactions can be established: (1) Scenario 1: Establish
Controller class interactions among the classes in a same use case and; (2) Scenario 2:
Establish Controller class interactions across different use cases (also called inter-use
case interaction).

Scenario 1: Establish Controller class interactions in a same use case. This scenario
explains that the two types of Controller class interactions are established among
classes (Boundary and Entity) in a same use case. This scenario could happen when
the interacting Boundary and Entity classes reflect to the interacting significant

 Considering Patterns in Class Interactions Prediction 17

objects belong to a same use case. There are two steps to establish the Controller class
interactions in this scenario. The first step is to eliminate interactions between
Boundary class and Entity class. The elimination is based on the BCE pattern
interaction rules [18]. According to the rules, the pattern does not allow any
interaction between Boundary class and Entity class and if exists, the interaction need
to be eliminated. The second step is to establish the Controller class interactions. The
interactions are: (1) from Boundary class to a Controller class; and (2) from
Controller class to Entity class.

Scenario 2: Establish Controller class interactions across different use cases. This
scenario is motivated by a scenario when any interacting classes (Boundary and
Entity) that reflect to the interacting significant objects in which any of the significant
objects exist in different use cases (during the categorization of class into use case-
see Step 3.2). This scenario indirectly shows the class which reflects to the significant
object that exist in different use cases will have interaction with Controller class that
belong to those use cases.

4 Evaluation Strategy

The evaluation aims to compare the accuracy of class interactions prediction produced
by the new approach and selected current class interactions prediction approaches.
There are four elements have been considered in the evaluation strategy which are
case studies, evaluation process and evaluation metrics. The following sub-sections
describe detailed implementation of each element.

4.1 Case Study

Five software projects were selected to evaluate the capability of the improved
approach. These software projects were developed by several groups of final year
post-graduate students of software engineering course at the Centre for Advanced
Software Engineering, Universiti Teknologi Malaysia.

4.2 Evaluation Process

There are three steps in the evaluation process. The first step is to extract software
artifacts documentations versions from each software project. There are two sets of
the extracted documentations which are design phase and coding phase versions. The
reason of extracting these versions is to validate the effectiveness of the approaches
(current and proposed) to develop class interactions prediction with and without
design pattern class involvement. We assume that the design phase version consists of
minimal design pattern class involvement as most design pattern class has not been
developed yet. For the coding phase version, maximal design pattern class
involvement where most of the design pattern classes have been developed. Each
version consists of three types of software artifacts which are requirement artifacts
and coding artifacts.

18 N. Kama, T. French, and M. Reynolds

The second step is to develop class interactions prediction for each software project
using selected current approaches and the proposed approach. We have selected two
current class interaction prediction approaches which are Grammatical Analysis (GA)
[11] and Use-Case Goal (UCG) [12]. Both approaches use reflection of object
interactions concept to develop class interactions prediction. The main difference
between the current approaches and the proposed approach is that the new proposed
approach includes Pattern analysis in its prediction process.

The third step is to compare the current class interactions prediction approaches
results with the proposed class interactions prediction approach results. We employed
our previous developed set of evaluation metrics [7,8] to evaluate the accuracy of
class interactions prediction.

4.3 Evaluation Metrics

This study has employed the evaluation metric. Briefly, each generated class
interactions prediction can be assessed according to four numbers: NP-NI (the number
of pairs of classes correctly predicted to not interacting), P-NI (the number of pairs
incorrectly predicted to interacting), NP-I (the number of classes incorrectly predicted
to not interacting) and P-I (the number of classes correctly predicted to interacting).
These numbers is then used to calculate a Kappa value [19], which reflects the
accuracy or the prediction (0 is no better than random chance, 0.4-0.6 is moderate
agreement, 0.6-0.8 is substantial agreement, and 0.8-1 is almost perfect agreement).

5 Evaluation Results

The evaluation results are divided into two groups which are: (1) class interactions
prediction results produced by current approaches (GA and UCG approaches) and; (2)
class interactions prediction results produced by the proposed approach.

Results Produced by the Current Approaches (without Pattern Analysis)
The following Table 1 and Table 2 show the prediction results produced by the GA
and UCG approaches accordingly.

Table 1. Prediction Results Produced By the GA Approach

Attribute
Design Phase Version Coding Phase Version

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

NP-NI 98 95 98 106 119 253 258 302 287 274

P-NI 7 6 4 6 5 102 135 112 105 143

NP-I 5 7 6 4 6 110 105 131 132 110

P-I 100 102 102 115 123 201 243 275 256 253

Corr (%) 93 94 96 95 96 66 64 71 71 64

Com (%) 95 94 94 97 95 65 70 68 66 70

Kappa (k) 0.9 0.89 0.92 0.93 0.93 0.4 0.42 0.47 0.45 0.42

 Considering Patterns in Class Interactions Prediction 19

Table 2. Prediction Results Produced By the UCG Approach

Attribute
Design Phase Version Coding Phase Version

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

NP-NI 94 90 101 102 110 244 284 297 287 276

P-NI 6 7 7 10 8 110 132 123 105 127

NP-I 8 6 9 6 6 104 98 114 132 123

P-I 102 107 93 113 129 208 227 286 256 254

Corr (%) 94 94 93 92 94 65 63 70 71 67

Com (%) 93 95 91 95 96 67 70 72 66 67

Kappa (k) 0.89 0.9 0.86 0.88 0.91 0.41 0.42 0.49 0.45 0.42

Iteration 1-Design Phase Results (GA and UCG): Both approaches show: (a) the
correctness and completeness values across software projects indicate a high
prediction value where more than two-third of the actual class interactions were
predicted and; (b) The kappa values show an almost perfect strength of agreement
between the class interactions prediction and the actual class interactions.

Iteration 2-Coding Phase Results (GA and UCG): Both approaches show: (a) the
correctness and completeness values across software projects indicate a low
prediction value where less than two-third of the actual class interactions were
predicted and; (b) the kappa values show the approaches produce a moderate strength
of agreement between the class interactions prediction and the actual class
interactions.

5.1 Results Produced by the Proposed Approach (with Pattern Analysis)

The following Table 3 shows the prediction results produced by the proposed
approach.

Table 3. Prediction Results Produced by the Proposed Approach

Attributes
Design Phase Version Coding Phase Version

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

NP-NI 98 95 98 106 119 276 303 338 335 344

P-NI 7 6 4 6 5 53 61 45 56 34

NP-I 5 7 6 4 6 68 62 52 33 46

P-I 100 102 102 115 123 269 315 385 356 356

Corr (%) 93 94 96 95 96 84 84 90 86 91

Com (%) 95 94 94 97 95 80 84 88 92 89

Kappa (k) 0.9 0.89 0.92 0.93 0.93 0.68 0.71 0.80 0.81 0.82

Iteration 1- Design Phase and Iteration 2- Coding Phase Results: Both iterations
results show (a) the correctness and completeness values across software projects
indicate a high prediction value where more than two-third of the actual class
interactions were predicted and; (b) Iteration 1 results: the kappa values show the

20 N. Kama, T. French, and M. Reynolds

approach produce an almost perfect strength of agreement between the class
interactions prediction and the actual class interactions. Iteration 2: the kappa values
show a substantial and an almost perfect strength of agreement in between the class
interactions prediction and the actual class interactions.

6 Analysis of Results

Prior to analyzing the results, we construct the following Table 4 in order to show the
number of developed design pattern class and kappa value results across all software
projects. We then divide the analysis into two sections.

Table 4. Number of Developed Design Pattern Class and Kappa Value

Iteration 1- Design Phase Iteration 2- Coding Phase

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5
No of Developed
Design Pattern Class

0 0 0 0 0 13 11 10 9 8

Kappa Value 0.89 0.9 0.86 0.88 0.91 0.4 0.42 0.49 0.45 0.42

6.1 Current Approaches Iteration 1 Results vs. New Approach Iteration 1
Results Analysis

Looking at Table 1, Table 2 and Table 3 results, all Kappa values indicate a high
prediction value. Also, the results show there is no significant different between
results produced by the selected current approaches and the new approach. Relating
the accuracy of the prediction results to the number of design pattern class (see Table
3), we would like to explain that there is no clear indication that the number of design
pattern class affects the accuracy of the prediction results. This is because of there is
no design pattern class involvement in the prediction. Therefore, we make an
argument that all approaches manage to produce high accuracy of prediction results
when there is no design pattern class exist in the actual class interactions.

6.2 Current Approaches Iteration 2 Results vs. New Approach Iteration 2
Results Analysis

Looking at Table 1, Table 2 and Table 3 results, both Kappa values for the current
approaches indicate a low prediction value whereby the new approach indicates a
high prediction value. Relating the accuracy of the prediction results to the number of
design pattern class (see Table 3), we would like to explain that there is a clear
indication that the number of design pattern class in the actual class interactions
affects the accuracy of the prediction results. This can be seen by looking at the
current approaches results. The results show that the accuracy of the prediction results
(Kappa value) is lower when design pattern class exists in the actual class
interactions.

Therefore, we make two arguments from this iteration results. The first argument is
that the current approaches are not able to produce high accuracy of prediction results
when there is design pattern class exists in the actual class interactions. The second
argument is that the new approach gives high accuracy of prediction results than the

 Considering Patterns in Class Interactions Prediction 21

current approaches when design pattern class exists in the actual class interactions.
This argument indirectly supports the importance of pattern consideration in the class
interactions prediction process.

7 Conclusion and Future Work

We have proposed a new class interactions prediction approach that composes two
main steps. The first step develops an initial class interactions prediction through
reflection of significant object interactions in requirement artifacts via traceability
analysis. The second step improves the initial class interactions prediction through
Pattern analysis. The difference with the proposed approach and current approaches is
that the proposed approach includes the Pattern analysis in its prediction process.

Besides introducing the new approach, we have compared the capability of the new
approach to predict class interactions with two selected current approaches. The
evaluation results reveal that that the new approach gives better accuracy of
prediction results than the selected current approaches. This evaluation results also
indirectly show the importance of Pattern consideration in class interactions
prediction process.

However, current application of the new approach is restricted to a software
application that employs Boundary-Controller-Entity pattern. The extension to other
patterns will be investigated by future work. Furthermore, a demonstration on
performing predictive impact analysis using the new class interaction prediction will
be included as well.

References

1. Bohner, S., Arnold, R.: Impact Analysis - Towards a Framework for Comparison. In:
Proceeding of the IEEE International Conference on Software Maintenance, pp. 292–301.
IEEE Press, Washington (1993)

2. Breech, B., Danalis, A., Shindo, S., Pollock, L.: Online Impact Analysis via Dynamic
Compilation Technology. In: Proceeding of the 20th IEEE International Conference on
Software Maintanence, pp. 453–457. IEEE Press, Illinois (2004)

3. Law, J., Rothermel, G.: Incremental Dynamic Impact Analysis for Evolving Software
Systems. In: Proceeding of the 14th International Symposium on Software Reliability
Engineering, p. 430. IEEE Press, Colorado (2003)

4. Li, Y., Li, J., Yang, Y., Mingshu, L.: Requirement-centric Traceability for Change Impact
Analysis: A Case Study. In: Wang, Q., Pfahl, D., Raffo, D.M. (eds.) ICSP 2008. LNCS,
vol. 5007, pp. 100–111. Springer, Heidelberg (2008)

5. Hassine, J., Rilling, J., Hewitt, J., Dssouli, R.: Change Impact Analysis for Requirement
Evolution using Use Case Maps. In: Proceeding of the 8th International Workshop on
Principles of Software Evolution, pp. 81–90. IEEE Press, Washington (2005)

6. Shiri, M., Hassine, J., Rilling, J.: A Requirement Level Modification Analysis Support
Framework. In: Proceeding of the 3rd International IEEE Workshop on Software
Evolvability, pp. 67–74. IEEE Press, Paris (2007)

7. Kama, N., French, T., Reynolds, M.: Predicting Class Interaction from Requirement
Interaction. In: Proceeding of the 13th IASTED International Conference on Software
Engineering and Application, pp. 30–37. ACTA Press, Cambridge (2009)

22 N. Kama, T. French, and M. Reynolds

8. Kama, N., French, T., Reynolds, M.: Predicting Class Interaction from Requirement
Interaction: Evaluating a New Filtration Approach. In: Proceeding of the IASTED
International Conference on Software Engineering. ACTA Press, Innsbruck (2010)

9. Premerlani, J., Rumbaugh, J., Eddy, M., Lorensen, W.: Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs (1991)

10. Fowler, M.: Analysis Patterns – Reusable Object Models. Addison Wesley, Reading (2002)
11. Liang, Y.: From Use Cases to Classes: A Way of Building Object Model with UML.

Journal of Information and Software Technology 45, 83–93 (2002)
12. Sharble, R.C., Cohen, S.S.: The Object-oriented Brewery: A Comparison of Two Object-

oriented Development Methods. Software Engineering Notes 18, 60–73 (1993)
13. Bahrami, A.: Object Oriented Systems Development. McGraw-Hill, New York (1999)
14. Wirfs-Brock, R., Wilkerson, B., Wiener, L.: Designing Object-Oriented Software. Prentice

Hall, Englewood Cliffs (1990)
15. Kama, N., French, T., Reynolds, M.: Considering Pattern in Class Interactions Prediction.

Draft of Technical report, Computer Science and Software Engineering, UWA (2010),
http://people.csse.uwa.edu.au/nazri/Techreport/
ASEATechReport.pdf

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, Reading (2000)

17. Liyan, C.: Application Research of Using Design Pattern to Improve Layered Architecture.
In: Proceeding of the International Conference on Control, Automation and Systems
Engineering, pp. 303–306. IEEE Press, China (2009)

18. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

19. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Journal of Educational and
Psychological Measurement 20, 37–46 (1960)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 23–29, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Design of an Unattended Monitoring System Using
Context-Aware Technologies Based on 3 Screen

Seoksoo Kim

Dept. of Multimedia, Hannam Univ., 133 Ojeong-dong, Daedeok-gu, Daejeon-city, Korea
sskim0123@naver.com

Abstract. More recently, the importance of a multimedia-based monitoring
system, keeps growing for the purpose of preventing crimes and, thus, various
systems are being released. Nevertheless, most systems are lacking an
independent feature of detection but simply saves a video or image. In order to
overcome problems, therefore, this study has developed an unattended
monitoring system based on a 3 Screen service environment by combining
image tracking and analysis technologies, which can extract a human from
images, with context-aware technologies using behavior patterns of people
tracked and data of a surrounding environment, fully utilizing the wireless
network infrastructure that has been increasingly available.

Keywords: Context-Aware, Unattended Monitoring, 3 Screen, Monitoring
System.

1 Introduction

After the release of iPhone, consumers are turning their eyes upon smart phones and
companies expect introduction of smart phones can increase productivity, which
allowed the smart phone market to experience an explosive growth during the past a
few month. The manufacturers and service providers of mobile phones are making
increasing efforts to offer more smart phone products.

Also, expression of Augmented Reality(AR) through a smart phone requires
context-aware technology. In turn, the technology calls for accurate provision of
product information after tracking a product and accurate understanding of the
information by participants based on a smooth flow of product information [1,2].

Meanwhile, 3 Screen is a concept first held by AT&T which is a service
environment that users can enjoy contents anytime and anywhere by connecting a TV,
PC, or mobile with the Internet [3]. The technology constantly provides services no
matter where the user is or what device he uses. And the contents do not need to be
converted according to devices, for the technology can be applied to all formats.

Apple is one of the companies with the powerful potential of leading the 3 Screen
market. With the release of iPhone, Apple has caused the smart phone craze to sweep
the world and now holds a tremendous amount of contents available through 'App
Store'. The company also operates 'iTunes' which offers music, games, movies, etc.
and 'Mobile Me', allowing users to share pictures or files through synchronization of
iPod Touch, iPhone, and a computer.

24 S. Kim

At present, Apple is planning to offer Apple TV for 3 Screen services. Although
Apple has started from the hardware business, the company has proved its strong
power in software also and has great potential of leading the 3 Screen service market.

Moreover, besides Apple, Microsoft views 3 Screen as one of 10 trends in 2010,
recognizing the potential growth, and many IT companies desire to participate in the
market. Along with the rising demand for 3 Screen services, therefore, this study aims
to provide a solution environment which can ensure personal security and convenient
services through an unattended monitoring system based on a platform of a company
which has greater potential of leading 3 Screen service market such as Apple.

Fig. 1. 3 screen service provided by apple

Recently, the crime rates in the world as well as Korea show no sign of decline but
only keep increasing. Thus, numerous security businesses are showing up and Table 1
depicts the structure of the industry [4].

Table 1. Structure of the security industry

 Examples Concepts

Security Services

unattended electronic
security system

Service of dispatching security agents when
an alarm goes off

Manned security system
Service of providing bodyguards or security
agents staying in facilities

Security
Equipment

Manufacturing

Video security device
Manufacturing of video equipment for
surveillance such as CCTV, DVR, or
monitors

Admission control Smart card, biometrics, etc.

Alarm Various alarms and sensors

Fire prevention Fire alarms and sprinklers

www.SoftGozar.Com

 Design of an Unattended Monitoring System 25

Of various crimes, this study targets prevention of crimes related with properties. In
addition, the system developed in this study is focused on personal security, which
can be customized according to the needs of a user, not place security, which
considers only a specific area such as a parking lot, an apartment, or a road.

2 Analysis of a Moving Object and Context Awareness

2.1 Calculation of Directions by Prediction of Locations

Image frames are input almost at regular intervals, so a travel distance between
frames becomes a relative velocity. Thus, a distance to be traveled can be predicted
by calculating a velocity and acceleration up to the present point [5.6]. For example,
Figure 2 shows a specific object on the X-axis is moving to , , and in sequence while
is a next point to be reached.

Fig. 2. Predicted locations of moving object

If the object is currently located at, Formula(1) for a travel distance between and is

‘-’, which is a relative velocity. In the same manner, the velocity required for traveling
from to can be calculated by Formula(2). Next, we can predict the location of by
calculating the variation rate of the speed at . And Formula(3) can be obtained, for
acceleration is calculated using a difference of velocities. Also, as we already know the
velocity and acceleration at , the location of can be predicted as in Formula(4). Here,
the direction is determined according to whether or not the calculated value is positive.

Velocity at ܺ௧ଵ ൌ ௧ܺଵ െ ܺ௧ (1)

Velocity at ܺ௧ଶ ൌ ௧ܺଶ െ ܺ௧ଵ (2)

Acceleration at ܺ௧ଶ= Velocity at ܺ௧ଶ- Velocity at ܺ௧ଵ=ܺ௧ଶ െ 2ܺ௧ଵ ௧ܺ (3)

Predicted location of ܺ௧ଷ= Velocity at ܺ௧ଶ+ Acceleration at ܺ௧ଶ=2 ௧ܺଶ െ 3ܺ௧ଵ ௧ܺ (4)

2.2 Calculation of Color Values

Detection of a moving object through camera images, attempting to accept the real
world as it is, causes a lot of variables and errors. Hence, in addition to movements,
supplementary calculation should be done by using other features such as colors and
shapes.

26 S. Kim

This study uses colors of an object in order for better application in case there is
rotation or changes of an object [7.8]. While an object is detected by colors, ratios of
colors are calculated for more precise tracking. As depicted in Formula(5), the RGB
color model is used for color analysis. This is because the model is the most common
way to analyze colors, and the color model is specifications of 3-D coordinates,
expressing each color as a single point.

(5)

The almost limitless number of colors in the RGB model are divided into specific
areas to ensure more effective extraction for detection of a moving object. Also, the
RGB model is converted into the HSI color model, which is less sensitive to
illumination, so that it can be strong against sudden changes of light.

The HSI model is composed of hue, saturation, and intensity, so it can further
divide brightness. Formula(6) shows how to convert the RGB color model into the
HSI model.

(6)

2.3 Context-Aware Algorithm

Context awareness refers to offering of proper information or services to a user by
detecting a change of situations or a system changing its conditions by itself. To make
possible context awareness, a situation should be reasoned by using collected context
data.

The method of reasoning is largely divided into Rule-Based Reasoning(RBR)[9]
and Case-Based Reasoning(CBR)[10]. RBR method decides conditions to be met and
searches for rules satisfied by the designated conditions in order to select the best
rules. CBR method solves a new problem by referring to similar cases in the past.
This method is effective to select services appropriate for a given situation.

3 Design of Unattended Monitoring System Based on 3 Screen

The system developed in this study has six steps as depicted in Figure 3.

- Step 1: Test bed for system implementation and development tools
Carrying out this study requires a test bed for system implementation/execution
and an environment for development tools. Thus, the test bed consists of an
emulator(on a PC) based on the iPhone OS platform of Apple, an iPhone(a smart
phone), and a camera used for capturing images from a PC. On the other hand, the

 Design of an Unattended Monitoring System 27

Fig. 3. Six Steps of 3 Screen-Based Unattended Monitoring System

Fig. 4. SDK, Xcode, Supplied by Apple

development tools include Xcode depicted in Figure 4. The iPhone OS platform and
Xcode are distributed through the home page of Apple and can be easily used.

- Step 2: Structure and design of the scenario of the unattended monitoring system
After establishing the development environment, the objective composition of the
scenario and the overall structure of the system should be designed.

- Step 3: OpenCV library and algorithm analysis for image processing
OpenCV(Open Source Computer Vision) is a powerful image-processing library
developed by Intel, which makes possible both a basic-level and a high-level image
processing with a great number of algorithms. Thus, this study analyzes the library in
order to find out the most effective algorithm for the unattended monitoring system
and tracks a moving object.

- Step 4: Context-aware algorithm for effective detection of a moving object
A moving object is tracked and analyzed by using the selected algorithm, and a
context-aware algorithm is written in order to deal with vulnerabilities that might
arise from image processing. The context-aware algorithm is written by taking into
account context information such as the location of a camera, surroundings, a
movement pattern of an object, and so on.

28 S. Kim

- Step 5: Development/test of the unattended monitoring system and problem-solving
After all preparations are complete, development begins according to the system
design. And after the development is done, complementary work should done in order
to solve problems arising during tests.

- Step 6: Registration of the system in the application market
After the development and test of the system is complete, the system is registered in
'App Store', Apple's application market, and the system is further upgraded based on
user evaluation.

4 Processing Flow the Unattended Monitoring System

'App Store' is a market used by a great number of consumers along with the recent
craze for a smart phone in the world and the system developed in this study can be
offered through the market, allowing many people to test the system. This can help to
prevent national crimes as well.

The processing flow of the system is depicted in Figure 5. Of various methods of
image processing technologies, this study uses a block-based method most widely
used for effective movement tracking and correction. However, the method is quite
weak in changes of sizes or pixels, rotation, noise, and so on.

Hence, a context-aware technology is used in this study, utilizing context data such
as the location of a camera, surroundings, or a movement pattern of an object, in order
to overcome such vulnerabilities.

Fig. 5. The Overall Processing Flow of the Unattended Monitoring System

5 Conclusion

More recently, the importance of a multimedia-based monitoring system, keeps
growing for the purpose of preventing crimes and, thus, various systems are being
released. Nevertheless, most systems are lacking an independent feature for detection
but simply saves a video or image.

This is ineffective because data should be reviewed in sequence when an intruder
is detected and it takes a great amount of time for a manager to recognize an invasion.
In addition, a lot of space is needed to save videos.

 Design of an Unattended Monitoring System 29

Therefore, in order to solve such problems, this study has developed a 6-step
unattended monitoring system based on a 3 Screen service environment by combining
image tracking and analysis technologies, which can extract a human from images,
with context-aware technologies using behavior patterns of people tracked and data of
a surrounding environment, fully utilizing the wireless network infrastructure that has
been increasingly available.

Acknowledgement

This paper is supported by 2010 Korea Sanhak Foundation.

References

1. Mizoguchi, R., Ikeda, M.: Towards Ontology Engineering, Technical Report AI-TR-96-1,
I.S.I.R., Osaka Universiy (1996)

2. Oh, J., Min, J., Hu, J., Hwang, B., Bohee, H.: Development of Video-Detection Integration
Algorithm on Vehicle Tracking. The KSCE Journal of Civil Engineering 29(5D), 635–644
(2009)

3. Wall Street Journal, Phone Giants Roll Out ‘Three Screen’ Strategy (2008)
4. Kim, J.H.: Growth Strategy of Security Industry. SERI Business Note No. 4 (2009)
5. Broggi, A., Bertozzi, M., Fascioli, A., Sechi, M.: Shape-based pedestrian detection. In:

Proc. IEEE Intelligent Vehicles Symposium 2000, pp. 215–220 (2000)
6. Peterfreund, N.: Robust Tracking of Position and Velocity With Kalman Snakes. IEEE

Transactions on Pattern Analysis and Machine Intelligence 21(6), 564–569 (1999)
7. Cheng, H.D., Sun, Y.: A hierarchical approach to color image segmentation using

homogeneity. IEEE Transaction on Image Processing 9(12), 2071–2082 (2000)
8. Gonzales, R., Woods, R., Eddins, S.: Digital Image Processing Using MATLAB. Pearson

Prentice Hall (2004)
9. Kim, J.P., Kim, M.H.: Rule based Inference Engine for System Context awareness.

ICUIMC, pp. 29–37 (2007)
10. Chanchien, S.W., Lin, M.: Design and Implementation of a Casebased Reasoning System

for Marketing Plans. Expert Systems with Applications 28, 43–53 (2005)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 30–37, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Requirements Elicitation Using Paper Prototype

Jaya Vijayan1 and G. Raju2

1 Lecturer, Department of computer science, Rajagiri College of social sciences,
Kalamassery, Cochin

2 Professor, Kannur University, Kannur, India

Abstract. Requirements engineering is both the hardest and critical part of
software development since errors at this beginning stage propagate through the
development process and are the hardest to repair later. This paper proposes an
improved approach for requirements elicitation using paper prototype. The
paper progresses through an assessment of the new approach using student
projects developed for various organizations. The scope of implementation of
paper prototype and its advantages are unveiled.

Keywords: Requirements Engineering, Elicitation, Paper prototype.

1 Introduction

Developing large & complex software application is very challenging, it is quite
different from one-time programs where author and user are the same. Even though
we have made significant progress in software development, we still face some
challenges that we have experienced in the past. Some of the reasons for failure of
projects are Schedule slippage, Cost over-runs, poor quality of software, poor
maintainability. In this context the software engineering practices have great
significance.

Requirements engineering is an important and fundamental aspect of software
development. Regardless of the techniques used the basics still remains the same.
Requirements engineering is described in 5 steps

• Requirement elicitation
• Requirement Analysis
• Requirement Specification
• Requirement Validation
• Requirements Management

The organization of the paper is as follows:

Section 2: Requirements elicitation & Gathering process.
Section 3: The Challenges in requirements elicitation & Analysis and also guidelines
to do the elicitation activity.
Section 4: The paper prototype approach
Section 5: Explanation of the Case study.

 Requirements Elicitation Using Paper Prototype 31

Fig. 1. The requirements engineering process

Section 6: Performance analysis of the proposed approach.
Session 7: Summary & Conclusion.

2 Requirements Elicitation and Gathering

The elicitation of requirements is perhaps the activity most often regarded as the first
step in the RE process. One of the important goals of elicitation is to find out what
problem needs to be solved [4].

The choice of elicitation technique depends on time & resources available to the
requirements engineer, and of course the kind of information that needs to be
elicited. We distinguish a number of classes of elicitation techniques as follows:

• Interviewing and questionnaires
• Requirements workshops
• Braining Storming and idea reduction
• Storyboards
• Use Cases
• Role Playing
• Prototyping

3 Challenges in Requirements Elicitation and Analysis

Requirements elicitation is both the hardest and most critical part of software
development, since errors at this beginning stage propagate through the development
process and are the hardest to repair later. Requirements elicitation is a difficult
process in which one has to deal with ambiguity, informality, incompleteness and
inconsistency, in which the “knowledge” of the requirements is not clear.

32 J. Vijayan and G. Raju

Problems in requirements elicitation
Errors in requirements elicitation are, overall, most serious in software development,
and the hardest to repair. 70% of the systems errors are due to inadequate system
specification [1]

Classification of elicitation problems

 Problems of scope. The boundary of the system is ill-defined, so that
unnecessary design information may be given, or necessary design
information left out.

 Problems of understanding. Users have incomplete understanding of
their needs; analysts have poor knowledge of the problem domain; user
and analyst speak different languages (literally or figuratively); “obvious”
information may be omitted; different users may have conflicting needs
or perceptions of their needs; requirements are often vaguely expressed,
e.g., “user friendly” or “robust”.

 Problems of volatility. Requirements evolve over time, either because
of changing needs or because of changing perceptions by the
stakeholders [1].

3.1 Requirements Engineering Some Guidelines

The analyst has to consider the following while doing the requirements gathering:

 Assess the business & technical feasibility for the new system.
 Identify the people who will help specify requirements
 Define the technical environment into which the system or product will

be based
 Identify the domain constraints
 Define one or more requirements elicitation methods.
 Encourage participation from many people so that requirements are

defined from different points of view.

4 Method Overview

Prototyping is one of the techniques used in requirements engineering. Instead of
expensive Prototypes, a throwaway paper prototype method is suggested for
requirements engineering..A paper prototype is a visual representation of what the
System will look like. It can be hand drawn or created by using a graphics program.
Usually paper prototype is used as part of the usability testing, where the user gets a
feel of the User Interface.

The entire approach is divided into the following Steps:

 Domain Knowledge acquisition
 System understanding
 Requirements elicitation
 Prototype Validation
 Requirements Stabilization

 Requirements Elicitation Using Paper Prototype 33

4.1 Domain Knowledge Acquisition

As a prerequisite to the elicitation activity the analyst have to perform a domain
study. He/She has to understand the basic terms and processes in the domain before
moving on to details of the system.

4.2 System Understanding

The business analyst has to procure knowledge about the existing system through the
manuals and users of the system. Once the system study is complete the analyst will
get a fair idea about the system to be developed and can proceed for the elicitation
and requirements gathering process.

4.3 Requirements Elicitation

After the initial meeting with the user and the preliminary investigation about the
system the analyst gets a fair idea about the major requirements of the system.
He/She has to accordingly build a throwaway paper prototype of the system. The
paper prototype should concentrate on the main requirements and is to be presented
before the users. The analyst with the aid of the prototype discusses with the user and
gathers more requirements. The gathered requirements are recorded in a tabular
format in the paper which will be used for tracing back in the next iterations. Details
of the users, the requirement details, origin of the requirement and feedback details
are recorded in the tabular format. The analyst gets the feedback from the users there
itself. If the analyst comes across conflicting feedbacks on the requirements He/She
has to discuss with the users who have given the conflicting views and has to come to
a consensus.

4.4 Paper Prototype Validation

Once requirements have been gathered, it is categorized and organized into related
subsets. The activity in this step is validation of prototype. The prototype is validated
for omissions, ambiguity etc...

4.5 Requirements Stabilization

The paper prototype is changed according to the user feedback and clarifications. It is
refined till the user is satisfied with the prototype and all the requirements are
gathered. Once the prototype is finalized requirement are stabilized. The requirements
specification is done after the stabilization process and the prototype can be discarded.
Throwaway prototyping is suggested because once the requirements are gathered the
prototype is thrown away and the rest of the phases are performed as usual so that the
quality of the system is maintained.

Before finiliasing the requirements an approval from the users can be sought so
that the amount of rework on requirements can be minimized. A sample paper
prototype is given below.

34 J. Vijayan and G. Raju

Fig. 2. A sample Paper prototype of the Page setup Dialog of Microsoft windows)

5 Case Study

In order to examine the merits of using paper prototype for requirements elicitation
technique, several case studies were conducted through student projects. We have
trained a group of Post graduate students in using the paper prototype approach and
have made them to use the same in their projects. The data from one of the studies is
presented in this paper in order to help analyze the usefulness of this technique.

“Safety and Compliances Software” Package called abcSAC Suite is an integrated
software solution for helping organizations in USA, to stay in compliance with their
government’s safety regulations for specific categories and activities, along with
helping them track various other desirable safety related issues The project consists
40 different modules. The modules selected for the project are Worker Safety,
Exposure Management, Training Management. This package is developed for ABC
Systems, Inc., Connecticut, USA. abcSAC suite is being developed as a windows
application using Microsoft .Net technology, CSLA framework and Microsoft SQL
Server 2005 technologies. It will be capable to reduce the risk factors in organizations
by using this application to schedule trainings to its employees or other staff in proper
time by analyzing existing database, on various safety and related issues. ABC
Systems Inc. expects that after the full development of “Safety and Compliances
Software” Package, they will be the big player in the USA Safety and Compliance
Software domain.

a) Worker Safety Module

Typical applications fall into two categories named as OSHA Compliance Applications
and Safety Program Applications. The first category involves applications designed to
help meet the United States government’s OSHA (Occupational Safety and Health
Administration, U.S. Department of Labor) requirements and regulations, and the
second category of applications are those that can help with instituting work place safety
programs that help analyze and reduce future worker injuries and incidents.

 Requirements Elicitation Using Paper Prototype 35

b) Exposure Management

The purpose of the Exposure Management System is to provide a facility to help
identify whether people are exposed to specific hazards and whether they have received
appropriate training. The Exposure Management System works cooperatively with the
Training Management System to accomplish its goals. Exposure Module consist the
following processes.

1. Exposure Identification and Entry
2. Exposure Reviews and Reports

c) Training Management

The purpose of the Training Management System is to provide a facility to help
identify whether people are exposed to specific hazards and whether they have
received appropriate training. The Training Management System works cooperatively
with the Exposure Management System to accomplish its goals. This means whenever
a new type of accident occurs in the organization, they are getting the exposure to its
various effects (when it happened, reasons for this accident, how long it lasted, whom
it is affected etc….). That is, once an accident happens, the organization is getting
familiar to the different consequences of it. And they are planning to prevent the next
occurrence of the same accident again. So they will give proper training to the people.
Training Management module consist the following processes.

a. Training
b. Training Report Generation

The Users who took part in the elicitation process were the technical staff of the
organization.

The process for this project was completed in 1-3 iterations and the amount of
change in requirements was less than 20%.Some of the sample paper prototypes used
in this project are as follows

Fig. 3. Samples of the Paper prototype used for the elicitation activity of this Project

36 J. Vijayan and G. Raju

6 Performance Analysis of the Proposed Approach

We have conducted a study based on a group of students who have used paper
prototype for requirements gathering. Feedbacks were gathered from students who
have used the paper prototype for elicitation activity. A questionnaire was used for the
assessment of the approach. The questionnaire addressed the openness of the users
towards the approach, the number of iterations taken to complete the requirements
gathering, the % of rework required at the design phase and also the effectiveness of
the method.

Most of the respondents have done medium sized database projects. About 60% of
users were partially open towards the use of this method for elicitation and 40% were
open. Most of the respondents have completed their elicitation activity in 1-3
iterations. Only few have taken more than 3 iterations to complete their elicitation.
The amount of rework suggested by the respondents was between 10-15% only.
Majority of the users and respondents have strongly recommended this method for
elicitation for small and medium sized projects.

6.1 Advantages

The participants are not caught up in the look of the system, Paper allows imagination
to work. There is no technology barrier for the user; he/she can easily understand and
use the paper prototype. A more user friendly way of requirements elicitation.

7 Conclusion

In this paper we have proposed a novel approach of using paper prototype for
requirements elicitation. The paper focuses on the effectiveness of using Paper
Prototype method for requirements elicitation and the major benefits of using the
same. The paper prototype technique has been analyzed with the help of a group of
student who has adopted this method for requirements Elicitation. We acknowledge
that the data from the projects might not be sufficient to conduct the test, however, the
feedback of persons who have used the method is an indicator that well-planned and
meticulously used paper prototype will be an effective technique for elicitation for
small and medium sized projects. The analysis of the approach has indicated that the
paper prototype method for requirements elicitation is a suitable method for Small
and medium sized projects. The method need to be tested for industry projects for
further results.

Our further research is extended to find out the following

• Whether the technique can be applicable for all Categories of projects?
• Can it be effectively employed for small, medium and large projects?
• The Cost & time factor of the approach.

 Requirements Elicitation Using Paper Prototype 37

References

1. Rajagopal, P., Lee1, R., Ahlswede, T.: A New Approach for Software Requirements
Elicitation. In: Proceedings of the Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS
International Workshop on Self-Assembling Wireless Networks, SNPD/SAWN 2005
(2005)

2. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: International
Conference on Software Engineering, Proceedings of the Conference on the Future of
Software Engineering

3. Jiang, L., Far, B.H., Eberlein, A.: Combining Requirements Engineering Techniques –
Theory and Case Study. In: Proceedings of the 12th IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, ECBS 2005 (2005)

4. Herlea Damain, D.E.: Challenges in requirements engineering. Computer Science Technical
Reports

5. Pressman, R.S.: Software engineering A practitioners approach. Mc-Graw Hill International
Publication, New York

6. Sommerville, I., Sawyer, P.: Requirements Engineering – A good practice guide. John Wiley
& Sons Ltd., Chichester

7. http://www.goldpractices.com/practices/rto/index.php
8. http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/

library/library-html

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 38–49, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Quality-Driven Architecture Conformance*

Jose L. Arciniegas H.1 and Juan C. Dueñas L.2

1 Universidad del Cauca, Calle 5 # 4-70 Popayán, Colombia
jlarci@unicauca.edu.co

2 Universidad Politécnica de Madrid, Ciudad Universitaria (s/n), CP: 28040, Madrid, Spain
jcduenas@dit.upm.es

Abstract. This paper describes the Quality-driven Architecture Conformance
(QAC) discipline. Conformance is a particular type of assessment; in this case
the architecture is compared with respect to a standard. Conformance process
determines the degree of fulfillment of the architecture against a specific
standard. QAC guarantees the compatibility and transferability of a system. The
main contributions of this paper are: The definition of the QAC conceptual
model, a workflow for the application of QAC and a summary of QAC
techniques and tools. A case study has been executed in order to validate the
QAC discipline.

Keywords: Software Architecture, Assessment, Conformance, Process, Quality.

1 Introduction

Conformance is and has been applied at implementation level. In that case, it is
executed in order to measure the degree of fulfillment of the solution (implementation)
against a standard, regulation or other specification. Conformance has a big incidence
in the business area, because it gives confidence to users, consumers, manufactures,
service providers and regulators. In some cases conformance is made obligatory by
government regulations in order to check whether products, services, material,
processes, systems and personnel measure up to the requirements of standards,
regulations or other specifications [1].

We define architecture conformance as follows:

“Software architecture conformance is a type of assessment, where the architecture
is compared with respect to a standard. Conformance process determines the degree of
fulfillment of the architecture with respect to the standard”.

So architecture conformance guarantees compatibility and transferability. QAC can
be used as:

• a hold for the identification of non-functional requirements or system quality
factors, described by quality models such as ISO-25010 [2],

* The authors wish to thank the Spanish company Telvent for their support in this work. The

work has been partially granted by the ITEA MOSIS project, the Spanish Ministerio de
Industria, Turismo y Comercio and REVVIS project of CYTED.

 Quality-Driven Architecture Conformance 39

• a way to compare some specific architectural aspects of the system against
reference architectures published by standardization bodies (understanding
them in a broad sense) by means of architectural conformance checking,

• a means to externalize the detailed design, implementation and test of the
assets or services in the architecture that are closer to the reference
architectures for the intended architectural aspects,

• a way to adapt the evolution of the system architecture to the evolution of
reference architectures for some aspects, or

• a vehicle to support the dynamic evolution of running systems after
deployment and keep their architectures updated.

2 QAC Conceptual Model

QAC is a quality-driven discipline that proposes methodological guidelines for
architecture conformance. In the same manner than Software Architecture Assessment,
Architecture Conformance guarantees the quality of solutions with respect to other
candidate architectures and allowing a rapid feedback. In addition, the conformance
shows the coincidences and differences between the candidate architecture and the
standard architecture. Usually, the standard has been proposed in order to guarantee a
level of quality. The standards are agreements by international or national organizations,
where the most usual ad-hoc concepts or practices are formally specified. Standards are
a basis for comparison, a reference point against other things can be evaluated. They set
the measure for all conformance process. In the telecommunication and computer
science areas, some international organizations in charge of standardization processes
are IEEE, ANSI, ISO, OMG, W3C, IETF, and others. Standards are continuously
reviewed and sometimes updated in concordance with innovations.

In Fig. 1 we have outline the typical content of a standard. This schema is used
only as general template for conformance processes. For example, some standards
define only concepts, others defines process (practices), etc. A standard is a document
where there are included assertions about a topic, and the assertions can be mandatory
or optional. The assertions can be classified as: basic if affect only to a specific basic
element, or can be general if they affect to more than one element. In the standard are
defined the basic elements that should be included in the architecture. In addition are
defined the relationships between them.

A standard is specified for a certain domain; therefore the context in this domain is
clearly defined. If it is required, some concepts and their notation, conventions and
external conditions are defined. The external conditions can contain rules or legal
policies, physical constrains, etc. Usually, standard also defines some practices; they
are product of practical experiences. Practices can be processes, guidelines, patterns
or scenarios than have been proved by the industry in several real implementations.

For example, in the next paragraph from OSGi specification [3]:

“In the OSGi Service Platform, bundles are the only entities for deploying Java-
based applications. A bundle is comprised of Java classes and other resources which
together can provide functions to end users and provide components called services
to other bundles, called services. A bundle is deployed as a Java ARchive (JAR) file.
JAR files are used to store applications and their resources in a standard ZIP-based
file format.”

40 J.L. Arciniegas H. and J.C. Dueñas L.

We can identify:

• Assertions: “bundles are the only entities for deploying Java-based
applications”

• Basic Elements: “bundles”, “classes”, “resources”, “services”, etc.
• Relationships: “A bundle is comprised of Java classes and other resources”
• Practices: “JAR files are used to store applications and their resources in a

standard ZIP-based file format”, the standard in this case uses a pattern,
(standard format).

• Context: “In the OSGi Service Platform,…bundles… provide functions to
end users… called services”.

Fig. 1. Typical structure of a standard

QAC considers assets as basic element of comparison. Two types of assets should
be treated independently, Significant Candidate Assets (SCA) and Significant
Standard Assets (SSA). Basically, the differences between them are their origin: SCA
from the candidate architecture and SSA from the standard architecture (see Fig. 2a).
The conformance process needs SCA and SSA to compare and identify differences
and coincidences, some methods and techniques can be used in order to achieve this
objective (see section 4).

Conformance is a type of assessment (see Fig. 2b). During architecture conformance
a special validation is performed (compliance), which has a simple objective, to locate
commonalities or differences. Commonalities (SCA ∩ SSA) correspond to the set of
assets that have been defined in the candidate architecture in the same way than in the
standard. Obviously, uncommon assets are located in the differences. The differences
take an interest value when the stakeholders take decisions. They are:

 Quality-Driven Architecture Conformance 41

• Proposal for enhancement of SCA (SSA-SCA): as a product of the difference
between SSA and SCA, new requirements are identified and some lacks can
be located in the candidate architecture.

• Proposal for enhancement of the standard (SCA-SSA): as a product of the
difference between SCA and SSA, some lacks may be located in the
standard; it is a frequent case when the candidate architecture goes beyond
the scope of the standard.

Asset

1..*

-informs 1..*

Architecture Standard architecture

1..*

-informs 1..*

SCA SSA

ASR

*

-affects

*

a)

ASR: Architectural Significant Requirements
SCA: Significant Candidate Assets
SSA: Significant Standard Assets

-
Valuation Assessment

1..* 1..*

ConformanceCompliance

Commonalities Differences

SSA-SCA SCA-SSA

1..* 1..*

-has 0..*
1..*

-has 0..*
1..*

b)

Fig. 2. Relationship between Assets, Conformance and Assessment

The main result of architecture conformance is reported by comparing some
alternatives of solution (pros/contras) with respect to certain standards. QAC does not
consider the complete architecture to be only one view concerned to specific SCA.
Other secondary outcomes can be obtained from QAC, for example: a better
understanding of the architecture, better communication with the stakeholders,
detection of architecture limitation and risk and others.

3 QAC Workflow

The Fig. 3 shows the workflow of QAC. The following activities have been defined:

Preparation
Usually, a standard is a detailed and formal specification; some of them are
voluminous documents. At least one member of the staff should have knowledge
about one or more standards. Sometimes, there are several standards related with the
same topic or quality attribute. So an expert or at least a person with the minimum
knowledge about the standards is required. After that, during the preparation step, one
or a small set of standards should be chosen in order to estimate scope, impact, cost,
planning and duration.

42 J.L. Arciniegas H. and J.C. Dueñas L.

Prioritizing requirements and filtering
These two phases should be performed for both the candidate architecture and the
standard architecture. At the end, two prioritized list of ASR are obtained by
conforming the SCA and SSA.

Fig. 3. QAC workflow

Analysis
Several types of conformance analysis could be performed (See Fig. 4). No order is
established, because it depends of the objectives of the architecture conformance and
the information defined in the standard. The conformance relates to the standard; that
means nothing out of the standard can be assessed for conformance.

Context conformance, in this case only concepts, notations, conventions and
external conditions are verified. This kind of conformance is often used for specific
standard language, or in a process where is used a specific notation. The critical part
is “concept conformance” because semantic conformance is required. Notation,
conventions and external conditions can be analyzed using syntactic conformance.
Context conformance has as result compliances with respect to concepts, notations,
conventions and external conditions, but in addition, other important results are
detected such as new concepts, inconsistencies and similarities can be found in the
candidate architecture.

Architectural asset conformance, it is a validation where the assets are checked.
Two issues should be validated; presence of the asset and verification of that asset is
in conformance to the standard specification. Architectural asset conformance has as
result: the list of assets in conformance, list of missed assets, and a list of assets that
are in the architecture but their description is not in conformance. In addition new
assets can be found in the candidate architecture, they have special interest because
need a special justification.

 Quality-Driven Architecture Conformance 43

Relationship conformance, at the same way the relationships among assets should
be verified. In first place the presence of this relationship and for other way the
consistency, type of relationship, navigability, visibility, multiplicity, etc.
Relationship conformance has as result: the list of relationship in conformance,
missed relationships, and inconsistency of some relationships. At the same as assets,
new relationships can be defined.

Practice conformance. Standards define also processes, guidelines, patterns, etc.
that can be used in the candidate architecture. In some cases are recommendations
that should be analyzed in the specific context. For example ISO 9000 [1] and CMMI
[4] specifications defined some practices that should be used during development in
order to guarantee quality of the products. Practice conformance has as result the
conformance or not of one specific practice.

Assertion conformance. It is very similar to requirement assessment, because
assertions in practice are special requirements that must be supported in the
architecture. Assertion conformance has as result the conformance or not of one
specific assertion.

Fig. 4. Architecture conformance analysis

Agreement and documentation
During agreement and documentation the main results of QAC should be reflected,
that is, the commonalities and differences. In addition, the concerns, trade-offs and
decisions must also be included. The concerns obtained in QAC become relevant
inputs to improve future architectures or standards.

Review
As results of concerns and possible trade-offs and decisions, the process can be
reviewed several times if is required. The process of revision takes importance for the
evolution of the software, in this case in two directions: evolution of the software
architecture and evolution of the standards. Architecture conformance is a good
mechanism to learn and enhance previous experiences.

4 QAC Methods and Techniques

Some methods and techniques from architecture assessment could be used for
architecture conformance, for example ATAM [5], SARA [6] and BAPO [7].

44 J.L. Arciniegas H. and J.C. Dueñas L.

However, a reduced set of methods have been proposed for analysis of architecture
conformance. Each method can use one or more techniques, in some cases techniques
are supported on tools (see Fig. 5).

Static architecture conformance is applied under the static architecture view. Two
static techniques can be executed: Semantic verifies the real meaning of the
architecture assets, i.e. if its description, operations, attributes, etc. are conform to
standard. And syntactic verifies associations, dependences and generalizations among
the architecture assets.

Dynamic architecture conformance is applied under the dynamic architecture view,
where the behavior is checked. In order to reduce the complexity the behavior is
proved on partial scenarios, i.e. interaction among a part of architecture assets.

Fig. 5. Taxonomy of architecture conformance techniques

In the following related works, the closest methods and techniques for conformace
analysis are proposed:

SACAM [8] proposes a process based on comparisons for business goals. It uses
tactics, architecture styles and patterns as indicators to evaluate if a quality attribute is
supported.

In ALMA [9] for modifiability analysis some techniques are used to detect
equivalence classes and classification.

In SAA [10] a process of elicitation (a subjective top-down process of comparison
of architectures) is defined. No techniques are proposed.

Emmerinch [11] presents a model to identify the issue of standard compliance. The
identification is done from UML class diagram (static conformance). Practices,
properties and policies are checked.

Sørumärd [12] identifies four strategies for development process conformance,
they are based on: interviews, computer-support enactment, statistical process control
and event-stream comparisons. In addition, Sørumärd proposes a model to measure
the conformance process. It is based on deviation vector technique applied to
resources and products obtained during development process.

Dae-Kyoo Kim [13] presents a method for conformance evaluation between UML
model (class diagrams) and design patterns. Kim makes evaluation both in syntactic
and semantic conformance.

Nguyen [14] presents a model to find the concordance and consistence of
documents during development process by finding causal dependences between
documents (document traceability). The techniques used are based on logics, for

 Quality-Driven Architecture Conformance 45

example: model checking, formal framework, hypertext, abstract dependence graph,
static checking and so on.

Gnesi [15] contributes in dynamic conformance for UML statecharts. This work is
based on mathematical basis, input/output transition systems. However, it was
developed for testing conformance between specification and implementation.

Other works have been found in relation with conformance process. For example,
ontology based algorithms that allow the search of common assets in an architecture
[9], numerical and graph-based algorithms to reduce complexity, use cases to isolate
parts of a system, comparison of abstract syntax tree of similar systems, measurement
of similarities using metrics (internal or external as was defined in [2] to measure
quality aspects) and so on. However, they are focused to the implementation against
its specification in order to detect errors and inconsistencies.

5 Case Study

This case study analyzes the security aspects that should be covered in the Remote
Management for Deployment of Services (RMDS), it is a distributed system
managing the service during their deployment of a residential environment. In this
case the final users dispose of a service gateway and a service platform, which allow
receiving and using service from diverse providers. The service deployment can be
performed by the system manager or the remote user. In consequence management of
principals is required (privileges, profiles, permission, etc), because user or services
interact with the system or among them. In this scenario, the security can be
compromised of several ways, for example spoofing, sniffing, platform damage and
other kinds of attacks.

In this case study, the candidate architecture uses the OSGi specification [3] and
the security standard selected was security part of CIM [16].

5.1 Proposed Architecture

The proposed architecture is illustrated in the Fig 6 [18]. The control center is
composed by web server, application server and a set of services, one of them
deployment service. The service gateway uses some services defined in the OSGi
specification (permission admin and user admin), dependencies resolver and
management agent. The last two, the client part that request and deploy new services
from control center to service gateway.

5.2 QAC Analysis

Several analyses were executed during QAC analysis [18]: Context conformance,
Architecture asset conformance, Relationships conformance, Practices conformance
and Assertion conformance. In this paper only Architecture asset conformance is
presented.

The common assets RMDS and CIM (SCA ∩ SSA) are: Privilege, Identity,
Organization, Resource, Policy, Setting-Data, UserAdmin, PackageAdmin, Device,
PermissionAdmin, Log, Tracker and URL. Similar to the concepts, assets have not a
precise mapping. The list of missed assets is shown in Table 1.

46 J.L. Arciniegas H. and J.C. Dueñas L.

Fig. 6. Proposed architecture of the RMDS

Proposal for enhancement of RMDS (SSA-SCA): In the conceptual model the
following elements are required:

• OrganizationalEntity is a type of ManagedElement that represents an
Organization or an OrgUnit (organization unit or part of an organization), it
could be composed of organizations or organization units (collections) with a
defined structure.

• Notary is a service for credential management used in authentication service.
• AdminDomain describes the system domain (context).
• AccountManagementService is a type of security service in charge of

managing the accounting issues in the system.

Table 1. Extracted requirements from conformance process between RMDS and CIM (DMTF)

 Conceptual model Static architecture
SSA-SIA OrganizationalEntity

Notary
AdminDomain
AccountManagementService

Certificate
Credential

SIA-SSA Framework
Device Manager

Provisioning service
StartLevel service
WireAdmin service

 Quality-Driven Architecture Conformance 47

In the static architecture the next components are required:

• Certificate authority is a service for credential management used in the
authentication service. It is a trusted third party organization or company that
issues digital certificates used to create digital signatures and public-private
key pairs (unsigned public key and public key certificate).

• Credential, is a type of ManagedElement. In cryptography, a credential is a
subset of access permissions (developed with the use of media-independent
data) attesting to, or establishing, the identity of an entity, such as a birth
certificate, social security number, fingerprint, or others.

Proposal for CIM-DMTF standard (SCA-SSA): The following lacks of the standard
have been detected:

In the conceptual model the next elements are required:

• Framework, A framework is a reusable, “semi-complete” application that
can be specialized to produce custom applications.

• Device Manager, In OSGi, device manager service detects registration of
Device services and is responsible for associating these devices with an
appropriate Driver service.

In the static architecture the next components are required:

• Provisioning service, is a service registered with the Framework that provides
information about the initial provisioning to the Management Agent.

• StartLevel service, allows Management Agent to manage a start level
assigned to each bundle and the active start level of the Framework.

• WireAdmin service, is an administrative service that is used to control a
wiring topology in the OSGi Service Platform.

Fig. 7. Second candidate architecture for the scenario

48 J.L. Arciniegas H. and J.C. Dueñas L.

5.3 QAC Agreement

Considering previous analysis, the main candidate architecture is so far to guarantee
the security in a hostile environment. In consequence, other candidate architecture is
required; this new architecture should consider services from a third party. In Fig. 7 it
is illustrated a possible alternative using Web services and XML security [18].

6 Conclusions and Future Work

QAC process is a mechanism to evaluate, assess and check architectures. The main
contributions of conformance process are: identification of improvements (lacks and
new requirements) to architectures, identification of suggestion for standard
recommendations, and identification of commonalities.

QAC is complementary assessment process and it is mechanism to learn from a
standard. The standards are product of mature experiences, for this reason the effort in
the comparison process is substantially reduced.

A methodological support has been presented for architecture conformance. It
include: A conceptual model, a workflow method and a suit of methods, techniques
and tools was presented.

The QAC model has been validated in a specific domain (Internet services) and
applied over a quality characteristic (security). The validation was executed in some
scenarios. As result of this validation; several recommendation for proposed RMDS
system were introduced and some missed architectural assets of CIM standard were
detected.

The new security requirements were detected with a real scenario (only some
security aspects have been covered in the validation process). Other scenarios could
be implemented.

Architecture conformance should consolidate methods and techniques that support
conformance analysis. A set of tools should be also provided; they are part of future
work in this discipline.

References

[1] ISO International Organization for Standardization,
http://www.iso.org/iso/en/ISOOnline.frontpage
(last visited date at 28/06/2010)

[2] ISO/IEC 25010-CD – JTC1/SC7. Software Engineering - Software product Quality
Requirements and Evaluation (SQuaRE). Internal ISO/IEC JTC1/SC7 Document,
Currently at Commission Draft Stage, International Standardization Organization (2007)

[3] OSGi. Open Services Gateway Initiative. OSGI Service Platform, Specification Release
3.0 (March 2003)

[4] CMMI Product Team: Capability Maturity Model Integration (CMMI) Version 1.1:
CMMI for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1),
Staged Representation Technical Report CMU/SEI-2002-TR-002. Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA (2002)

 Quality-Driven Architecture Conformance 49

[5] Kazman, R., Klein, M., Clemens, P.: ATAM: Method for Architecture Evaluation.
Technical report. CMU/SEI-2000-TR-004. Software Engineering Institute, USA (2000)

[6] Obbink, J.H., Kruchten, P., Kozaczynski, W., Postema, H., Ran, A., Dominick, L.,
Kazman, R., Hilliard, R., Tracz, W., Kahane, E.: Software Architecture Review and
Assessment (SARA) Report, Version 1.0 (February 2002)

[7] van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 110–129.
Springer, Heidelberg (2004)

[8] Stoermer, C., Bachmann, F., Verhoef, C.: SACAM: The Software Architecture
Comparison Analysis Method. Technical Report. CMU/SEI-2003-TR-006 (2003)

[9] Lassing, N., Bengtsson, P., van Vliet, H., Bosch, J.: Experiences with ALMA:
Architecture-Level Modifiability Analysis. Journal System Software 61(1), 47–57 (2002)

[10] Anastasopoulos, M., Bayer, J., Flege, O., Gacek, C.: A Process for Product Line
Architecture Creation and Evaluation, PuLSE-DSSA, IESE, IESE-Report 038.00/E (June
2000)

[11] Emmerich, W., Finkelstein, A., Antonelli, S., Armitage, S., Stevens, R.: Managing
Standards Compliance. IEEE Transactions on Software Engineering 25(6) (November/
December 1999)

[12] Sørumgård, S.: Verification of Process Conformance in Empirical Studies of Software
Development. Ph.D. thesis, Norwegian University of Science and Technology (1997)

[13] Kim, D.: Evaluating conformance of UML Models to Design Patterns. IEEE, Los
Alamitos (2005)

[14] Nguyen, T., Munson, E.: A Model for Conformance Analysis of Software Documents. In:
Proceedings of the Sixth International Workshop on Principles of Software Evolution
(IWPSE 2003). IEEE Computer Society, Los Alamitos (2003)

[15] Gnesi, S., Latella, D., Massik, M.: Formal Test-case Generation for UML Statecharts. In:
Proceedings of the Ninth IEEE International Conference on Engineering Complex
Computer Systems Navigating Complexity in the e-Engineering Age. IEEE, Los
Alamitos (2004)

[16] Bass, L., Clemens, P., Kazman, R.: Software architecture in practice, 2nd edn. Addison
Wesley Professional, Reading (2009)

[17] DMTF. Core Specification 2.9 (UML diagram Preliminary release) (July 2004)
[18] Arciniegas, J.: Contribution to quality driven evolutionary software development for

service oriented architecture. PhD. Thesis presented to the Universidad Politécnica de
Madrid (2006)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 50–56, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Trends in M2M Application Services Based on a Smart
Phone

Jae Young Ahn1, Jae-gu Song2,4, Dae-Joon Hwang3, and Seoksoo Kim2,*

1 Electronics and Telecommunications Research Institute, Daejeon, Korea
2 Department of Multimedia, Hannam University, Daejeon, Korea

3 The School of Information & Communication Engineering,
Sungkyunkwan University, Suwon, Korea

4 School of Computing & Information System,
Tasmania University, Hobart, Australia

ahnjy@etri.re.kr, bhas9@paran.com,
djhwang@skku.edu, sskim0123@naver.com

Abstract. M2M, which stands for communications between machines, offers
various services today thanks to advanced communication networks and sensor
systems. Also, a powerful terminal such as a smart phone provides sufficient
physical environments, not requiring a special device for the services. However,
the smart phone M2M environment involves various complex technologies, and
there have been no clear policies or standards for the technology. This study,
therefore, analyzes the current status of M2M service introduction and the
trends in M2M application services using a smart phone.

Keywords: M2M, Smart phone, Application, Communications.

1 Introduction

M2M, which refers to machine to machine, generally means wired or wireless
communications, and communications between devices controlled by man and
machines. Today, however, the word refers to wireless communications between
devices [1]. Along with the growing popularity of smart phones, M2M is expected to
be utilized in various fields by supporting communications between terminals and
considered a blue ocean in the telecommunications industry [2, 3, 4, and 5]. This
indicates that a multitude of electronic devices interact with smart phones in order to
offer various application services.

M2M is an intelligent communication service between objects and
telecommunication infrastructure that can be safely used anywhere in real time. So,
there have been a lot of efforts to apply M2M to various fields such as telematics,
exercise, navigation, smart meters, a vending machine, security services, and so on.

The M2M technology is being considered a core technology in the future
telecommunication industry due to the increasing popularity of smart phones, and a

* Corresponding author.

 Trends in M2M Application Services Based on a Smart Phone 51

lot of research is being done on various service models. This implies that the
technology is ready to be commercialized and significant not only in terms of
technology but application services[6].

In order to apply the M2M technology to various fields, basic research should be
done on small-power telecommunication solutions such as mobile communications
and the high-speed wireless Internet.

In this study the importance of M2M along with its concept and features is
discussed. In addition, it explains relevant policies, the market trend, and related
technologies and, then, the trends in development of M2M application technology
based on a smart phone.

2 Concept and Features

M2M stands for machine-to-machine, which means automatic communications between
machines without human intervention. This is known as pervasive computing. M2M
also refers to interaction between a human and an object. That is, the technology makes
possible diagnosis between machines, obtaining data and improving conditions. Thus,
M2M is used to check locations, temperatures, maintenance data, productivity levels,
and so on, conveying the data to humans for more efficient operations.

Meanwhile, M2P (Machine-to-Phone) or P2M refers to communications with a
machine through a mobile phone and P2P (Phone-to-Phone), between mobile phones.
In general, the communication flow of M2M is as follows.

○1 Data collected from devices are sent to wireless data service providers through
M2M hardware, and they are delivered to a company or others who need the
information through the Internet or other channels.

○2 The data received are used for various services such as remote control, remote
inspection, security, home automation, telematics, RFID, location tracking, and so on.

Fig. 1. Concept of M2M

Likewise, M2M is easy to be installed and maintained with low expenses for it

uses mobile communication networks having the potential of being widely used in
various areas.

www.SoftGozar.Com

52 J.Y. Ahn et al.

3 Policies and Technical Trends

3.1 Trends in M2M-Related Policies

At present, ESTI (European Telecommunications Standards Institute) M2M
standardization was made official in 2009 including the mandates given by European
Commission. ESTI aims to provide comprehensive standards involving application
areas, physical layers, service providers, and users.

M2M standardization is of growing interest because it provides a basic study on
the new IT environment which will see a shift into the AToN(All Things on Network)
system [7].

3.2 Trends in the M2M Technology

Analyzing the value chain of M2M will help understand its technical trends [8].
The value chain of M2M includes a chip, an M2M module/terminal, platform

software, and community services. Details of each component are provided below.

○1 Chip: The wireless transmitting-receiving chip measures electronic changes in the
environment through a sensor and implements intelligent process using a micro-
controller.

○2 M2M module/terminal: A module packaging the wireless transmitting-receiving
chip, a sensor, and a micro-controller and a terminal with several M2M modules
installed by SW.

○3 Platform software: Software which is inserted into a terminal and a server in order
to control the M2M system.
○4 Communication services: M2M service that controls the system in a comprehensive
way

The services based on the M2M value chain is be expressed in Figure 2.

Fig. 2. Services based on the M2M Value Chain

 Trends in M2M Application Services Based on a Smart Phone 53

4 Cases of M2M Technology Application

4.1 M2M Technology and Application Cases

Good examples of the technology application are telematics, logistics, intelligent
meter reading, and security systems. Simplified M2M communication flow has
promoted various application services.

○1 Automobile telematics: M2M is used for tracking the location of a vehicle, vehicle
maintenance data, mileage data, and provide an alarm for theft or emergency. All
these data are sent to the platform in real time through GPRS (general packet radio
services) while users can control the data for their needs [9]. The size of the data is
not large also, significantly cutting down maintenance costs.

○2 Logistics: Based on GPS data, M2M is used for tracking a location, checking
conditions of a vehicle part, tracking goods, exchanging information with drivers, and
optimizing transportation courses. Also, monitoring fuel can predict how much and
when to supply the fuel, providing optimized materials for manufacturing as well [10].

○3 Intelligent Meter Reading: This is the same as AMM (Advanced Meter
Management) and AMI (Advanced Metering Infrastructure). The intelligent meter
reading system is the third generation technology in the industry, a shift from manual
reading to AMR (Automated Meter Reading) [11]. M2M can be applied to electricity
and gas services, for example. The service has been extended to environmental
monitoring, observing the level of water and air or water contamination. Also, the
system can be used to control hazardous gases or chemicals.

○4 Security: Major application cases include security or guard services. In particular,
the security system senses intrusion and promptly reports to a control center to take
measures. More recently, M2M mobile security services are offered to users on the
move.

Besides, the technology can be applied to monitoring conditions of a moving vehicle
such as a bus, a truck, a garbage truck, or a truck mixer, public services such as a load
lamp, and a bridge or a tunnel.

Other good examples also include observing conditions of pipes of a smokestack or
underground and temperatures/humidity of livestock sheds or greenhouses.

4.2 Smart Phone M2M Technology and Application Cases

Smart phone M2M is fast developing along with various wireless M2M applications
[12].

During the last 4 years, growth of M2M services doubled, especially in the mobile
industry. In view of the wide range of application today (medical equipment,
automobiles, etc.), the technology is expected to be adopted to an increasing number
of areas. Particularly, the introduction of a smart phone supports services requiring a
large quantity of data, further expanding the application of M2M.

54 J.Y. Ahn et al.

The strength of smart phone M2M service is that users can enjoy various
application services without a special device, which has been needed for previous
M2M services. In addition, no additional installation expenses are charged but users’
current device is sufficient to receive new services.

3-Screen, which has recently appeared, and integration of TV-mobile-online is also
supported by communications between hardware and cross- platform, making
possible various M2M application services. And most research efforts are being made
on the following areas.

○1 Location tracking: Using the GPS module included in a smart phone, a location of
a child or an elderly person can be tracked for their safety. The location-based product
is of great importance in the study area related with tracking a person.

○2 Individual security: Since a smart phone is always carried by an individual, it can
be effectively used for personal security. For example, ZenieCall, a communication
service provided by SECOM, a security service provider, is a smart phone application
that makes an emergency call through iPhone or T-Omnia2 (Samsung) when one
senses a danger [13].

○3 Context-awareness: A device analyzes human data in order to meet the needs of a
person and an object according to each circumstance [14]. The device can analyze a
user’s schedule saved in a smart phone and other data related with his tendencies.
Communications are made between smart phone sensors in order to exchange data
generated in real time according to context changes.

○4 Management of the national industrial infrastructure: As TCP/IP communications
and sensors are introduced to DNP3 and Modbus, mainly employed by industrial
infrastructure based on SCADA (Supervisory Control and Data Acquisition), a smart
phone is being applied to facility safety management solutions [15]. Thus, remote
monitoring and machine operation has become possible.

○5 Communication services: The tethering technology, commercialized by a smart
phone, is a feature of using the phone as a modem, connecting IT devices such as a
laptop computer to a mobile phone so as to use the wireless Internet. Through the
technology a user can have a 3G connection without previously required
communication environments. It may seem that an object, unable to have wireless
communications, works as if it is connected with a modem.

The M2M application services using a smart phone have recently achieved
standardization and compact sizes. Fast down/up loading of data has been made
possible by advanced communication environments also. And integration of various
additional features needed for M2M services made it easy for developers or system
providers to maintain and control the services. Self-diagnosis and less expensive data
fees also significantly increase the availability of the services. Besides, users only
need software to use the service.

 Trends in M2M Application Services Based on a Smart Phone 55

5 Conclusion

Smart phone M2M is a service focused on mobility, abstractness, and message
processing, very useful for customized services. M2M, applied to a smart phone, can
easily extend application services, for it has physical resources supporting mobility,
context awareness, tracking, security, management, and other complex services as
well as software resources that can be easily installed or removed.

When communications standards are completely established and a regular module
with basic specifications is provided in detail, more various M2M services will be
introduced. As a result, more development efforts will be given to offer a variety of
applications. This will lead to new business opportunities such as unmanned
inspection systems, remote monitoring, health care, and so on, creating profits in
various areas.

References

1. Machine-to-Machine (M2M) Communications,
http://www.mobilein.com/M2M.htm

2. Machine to Machine Service Provider,
http://smartphone.biz-news.com/news/2010/04/09/0006

3. Smart Services – MHealth: Body Parts Make Phone Calls,
http://m2m.orangeom.com/

4. Machine-to-Machine,
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/
White_Papers/pdf_files/m2m-white-paper-v4.pdf

5. M2M Wireless Smart Devices Could Boost Mobile Carrier Revenues,
http://mobilebeyond.net/m2m-wireless-smart-devices-could-
boost-mobile-carrier-revenues/

6. Watson, D., Piette, M., Sezgen, O., Motegi, N.: 2004, Machine to Machine (M2M)
Technology in Demand Responsive Commercial Buildings. In: Proceedings of the ACEEE
2004 Summer Study on Energy Efficiency in Buildings (2005)

7. Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young,
C., Batson, B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P.,
Ho, R.C., Ierardi, D.J., Kolossváry, I., Klepeis, J.L., Layman, T., McLeavey, C., Moraes,
M.A., Mueller, R., Priest, E.C., Shan, Y., Spengler, J., Theobald, M., Towles, B., Wang,
S.C.: Anton, a special-purpose machine for molecular dynamics simulation. In: Proc. 34th
Ann. Intl. Symp. on Computer Architecture, San Diego, pp. 1–12 (2007)

8. M2M Value Chain,
http://www.wireless-technologies.eu/
index.php?page=m2m-value-chain

9. Bettstetter, C., Vögel, H.-J., Eberspächer, J.: GSM Phase 2+ General Packet Radio Service
GPRS: Architecture, Protocols, and Air Interface. IEEE Communications Surveys and
Tutorials 2, 2–14 (1999)

10. Li, Y.-b., Zhang Z.-y.: Design of a visible logistics management information system based
on GPS and GIS. Metallurgical Industry Automation (2005)

11. Li, Y.-x., Xu, J.-z., Liu, A.-b.: Application of GPRS technology in automatic meter reading
system. Metallurgical Industry Automation (2003)

56 J.Y. Ahn et al.

12. National Global Information, Inc., Wireless Machine-to-Machine.: An In-depth Study of
Applications and Vertical Markets (2004)

13. ZenieCall, https://www.s1.co.kr/biz/zeniecall/zeniecall_01.jsp
14. Vale, S., Hammoudi, S.: Towards context independence in distributed context-aware

applications by the model driven approach. In: Proceedings of the 3rd International
Workshop on Services Integration in Pervasive Environments, Sorrento, Italy (2008)

15. Heung, S., Dutertre, B., Fong, M., Lindqvist, U., Skinner, K., Valdes, A.: Using model-
based intrusion detection for SCADA networks. In: Proceedings of the SCADA Security
Scientific Symposium (2007)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 57–66, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using ERP and WfM Systems for Implementing Business
Processes: An Empirical Study

Lerina Aversano and Maria Tortorella

Department of Engineering
University of Sannio, Via Traiano 1 82100 Benevento Italy

(aversano,tortorella)@unisannio.it

Abstract. Software systems mainly considered from enterprises for dealing
with a business process automation belong to the following two categories:
Workflow Management Systems (WfMS) and Enterprise Resource Planning
(ERP) systems. The wider diffusion of ERP systems tends to favourite this
solution, but there are several limitations of most ERP systems for automating
business processes. This paper reports an empirical study aiming at comparing
the ability of implementing business processes of ERP systems and WfMSs.
Two different case studies have been considered in the empirical study. It
evaluates and analyses the correctness and completeness of the process models
implemented by using ERP and WfM systems.

Keywords: Business process modelling, WfMSs, ERP systems, Empirical study.

1 Introduction

Fast changing business requirements forces enterprises to support their business
processes with appropriate software applications in order to increase the process
performances. The software systems mainly considered from enterprises for
automating their business processes belong to the following two categories: Workflow
Management Systems (WfMS) and Enterprise Resource Planning (ERP) systems.

The two alternative solutions deal with the processes by using different
approaches. ERP systems essentially consist of multi-module applications integrating
activities across functional departments including product planning, purchasing,
inventory control, product distribution, order tracking, and so on [9, 11]. They are
designed around the idea of applications that need to be configured with appropriate
setting for achieving the solution that is most adequate to the enterprise requirements.
Of course, higher the possibility of configuration is, more flexible the support for the
business processes is. On the other side, WfMSs represent an information technology
designed for automating business processes by coordinating and controlling the flow
of activity and information between participants. When a WfMS is used, a workflow
model is first defined for the specific requirements of the enterprise and, then,
workflow instances are created for performing the actual activities described in the
workflow model.

58 L. Aversano and M. Tortorella

The aim of this paper is not to compare WfM and ERP systems, whose aim and
support level are completely different and, then, not comparable. The paper focus on
the analysis of the service offered by ERP systems regarding the management of the
business process and compare it with the main functionality offered by WfMSs.

In particular, the paper analyses the workflow ability of ERP systems and WfMSs.
The expression “workflow ability” is used for indicating the capability of a software
system of effectively and efficiently supporting the modelling, execution and
monitoring of a business process. In a previous paper [2], the authors observed several
limitations in the functionalities of most ERP systems with reference to the
automation and management of business processes. This paper reports an empirical
study aiming at comparing the “workflow ability” of ERP systems and WfMSs in two
different case studies.

The paper is organized as follow: Section 2 gives some background on WfMSs and
ERP systems; Section 3 describes the design of the empirical study; Section 4
introduces the main results achieved; finally, conclusions are discussed in Section 5.

2 Theoretical Background

Workflow Management System is a technology mainly focused on the automation of
business processes. It is widely adopted in the enterprises for supporting production
activities executed by the employee [5, 7]. ERP systems, vice versa, mainly address
the need of having an integrated database that serves different functional modules
supporting specific tasks of the enterprises. In the literature, there are several
definitions of ERP systems [1, 4, 8]. Basically, ERP systems overcome the data
separation of multiple functional applications by allowing individual modules to share
the same data. Moreover, most of them contains functionality for modelling,
deploying and managing workflows. The WfMS “embedded” in the ERP system is a
module which is a part of the core ERP architecture. Differences existing between
ERP systems and WfMSs are presented in the literature and mainly focus on the
definition of frameworks and approaches for facilitating their integration. A strategy
proposed for their integration consists of the use of a WfMS as a mean for
implementing a workflow controlling the ERP functionalities [3]. The problem of this
approach was highlighted in [8] and mainly deals with the difficulties of managing
inconsistencies between the two systems. Several other strategies address the problem
of the integration by considering the WfMSs as a “middleware” orchestrating legacy
applications and ERP systems. Newmann and Hansmann [6] developed an
architecture for integrating WfMS and the planning functionality embedded in ERP
systems. Brehm and Gomez proposed an approach for federating ERP systems
exploiting an architecture based on a WfMS enacting Web Services.

The main advantages deriving from the use of WfMSs are the following [5]:

- efficiency improvement: Using WFMSs allows an enterprise accomplishing
several objectives for improving its efficiency regarding the management of
processes, resources, market, delegation, motivations.

- process control improvement: WfMSs introduce a standard way of organizing
the work and include tools for validating the performed activities.

Using ERP and WfM Systems for Implementing Business Processes: An Empirical Study 59

- service quality improvement: Possibility of selecting the resources by
exploiting their specific during the workflow execution.

- training costs reduction: The costs for training human resources is reduced as
the execution of the tasks is guided by the WfMSs.

While, the main advantages deriving from the adoption of ERP systems are [8]:

- Reliable information access: Common DBMS, consistent and accurate data,
improved reports.

- Reduced data and operations redundancy: Modules access the same data in the
central database, avoiding multiple data input and update operations.

- Delivery and cycle time reduction: Minimization of retrieval and reporting
delay.

- Improved scalability: Structured and modular design.
- Improved maintenance: Vendor-supported long-term contract as part of the

system procurement.
- Global outreach: Use of extended modules, such as CRM – Customer

Relationship Management – and SCM – Supply Chain Management.

3 Design of the Study

The aim of the conducted empirical study was to understand the efficiency of WfM
and ERP systems for managing business processes.

The subjects involved in the empirical study were students from the course of
Enterprise Information Systems, in their last year of the master degree in computer
science at the University of Sannio in Italy.

The treatment variable of the empirical study was the independent variable type of
system used, whose values are: ERP system and WfM system. The first value regards
the use of ERP systems for modelling business processes. The second value is
referred to the use of WfM systems with the same aim. The two kinds of systems
were used by two groups of subjects, each composed of six elements. The first group
is indicated with G_ERP and used ERP systems; while the second group, called
G_WfM, used WfM systems. This represented the first independent variable.

The empirical study was performed by using two ERP systems and two WfM
systems. This permitted to avoid the strong dependence of the obtained results form
just one WfM / ERP system. In particular, the considered ERP systems were:

1. Compiere ERP/CRM (http://www.compiere.com/): An open source ERP and
CRM business solution for the Small and Medium-sized Enterprise (SME) for
execution distribution, retail, service and manufacturing activities.

2. OpenERP (http://openerp.com/product.html): An Open Source enterprise
management software. It covers and integrates enterprise needs and processes,
such as: accounting, sales, CRM, purchase, stock, production, services and
project management, marketing.

60 L. Aversano and M. Tortorella

The two considered WfMSs were:

1. Ultimus BPM Suite (http://www.ultimus.com/): A solution for automating
essential business processes. It handles the following services: order processes,
purchase and claims processes, document reviews, etc.

2. ProcessMaker (http://www.processmaker.com/): An Open Source business
process management software including tools for enabling management of
operational processes across systems, including finance, human resources and
operations.

The ERP and WfM systems were randomly assigned to the G_ERP and G_WfM
subjects respectively. The second considered independent variable is referred to the
modelling task to be performed. A process model is made of different elements:
activities, relationships, resources, and so on. The modelling of each different element
was considered as a different modelling task. Table 1 lists the modelling tasks that
were identified. The first and second columns of Table 1 indicate the name and
description of the tasks, respectively. For sake of clarity, Figure 1 shows an example
of process model implemented by using ProcessMaker. The figure highlights the
model components involved in the modelling tasks, that are pointed out by an arrows
labelled with the name indicated in Table 1.

The third independent variable was the business process to be modelled. In
particular, two business process were considered. The CSA (Centro Servizi
Amministrativi) business process, regarding the definition of the teaching resources
needed in the primary and secondary schools of Benevento, a town in Italy. The
TRIBUTE process regarding the process executed at the local Public Administration
of Maddaloni (a town in the district of Caserta in Italy), and aiming at managing the
payment of taxes and tributes. The two business processes differed in complexity. In
fact, Table 1 shows the numbers of the different model elements composing the two
considered process models. It can be noticed that the TRIBUTE process was more
complex than CSA in terms of activities, relations, control and required resources.
Both processes were analysed by both groups with both WfM and ERP systems.

Another considered independent variable was the time spent for training the
subjects to the usage of either WfM or ERP systems. As it will be later explained, due
to the different complexity of the two kinds of systems, a longer time was spent for
presenting and training the subjects to the use of the ERP systems. Then, the G_ERP
subjects were involved in added training before being able of assigned modeling the
business processes.

The two dependent variables considered were the Correctness and Completeness.
Correctness indicates how correctly the empirical subjects performed the

modelling elements by using either WfM or ERP systems. It was calculated as the
proportion of the correctly automated modelling business elements,
#CorrectIdentifiedBPElem respect to the total number of automated elements,
#IdentifiedBPElem. The correctness is evaluated as indicated in the following
formula:

BPElemIdentified

lemntifiedBPECorrectIde
sCorrectnes

#

#=

Using ERP and WfM Systems for Implementing Business Processes: An Empirical Study 61

Completeness measures how completely were automated the modelling business
elements. It is evaluated as the proportion of the correctly automated modelling
business elements, #CorrectIdentifiedBPElem, respect the total number of the
modelling business elements to be traced, #TotalBPElem. It is computed as:

mTotalBPEle

lemntifiedBPECorrectIde
ssCompletene

#

#=

Table 1. Modelling tasks

NAME DESCRIPTION CSA PROCESS
MODELLING ELEMENTS

TRIBUTE PROCESS
MODELLING ELEMENTS

MT1 Modelling the activities of the
business process

10 14

MT2 Modelling interrelationships
between business process activities

11 19

MT3 Modelling the conditions
constraining the business process
control flow

4 6

MT4 Modelling the forms to be filled
by the user during the business
process execution

8 10

MT5 Modelling the user roles in the
execution of the business process

4 5

MT6 Modelling process control flow 2 3
MT7 Modelling the access rights to

the business process forms
8 10

MT1

MT2

MT3

MT4

MT5

Fig. 1. Example of process model

62 L. Aversano and M. Tortorella

The evaluation were executed using two oracles represented by the actually
adopted models of the considered business processes. They were defined and
validated with the two groups of executors of the business processes in their daily
execution. Table 1 lists the numbers of modelling business elements to be traced
during each modelling task.

The evaluation of the Correctness and Completeness aimed at understanding if
WfM and ERP systems helped modelling business processes and which of the two
kinds of systems permitted to reach better modelling results in terms of conformance
of the business process model to the operative business process. This goal was
reached by evaluating the numbers of modelling elements correctly identified and
traced in the business process model by using the two kinds of systems and
comparing them.

The expected results were that the WFM systems permitted to obtain more
complete and correct results than ERP systems. This would contribute to confirm the
results obtained in [2], where the major workflow ability of WfMSs respect to ERP
systems was demonstrated.

4 Results

This section reports the main results achieved in the proposed empirical study. The
subjects involved in the study were asked to perform the modelling tasks listed in
Table 1 for both case studies, regarding the modelling of the CSA and TRIBUTE
business processes.

The first execution of the study was planned after the baseline training to the use of
the selected ERP and WfM systems. Table 2 shows the number of sessions spent
during the initial training for each kind of systems. It is worthwhile noticing that a
longer time was spent for training to the use of the ERP systems. However, during the
first execution of the empirical task, the subjects of the group G_ERP were not able to
accomplish their modelling tasks by using the ERP systems. They did not perform at
all the process implementation. On the contrary, the subjects belonging to G_WfM
completely executed the modelling tasks by using the assigned WfM systems. As a
consequence, a second session of training to the use of ERP systems was planned.
Additional hours were, then, spent for training to the use of ERP systems, as shown in
Table 2.

Once the additional training was completed, G_ERP subjects were asked again to
perform the study, and, in this case, they were able to complete the modelling tasks.
The data that will be later compared are those obtained by group G_WfM, obtained
after the baseline training, and those reached by group G_ERP after the additional
training.

Table 2. Training sessions

 ERP
TRAINING

WFMS
TRAINING

BASELINE TRAINING 12 4
ADDITIONAL

TRAINING
4 0

Using ERP and WfM Systems for Implementing Business Processes: An Empirical Study 63

Table 3. Correctness of the process model produced with ERP and WfM systems

MODELLING
TASK

ERP WFM

MT1 1 0,97
MT2 0,92 0,95
MT3 0,75 0,78
MT4 0,81 1
MT5 1 1
MT6 1 1
MT7 0,5 1

Table 3 reports the total results of correctness obtained by using either ERP or

WfM systems during the execution of the modelling tasks in Table 1; while Table 4
shows the results achieved by the completeness per each system and modelling task.
The value of correctness and completeness were computed as average of the results
obtained by the subjects.

Table 4. Completeness of the process model produced with ERP and WfM systems

MODELLING
TASK

ERP WFM

MT1 0,94 0,94
MT2 0,875 0,92
MT3 0,75 0,86
MT4 0,78 1
MT5 1 1
MT6 0,75 0,91
MT7 0,5 1

Observing Tables 3 and 4, it can be noticed by that better results of both
completeness and correctness have been obtained by using the WfM systems. These
data are confirmed by analysing the analytical results obtained for each process and
by each system.

Tables 5 and 6 highlight that for both processes better correctness results were
obtained by using the WfM systems. Analogous data were reached for the
completeness.

In a major detail, Compiere is the ERP system that permits to create more correct
process models, with the exception of some modelling aspects. efficiently from the
correctness point of view. The two modelling tasks that do not confirm this result are
MT2 and MT4. This is mainly due to the lack of a graphical tool for modelling
business processes, that contributes to facilitate the control flow specification. In
addition, the specification of the forms for the activity execution entails the use of the
entities’ model that manages their access. Regarding the WfMSs, better results were
obtained by Ultimus, except in the TRIBUTE process with reference to the MT3
modelling task. Actually, the control flow conditions is more complex in Ultimus than
ProcessMaker. In the former, the use of a process variable in a condition requires its
definition in an electronic spreadsheet.

64 L. Aversano and M. Tortorella

Table 5. Correctness of the implementation of the TRIBUTE process

MODELLING TASK ERP SYSTEMS WFM SYSTEMS
 OpenERP Compiere ProcessMaker Ultimus

MT1 1 1 0,91 1
MT2 0,86 0,81 0,86 1
MT3 0,5 0,5 0,75 0,62
MT4 0,87 1 1 1
MT5 1 1 1 1
MT6 1 1 1 1
MT7 0,5 1 1 1

Table 6. Correctness of the implementation of the CSA process

MODELLING TASK ERP SYSTEMS WFM SYSTEMS
 OpenERP Compiere ProcessMaker Ultimus

MT1 1 1 1 1
MT2 1 1 1 1
MT3 1 1 0,80 0,90
MT4 1 0,56 1 1
MT5 1 1 1 1
MT6 1 1 1 1
MT7 0 0,5 1 1

Tables 7 and 8 synthesizes the analysis of the completeness values obtained for
both business processes. Even in this case, better results were obtained by applying
the WfM systems for both business processes. In addition, even for the
completeness, Compiere is the mot efficient ERP system. A minor inconsistency
can be evicted with reference to the modelling task MT1 in the TRIBUTE process,
and the user form modelling MT4 for the CSA business process. This is due to the
same reasons previously explained. Finally, the best analysed WfM system was
Ultimus, with the exception of the activities and reciprocal relationship modelling
tasks, MT1 and MT2, with reference to the CSA process. Actually, the modelling
task of the joining activities is more complex with Ultimus. Overall, the values in
Table 3 and 4 highlight that both the completeness and the correctness values are
higher for the WfM systems than ERP systems. This could suggests that, the
WfMSs guarantee a greater efficiency in the modelling tasks. This is even more
relevant if related to the training sessions, that required a longer time in the case of
the ERP Systems.

As it is shown in Table 3, the ERP systems exhibited a bigger efficiency just in
the modelling task concerning the correct identification of the activities, MT1. This
result is due to the fact that the TRIBUTE process included a synchronization
activity that some subjects of group G_WfM managed adding a not needed dummy
activity.

The longer time required for the training of the G_ERP group and lowest
efficiency of the ERP systems for modelling business processes essentially derived
from the following characteristics of this kind of systems:

Using ERP and WfM Systems for Implementing Business Processes: An Empirical Study 65

1. ERP systems do not include an intuitive and simple graphical modeller for
managing forms: they are generated by the entities of the entity/relationship
model managed by the application. This characteristic introduces a major
complexity ad difficulty in the form generation;

2. the form access rights have to be also assigned on the entity/relationship model
that manages the persistence. Some subjects of G_ERP forgot to set there rights,
causing the impossibility of executing the activities with associated forms;

3. ERP systems did not include a graphical modeller easy to use. This increases the
difficulty of modelling the process activities and control flow.

Table 7. Completeness of the implementation of the TRIBUTE process

MODELLING TASK ERP SYSTEMS WFM SYSTEMS
 OPENERP COMPIERE PROCESSMAKE

R
ULTIMUS

MT1 0,9 0,86 0,96 1
MT2 0,72 0,81 0,84 1
MT3 0,5 0,5 0,66 0,83
MT4 0,8 1 1 1
MT5 1 1 1 1
MT6 0,5 0,5 0,75 1
MT7 0,5 1 1 1

Table 8. Completeness of the implementation of the CSA process

MODELLING TASK ERP SYSTEMS WFM SYSTEMS
 OPENERP COMPIERE PROCESSMAKE

R
ULTIMUS

MT1 1 1 1 0,87
MT2 1 1 1 0,93
MT3 1 1 1 1
MT4 1 0,56 1 1
MT5 1 1 1 1
MT6 1 1 1 1
MT7 0 0,5 1 1

5 Conclusions

Both WfMSs and ERP systems play a major role in the automation of enterprise’s
process. However, some research makes a theoretical comparison among these
systems with reference to the business process management and concludes that ERP
systems are less suitable than WfMSs for supporting such a kind of service. This
conclusion has just a limited quantitative evidence [2].

The aim of this paper was to address this limitation. The empirical study presented
aimed at understanding the effectiveness of ERP and WfM systems for modelling
business processes. In particular, business process models obtained by using ERP and
WfM systems have been compared. The comparison was referred to the models
obtained by the execution of seven modelling tasks, performed by two groups of
subjects by using two ERP systems and two WfM systems. In addition, the same
modelling tasks were executed on two different case studies. Results of the study

66 L. Aversano and M. Tortorella

confirmed the formulated hypothesis and WFMSs highlighted a major workflow
ability for process modelling than ERP systems. These results also confirmed the
initial investigation performed in [2], where the highest workflow ability of WfM
systems already emerged respect ERP systems.

In addition, the empirical experience permitted to highlight that: (i) the use of ERP
systems requires a bigger effort for training than WfM systems; and, (ii) nevertheless
the major training, better modelling capabilities were exhibited by WfM systems in
terms of correctness and completeness of the obtained process models.

These results encourage to continue investigating the differences of performance
existing between ERP and WfM systems. In addition, the authors will continue to
search for additional evidence of their hypothesis with additional studies also
involving subjects working in operative realities.

References

[1] Almadani, R., Alshawi, S., Themistocleous, M.: Integrating diverse ERP systems: a case
study. The Journal of Enterprise Information Management 17(6), 454–462 (2004)

[2] Aversano, L., Intonti, R., Tortorella, M.: Assessing Workflow Ability of ERP and WfM
Systems. In: Proceedings of the 21st International Conference on Software Engineering
Knowledge Engineering, SEKE 2009, Boston, Massachusetts, USA, July 1-3 (2009)

[3] Bostrom, R.P., Cardoso, J., Sheth, A.: Workflow Management Systems and ERP
Systems: Differences, Commonalities, and Applications. University of Georgia, Athens
(2004)

[4] Davenport, T.H.: Putting the enterprise into the enterprise system. Harvard Business
Review 76(4), 121–131

[5] Fischer, L.: Workflow Handbook. Future Strategies Inc. (2002)
[6] Hansmann, H., Neumann, S.: Workflow integrated ERP: an architecture model for

optimizes coordination of intra and interorganizational production planning and control.
In: ECIS 2002, Gdansk, Poland, June 6-8 (2002)

[7] Hollingsworth, D.: Workflow Management Coalition – The Workflow Reference Model,
D.N. TC00-1003, 19 Gennaio (1995)

[8] Hossain, L., Patrick, J.D., Rashid, M.A.: Enterprise Resource Planning: Global
Opportunities & Challenges, pp. 16–17. Idea Group Publishing, USA (2002)

[9] Kumar, K., Van Hillsgersberg, J.: ERP experiences and evolution. Communications of
the ACM 43(4), 23–26

[10] Malamateniou, F., Poulymenopoulou, M., Vassilacopoulos, G.: Specifying Workflow
Process Requirements for an Emergency Medical Service. J. Med. Syst. 27(4), 325–335
(2003)

[11] O’Leary, D.E.: Enterprise Resource Planning Systems: Systems, Life Cycle, Electronic
Commerce, and Risk. Cambridge University Press, Cambridge (2000)

Mining Design Patterns in Object Oriented

Systems by a Model-Driven Approach

Mario Luca Bernardi and Giuseppe Antonio Di Lucca

Department of Engineering - RCOST, University of Sannio, Italy
{mlbernar,dilucca}@unisannio.it

Abstract. In this paper we present an approach to automatically mine
Design Patterns in existing Object Oriented systems and to trace sys-
tem’s source code components to the roles they play in the Patterns. The
approach defines and exploits a model representing a Design Pattern by
its high level structural Properties. It is possible to detect Pattern vari-
ants, by adequately overriding the Pattern structural properties. The
approach was validated by applying it to some open-source systems.

Keywords: Design Patterns, Software Comprehension, Software Main-
tenance, Software Evolution, Source Code Analysis.

1 Introduction

Pattern-based design leads to better structured, understandable, maintainable
and ultimately reusable software systems [11,6]. Unfortunately, the advantages
of adopting the DPs are often reduced by the lack of adequate documentation
reporting the DPs used in a software system. In this paper we propose an ap-
proach to detect the DPs defined and implemented in an Object Oriented (OO)
software system by identifyng the source components coding them. The approach
defines a metamodel to represent a DP through a set of high level properties.
The mining of the patterns is performed by traversing a graph representing an
instance of this meta-model and annotating the elements of the system Type
hierarchy with information on the roles they play in the patterns. With respect
to existing mining approaches, ours has the main advantage that it allows to
identify variant forms of the classic DPs (as known in the literature). This is an
important issue since DPs are present in real world systems with many differ-
ent variants [14,13]. Our approach organizes the DPs catalog into a hierarchy
of specifications, reusing existing ones. Thus a DP Variant (DPV) can be easily
expressed as the modification of existing specifications by adding, removing or
relaxing the properties modelling it.

The proposed approach allows to reduce the size of the search space on the
graph traversal, resulting in a better efficiency than existing ones. Indeed, in
our approach, the analyis of a Type marks the code elements of the Type’s
neighbour that are succesfully bounded to patterns’ members. Existing bindings
are then reused during the traversal and provide chances to reduce the need of
re-evaluating properties again for all Types (reducing the search space).

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 67–77, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

68 M.L. Bernardi and G.A. Di Lucca

Fig. 1. The meta-model represented as a UML class diagram

Another issue affecting DP mining approaches is related to the dependence
between the approach itself and the pattern to mine, while a mining approach
should not be dependent on the particular pattern. The proposed approach is not
dependent on the pattern to mine and the mining process is based on declarative
specification. This allows to write new specifications deriving them from the
existing ones (to detect variants) or to write them from scratch (to detect new
patterns). To provide an automatic support to the approach the Design Pattern
Finder (DPF) tool has been developed.

The approach has been assessed by applying it to some open source java
systems. The results have been validated against those from the analysis of an
expert and taking into account public benchmarks [7] or previous works available
for the same systems.

The paper is structured as follows. Section 2 presents the meta-model defined
to represent the DPs structure in terms of Properties. Section 3 presents the
process to find DPs in a Java system, exploiting the instances of the proposed
meta-model. Section 4 provides synthetic information about the DPF tool. Sec-
tion 5 illustrates a case study carried out on some open-source Java systems. In
the Section 6 relevant related works are discussed and some comparisons with
the proposed approach are made. Finally, Section 7 contains some conclusive
remarks and briefly discusses future work.

2 A Meta-model to Represent Design Pattern
Specifications

The approach defines a meta-model to represent the Types (and Type’s compo-
nents) of an OO system, the structural relationships (e.g., inheritance, implemen-
tation and type nesting relationships) among the Types, the DPs, and the rela-
tionships among the DPs’ code elements and the Types. The DPs are represented
by a set of Properties modelling the structural elements of the patterns. The rela-
tionships among DPs and the Types are traced down to the DPs Properties and

Mining Design Patterns in Object Oriented Systems 69

Types’ components. The Figure 1 shows, as a UML class diagram, the defined
meta-model. An OO system is modeled as a set of Types (i.e., Container, Value,
Reference, and Array Types1) where Reference Types are Interfaces and Classes,
and an Interface is implemented by one or more Classes. Reference Types are
composed by Fields and Methods, and a Method can have Arguments. A Refer-
enceType can inherit from another ReferenceType as well as can contain another
ReferenceType (e.g. an inner class). A Pattern is defined by the aggregation of
the Properties characterizing it. A Classifier Property, models a Type (Class or
Interface) used in a pattern specification (or to modify an already existing Type).
A Classifier models a role needed by the pattern with respect to its required in-
ternal structure and relationships with other Classifiers. Also, it allows to define
constraints, if any, on its super-type or its implemented interfaces. A Classifier can
be an Inheritance or an Implementation. The Data Property is used to define a
field in an existing Classifier (or override an existing field). It can specify an
existing Classifier as the field’s type or a compound type of an existing Clas-
sifier (like an array for a generic Collection). The Behavioral Property allows
to define a method (or to override a method’s definition) in an existing Clas-
sifier. The definition of the method includes the definition of its return type,
its arguments and, optionally, of the method itself or for any of its arguments.
This property can be used to define one or more of the required (or optional) be-
haviours of the Classifiers introduced in a pattern specification. The Dependency
Property describes the dependency between a pattern element (like a method)
and another pattern element (as another method or a field). The Invocation
Property models a call between methods already defined for some Classifiers in
the pattern specfication. The Delegation Property specifies a mapping between
a set of methods of a Class and a set of methods of an existing Classifier in the
pattern specification. This allows to take into account the Delegation for the
patterns that require it. For instance, Delegation is used to specify delegation in
the Proxy pattern towards the proxied objects and for State pattern towards the
ConcreteStates. The Object Creation Property models the creation constraints
specifying the method or the field that needs the object creation and the Clas-
sifier of the created object. This happens for patterns expressing a mandatory
object creation semantic, like in the case of creational patterns but also for many
patterns in the other categories.

3 The Mining Process

The pattern mining process is structured in the following steps:

1. System source code analysis
2. Meta-model instantiation
3. Patterns’ models matching

1 Array types are threated as separate types since they must specify the type of array’s
components.

70 M.L. Bernardi and G.A. Di Lucca

The source code of the system under study is parsed, and the resulting AST is
used as input to the meta-model instantiation. Then a traversal of the AST is
performed in order to generate an instance of the defined system model. Several
techniques (Rapid Type Analysis - RTA, Class Flattening, and the Inlining of not-
public methods) are exploited to build a system’s representation to be used by the
matching algorithm. RTA is used to handle late binding and hence the computed
call graph reports a super-set of the actual calls that can be executed at run-time.
The generated system model and the models of the DPs to be searched are the
inputs of the detection step 3), that performs the matching algorithm.

The algorithm matches the models of the DPs against the model of the sys-
tem. Models are represented by means of graphs: given a set of model graphs
P1 . . . , PN , representing DPs specifications, and an input graph S, representing
the analyzed system, mining design patterns means to find all sub-graph isomor-
phisms from Pi to S. The approach uses a matching algorithm inspired to the one
proposed in [10] and modified to adapt it to the context of DPs mining. The de-
fined algorithm allows to: (i) detect more easily patterns’ variants also (handled
as new pattern models inheriting and overriding properties of a parent pattern
model); (ii) reduce the search space by using constraints defined in the pattern
specifications. Nodes’ and edges’ bindings are reused (across different pattern
specifications) by marking traversed elements during the matching process, and
the binding between already (and successfully) matched elements are no more
considered (thus pruning the search space). The Figure 3 (lines 1-6) reports the
core of the algorithm used for performing the match. As showed in Figure 3 in
lines 7-15 (reporting the case of Classifier properties) the match function pro-
ceeds in forward until there are no property nodes that can be considered. For
a match to be successful, both forward and backward steps must result in at
least a binding (line 14). When the forward step fails, the backward step is not
executed at all and the match is unsuccessful. Moreover existing bindings are
reused while pending matches, suspended during the evaluation of matches for
the properties in the neighbourhood, are considered as satisfied since they are
part of the ongoing binding. More details can be found in [1].

In Figure 2 is an example about the algorithm beahaviour. The Figure shows,
on the left, a small excerpt of a system model containing an instance of the
Observer DP, and, on the right, the results of some of the matches that occurs
during the graph traversal. In the model instance, a circle represents a Type,
as specified by a Classifier property. Data properties are rendered as hexagons
(see the Observer’s fields connected to the ConcreteSubject). Methods and their
arguments are rendered as diamonds and triangles respectively. The Property
meta-classes are represented as stereotyped relationships. Due to the space con-
straints only one successful match will be entirely described (while in the other
cases the result of the match is provided along with a brief explanation about the
reasons it failed or succeeded). All the type nodes in Figure 2 are numbered just
to refer to them in an easier way (nodes from system model have the prefix “S”,
nodes from pattern specification have the prefix “P”). The algorithm starts by
scheduling matches among each couple of system and pattern type. As reported

Mining Design Patterns in Object Oriented Systems 71

Fig. 2. An example of a single binding during the detection of the Observer Pattern
on a small excerpt of a system model

1 . Set
T = a l l system c l a s s i f i e r p r op e r t i e s
P = a l l pattern s p e c i f i c a t i o n s
M = Matches l i s t

2 . while (Property sp = T. getNext ())
3 . foreach (Pattern p : P)
4 . foreach (Property pp : p . getNext ()) {
5 . Binding b = match(p , pp , sp) ;
6 . M. updateBinding (b , p) ;

}−−
7 .match(Pa t t e r nSpe c i f i c a t i o n p ,

C l a s s i f i e rP r op e r t y pcp ,
C l a s s i f i e rP r op e r t y scp){

8 . foreach (Property pp :
cp . g e tP rop e r t i e s ()){

9 . foreach (Property sp :
scp . g e tP rope r t i e s ()){

10 . match(p , pp , sp) ;
11 . }
12 . }
13 . backwardBinding (p , cp , scp) ;
14 . return (p . hasForwardBinding () &&

p . hasBackwardBinding ()) ;
15 .}

Fig. 3. A sketch of the detection algorithm

in the Figure 2, right side, the matches between S1/S2 and all pattern classifiers
fail. The match between S1 and P1 fails on the backward step because the pat-
tern requires a method that is not present in S1. The match among S1 and P2
fails on forward because the nodes are of different types (S1 is an interface while
P2 is a class). The node S2 doesn’t match with all Pi since it requires a match on
three methods, one returning and two taking as argument a type matchable with
S1 (i.e. “Vertex” in the system). These three matches fail (some in forward oth-
ers in backward) for all pattern types (this can be verified on the graph looking

72 M.L. Bernardi and G.A. Di Lucca

at neighbourhood of nodes S2 and Pi for all i). The first successful match is the
one that binds the node S3 with the node P4 of the pattern specification. In
this case the matches on the required behavioral properties are satisfied for the
couple of methods (addListener,add) and (removeListener,remove) but fail for
the others (since they must satisfy the dependencies towards the add/remove
methods of the node P3). The backward step considers the Inheritance and try
to match P5 with the system node S4. This match succeeds both in forward
and backward (and indirectly binds also S5 to P3): for this reason the initial
match S3-P4 is satisfied. This means that the AbstractSubject and AbstractOb-
server interfaces along with at least a ConcreteSubject and a ConcreteObserver
are identified in the system along with their members. The algorithm continues
to try all remaining matches, excluding the ones that already succeeded, until
all mandatory pattern nodes are bounded to at least one system element (in
this case at least a pattern instance is found) or until the system types are all
evaluated and the pattern instance is not found.

4 The DPF Tool

To provide an automatic support to the mining approach the Design Pattern
Finder (DPF) tool has been developed, implementing all the steps of the mining
process. It is an Ecplise plug-ins set based upon JDT (to extract information from
source code), and upon the EMF framework (implementing the meta-model).
The tool uses the JDT platform to extract detailed information on the systems’
static structure, such as: type hierarchy, type’s inner structure (attributes, their
types and scopes and so on), method and constructors signatures, method calls,
object creations, container support in order to express containment within types,
static member information, delegation. The pattern specifications are organized
in a pattern catalog. Each pattern specification can be standalone or override a
base specification by changing only some of its properties. After the system has
been parsed and the model built, the user can select which design patterns are
to be detected. After the execution of the algorithm, the detected patterns are
shown (including with their internal members). Each identified pattern instance
is traced to the source code elements implementing it and a user can visualize,
inspect and analyze such code components.

5 Case Study

The proposed approach has been validated by applying it to two open source
java software systems: JHotDraw 6, a Graphical Editor framework (made up of
25,308 LOC, 48 Classes and 35 Interfaces, and 2898 Methods), and JUnit 3.7,
a unit testing framework for Java programs (made up of 9,743 LOC, 16 Classes
and 11 Interfaces, and 851 Methods). These systems were chosen because their
development is explicitly based on design patterns and hence they are adequate
to evaluate design pattern mining approaches. Moreover, they have been exten-
sively studied in literature and hence benchmark already exists for these systems.

Mining Design Patterns in Object Oriented Systems 73

Table 1. Overview of the results: design patterns identified and quality of detection

Thus it is easier to evaluate precision and recall providing quantitative data on
the quality of detection. The considered systems have different sizes and this let
us also to assess how the proposed matching algorithm scales with respect to
the system size.

To assess the effectiveness and the correctness of the approach, its results were
compared with the ones indicated by an expert. The expert has validated the DPs
identified by the tool by comparing them with the results he got by analysing
the systems’ code and documentation, and the results from other works known
in the literature. The Table 1 reports, for each of the two analysed systems: the
name of the DPs searched in the code (column ’Pattern’); the number of each
searched Pattern detected by the proposed approach (column ’Detected’); the
number of each searched Pattern the expert said to exist actually in the system
(column ’True’); the number of False Positive (column ’FP’), i.e. the number of
DPs instances detected by the tool but not validated by the expert; the values of
precision and recall for the results by the tool (columns ’Precision’ and ’Recall’
respectively). Patterns like Command, Composite or Observer but also Visitor
(that is based on double dispatch) are better identified since their specifications
include both static and behavioral relationships. They have a lower number of
false positives than those patterns with a less constrained structure or with
limited or absent behavioral properties.

Some false negatives, i.e. pattern instances that exist in the system (as spec-
ified by the expert) but missed by the detection process, were found along the
validation process. The false negatives were related to patterns that were imple-
mented by a not standard way. Anyway the number of false negative was lower
than the false positive one. False negatives occured for State, Singleton, and Pro-
totype DPs in JHotDraw, and for State and Observer in JUnit. The occurence
of false negatives was also due and related to DPs variants. Indeed, the num-
ber of false negatives was reduced by defining the specifications of new variants
inheriting existing ones that took into account the structural differences. This
allowed to detect those pattern instances that were not identified because of few
small structural differences originating the variants.

For the JHotDraw system, the recall is optimal for most of the detected
DPs, while in many cases the precision is less than 0.5; this was because some
pattern specifications were particularly relaxed. For instance, in the case of the
AbstractFactory DP, we considered as an AbstractFactory even a class owning

74 M.L. Bernardi and G.A. Di Lucca

a single method creating and returning an instance of a product. The analysis of
JHotDraw gave better results for the precision. The proposed mining approach
can help to distinguish among patterns that have same static structure but dif-
ferent behaviours. For example, in order to distinguish between the Command
and Adapter (the object version) DPs, the approach uses information inside the
invocation property requiring that the Execute method, in the concrete subclass,
is implemented by invoking a method of a class still bound to a Command. The
same is for Composite/Decorator where the Decorator is required to specify a
delegation towards the decorated object. The approach identifies patterns from
source code and hence all third party libraries doesn’t participate into detection
process. Anyway, the approach supports some of the standard Java environments
meaning that we map all the Java collection framework classes and interfaces
onto our notion of Container.

In the experiments we used a repository containing the specifications of three
variants of the Observer DP, two variants for the Composite, and three variants
for the Singleton. The first variant of the Observer (we call it as the variant A)
uses the Java types (Observable class and Listener interface) while the second
(B) uses a generic interface to be found within system classes and the third one
(C) defines a multi-event Observer in which type of event is passed to the notify
method. For the Composite pattern only two versions are defined: the classic
one proposed in literature by Gamma [6] (version A) and a version in which an
intermediate abstract class implementing the core method for components has
been inserted in the Component hierarchy (version B). For the Singleton DP we
have a first version (A) with static getter and private constructor; a second one
(B) taking concurrency into account, and a third version (C) in which there is a
single instance for each object identifier passed to the singleton itself. The two
systems used different variants of the Composite and Observer patterns (the A
variant for JHotDraw, and the B variant for JUnit), while they used the same
variant of the Singleton pattern (the A one). Within the analysed systems we
did not found instances of different variants of a same pattern. It would be
interesting to perform such analysis on a wider set of systems to see if different
variants of a same pattern actually coexists in the same system; future work will
include this analysis.

The execution times for each step of the detection process were:

– JHotDraw: Step1=1281 ms - Step2= 7838 ms - Step3=11480;
– JUnit: Step1=157 ms - Step2= 1199 ms - Step3=3502;

The total time for JHotDraw was 20599 ms and 4858 ms for JUnit. The Step
3 ’Patterns’ models matching’ resulted the most CPU time consuming. The
average time (2288.78 ms for JHotDraw and 539.78 for JUnit) for a single pattern
resulted to be comparable to the time of other approaches. The approach is more
effective when each specification is focused on well defined patterns’ variants
with explicit and mutually exclusive constraints among them. The worst results
were obtained for overlapping pattern specifications in which only one or two
properties were different: when specifications are badly written (i.e., few and
overlapping constraints) the performance of the algorithm degrades rapidly. Of

Mining Design Patterns in Object Oriented Systems 75

course, the pattern detection is highly affected by the number of nodes in both
system and pattern specifications. Moreover, since the algorithm is pivoted on
matches among types, the number of types is the major characteristic affecting
the overall performances.

One of the most important limitation regards the generation of behavioral
properties in presence of late binding. In this case a call graph using Rapid
Type Analysis (RTA) is built to reduce the set of possible callers. However the
call graph still contains a super-set of the actual calls. In the property extraction
algorithm we decided to take into account the sets of possible targets in order
to perform the matches. In this way, surely we don’t miss any possible binding
but this exposes the algorithm to the presence of false positives (since the set
of successful binding is a super-set of the actual ones). Further experimentation
(with more strict policies) should be performed in order to assess if the behavior
of the algorithm improves with respect to this conservative choice. The algorithm
is faster when there are patterns to be found in the analysed system. The worst
performances are obtained when there are no pattern instances in the system
(since all matches need to be executed and no existing bindings are used to
reduce the list of remain matches to be evaluated).

6 Related Work

A review on current techniques and tools for discovering architecture and design
patterns from OO systems, are provided in [5].

In [2], De Lucia et al. present some case studies of recovering structural design
patterns from OO source code. Di Penta et al. in [3] present an empirical study
to understand whether in DPs’ modifications, along with the maintenance/evo-
lution of a system, there are roles more change-prone than others and whether
there are changes that are more likely to occur for certain roles. In [4] an approach
to discover design patterns is described by defining the structural characteristics
of each DP in terms of weights and matrix. In [15], [8], Gueheneuc et al. propose
an approach to semiautomatically identify microarchitectures that are similar to
design motifs in source code and to ensure the traceability of these microarchi-
tectures between implementation and design. Moreover in [9], Gueheneuc et al.
present a study about classes playing zero or more roles in six different DPs.

A design pattern detection methodology based on similarity scoring between
graph vertices is proposed in [14]; the approach is able to recognize also pat-
terns that are modified from their standard representation. The main difference
among this approach and the one we propose regards the matching algorithm:
our representation is graph-based (instead of matrix-based) and is driven by a
meta-model (instead to be hard-coded) that speficies the information to be taken
into account during matching between pattern models and system models. In our
approach pattern specifications can be written and inserted into a repository to
became available to the pattern matching algorithm. Moreover specifications can
be overridden to increase the catalog of detected patterns and to handle variants
in an effective way.

76 M.L. Bernardi and G.A. Di Lucca

An approach to overcome the scalability problems due to the many design
and implementation variants of design pattern instances is proposed in [12]. It
is based on a recognition algorithm working incrementally and requiring human
intervention. Our approach differs from this one because it is completely based on
information recovered from the defined meta-model and specified in the pattern
models, and it does not involve user to drive the detection algorithm.

7 Conclusions and Future Work

An approach to detect DPs in existing OO systems has been presented. A meta-
model has been defined to represent DPs by a set of Properties specifying each
DP, and the system to mine. The identification of DPs is carried out by per-
forming an algorithm that matches the models of the DPs against the model
of the system to detect those components cooperating in a way that satisfies
the model of a pattern. The method is able to detect multiple instances of the
same pattern and to find several pattern instances even when collapsed into a
single class. The approach also allows to identify DPs variants as modifications
to pattern specifications already defined. The approach has been applied to two
Java systems producing good results. Future work will consider the extension
of the catalog of the patterns to identify, the evolution of the prototype of the
DPF tool and the execution of further experimentation on a wider set of open
source systems.

References

1. Bernardi, M.L., Di Lucca, G.A.: Model driven detection of design pattern. In:
Proceedings of the 26th IEEE International Conference on Software Mainte-
nance (ICSM 2010), ERA Track, Washington, DC, USA. IEEE Computer Society,
Los Alamitos (2010)

2. Costagliola, G., De Lucia, A., Deufemia, V., Gravino, C., Risi, M.: Design pattern
recovery by visual language parsing. In: Proc. of the Ninth European Conference
on Software Maintenance and Reengineering, CSMR 2005, Washington, DC, USA,
pp. 102–111. IEEE Computer Society, Los Alamitos (2005)

3. Di Penta, M., Cerulo, L., Gueheneuc, Y.-G., Antoniol, G.: An empirical study of
the relationships between design pattern roles and class change proneness. In: Proc.
IEEE Int. Conf. on Software Maintenance, ICSM 2008, pp. 217–226 (2008)

4. Dong, J., Lad, D.S., Zhao, Y.: Dp-miner: Design pattern discovery using matrix.
In: Proc. 14th Annual IEEE International Conference and Workshops on the En-
gineering of Computer-Based Systems, ECBS 2007, pp. 371–380 (2007)

5. Dong, J., Zhao, Y., Peng, T.: Architecture and design pattern discovery techniques
- a review. In: Arabnia, H.R., Reza, H. (eds.) Software Engineering Research and
Practice, pp. 621–627. CSREA Press (2007)

6. Johnson, R., Vlissides, J., Gamma, E., Helm, R.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading (1998)

7. Fulop, L.J., Ferenc, R., Gyimothy, T.: Towards a benchmark for evaluating design
pattern miner tools. In: Proc. 12th European Conference on Software Maintenance
and Reengineering, CSMR 2008, April 1-4, pp. 143–152 (2008)

www.SoftGozar.Com

Mining Design Patterns in Object Oriented Systems 77

8. Gueheneuc, Y.-G., Antoniol, G.: Demima: A multilayered approach for design pat-
tern identification. IEEE Trans. on Software Engineering 34(5), 667–684 (2008)

9. Khomh, F., Guéhéneuc, Y.-G., Antoniol, G.: Playing roles in design patterns: An
empirical descriptive and analytic study. In: ICSM, pp. 83–92. IEEE, Los Alamitos
(2009)

10. Kim, D.H., Yun, I.D., Lee, S.U.: Attributed relational graph matching based on
the nested assignment structure. Pattern Recogn. 43(3), 914–928 (2010)

11. Philippsen, M., Prechelt, L., Unger-Lamprecht, B., Tichy, W.F.: Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Trans. Softw. Eng. 28(6), 595–606 (2002)

12. Niere, J., Schäfer, W., Wadsack, J.P., Wendehals, L., Welsh, J.: Towards pattern-
based design recovery. In: Proceedings of the 24th International Conference on
Software Engineering, ICSE 2002, pp. 338–348. ACM, New York (2002)

13. Smith, J.M., Stotts, D.: Spqr: flexible automated design pattern extraction from
source code. In: Proc. 18th IEEE International Conference on Automated Software
Engineering, October 6-10, pp. 215–224 (2003)

14. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.T.: Design pat-
tern detection using similarity scoring. IEEE Transactions on Software Engineer-
ing 32(11), 896–909 (2006)

15. Gueheneuc, Y.-G., Sahraoui, H., Zaidi, F.: Fingerprinting design patterns. In: Proc.
11th Working Conference on Reverse Engineering, pp. 172–181 (2004)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 78–92, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Exploring Empirically the Relationship between Lack of
Cohesion and Testability in Object-Oriented Systems

Linda Badri, Mourad Badri, and Fadel Toure

Software Engineering Research Laboratory
Department of Mathematics and Computer Science

University of Quebec at Trois-Rivières, Trois-Rivières, Québec, Canada
{Linda.Badri,Mourad.Badri,Fadel.Toure}@uqtr.ca

Abstract. The study presented in this paper aims at exploring empirically the
relationship between lack of cohesion and testability of classes in object-
oriented systems. We investigated testability from the perspective of unit
testing. We designed and conducted an empirical study using two Java software
systems for which JUnit test cases exist. To capture testability of classes, we
used different metrics to measure some characteristics of the corresponding
JUnit test cases. We used also some lack of cohesion metrics. In order to
evaluate the capability of lack of cohesion metrics to predict testability, we
performed statistical tests using correlation. The achieved results provide
evidence that (lack of) cohesion may be associated with (low) testability.

Keywords: Software Attributes, Quality Attributes, Lack of Cohesion,
Testability, Metrics, Relationship, Empirical Analysis.

1 Introduction

Cohesion is considered as one of most important object-oriented (OO) software
attributes. Many metrics have been proposed in the last several years to measure class
cohesion in object-oriented systems (OOS). Class cohesion (more specifically,
functional cohesion) is defined as the degree of relatedness between members of a
class. In OOS, a class should represent a single logical concept, and not to be a
collection of miscellaneous features. OO analysis and design methods promote a
modular design by creating high cohesive classes (Larman, 2003; Pressman, 2005;
Sommerville, 2004). However, improper assignment of responsibilities in the design
phase can produce low cohesive classes with unrelated members. The reasoning is
that such (poorly designed) classes will be difficult to understand, to test and to
maintain. However, there is no empirical evidence on these beliefs. In fact, studies
have failed to show a significant relationship between, for example, cohesion metrics
and software quality attributes such as fault-proneness or changeability (Briand, 1998;
Briand, 2000; Kabaili, 2001). Moreover, studies have noted that cohesion metrics fail
in many situations to properly reflect cohesion of classes (Aman, 2002; Chae, 2000;
Chae, 2004; Kabaili, 2000; Kabaili, 2001).

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 79

One possible explanation of the lack of relationship between cohesion and some
software quality attributes is, according to some authors (Briand, 1998; Briand, 2000;
Henderson-Sellers, 1996; Stein, 2005), the difficulty of measuring cohesion from
syntactic elements of code. We believe that, effectively, major of existing cohesion
metrics (known as structural metrics) can give cohesion values that do not reflect
actually the disparity of the code, in the sense that they capture some structural links
between parts of code that may be conceptually disparate. Moreover, we believe also
that cohesion metrics are based on restrictive criteria and do not consider some
characteristics of classes. These weaknesses lead, in fact, in many situations to some
inconsistency between the computed cohesion values and the intuitively expected
ones (Badri, 2004; Chae, 2000; Chae, 2004; Kabaili, 2001). An empirical study
conducted by Stein et al. (Stein, 2005) pointed, however, to a more basic relationship
between cohesion and complexity: that a lack of cohesion may be associated with
high complexity.

In this paper, we decided to explore empirically the relationship between lack of
cohesion (disparity of the code) and testability of classes in OOS. The objective is
also to get a better understanding of testability and particularly the contribution of
(lack of) cohesion to testability. Testability refers to the degree to which a software
artifact facilitates testing in a given test context (Voas, 1995; Freedman, 1991; Le
Traon, 2000; Jungmayr, 2002). Software testability is related to testing effort
reduction and software quality (Gao, 2005). It impacts test costs and provides a means
of making design decisions based on the impact on test costs (Sheppard, 2001).
Several software development and testing experts pointed out the importance of
testability and design for testability, especially in the case of large and complex
systems. Software testability is affected by many different factors, including the
required validity, the process and tools used, the representation of the requirements,
and so on (Bruntink, 2006). Yeh et al. (Yeh, 1998) state that diverse factors such as
control flow, data flow, complexity and size contribute to testability. According to
Zhao (Zhao, 2006), testability is an elusive concept, and it is difficult to get a clear
view on all the potential factors that can affect it. Furthermore, Baudry et al. (Baudry,
2003) argue that testability becomes crucial in the case of OOS where control flows
are generally not hierarchical but distributed over whole architecture.

We designed and conducted an empirical study to evaluate the capability of lack of
cohesion to predict testability of classes. This paper investigates testability from the
perspective of unit testing, where the units consist of classes of an OO software
system. We focused on white box testing of classes. We used for our study two Java
software systems for which JUnit test cases exist. To capture testability of classes, we
used different metrics to measure some characteristics of the corresponding JUnit test
classes. In order to test our hypothesis, we chose in our experiment two well-known
lack of cohesion metrics: LCOM (Lack of COhesion in Methods) (Chidamber, 1994)
and LCOM* (Henderson-Sellers, 1996). To facilitate comparison with our class
cohesion measurement approach (Badri, 2004; Badri, 2008), and knowing that the
selected cohesion metrics are basically lack of cohesion metrics (inverse cohesion
measures), we derive a lack of cohesion measure (following the same approach of
LCOM) from the cohesion metric we proposed. In order to evaluate the capability of
the lack of cohesion metrics to predict testability, we used statistical tests using
correlation.

80 L. Badri, M. Badri, and F. Toure

The rest of the paper is organized as follows: Section 2 gives a brief survey on
related work on (predicting) software testability. Section 3 presents an overview of
major class cohesion metrics. Section 4 presents briefly our approach for class
cohesion assessment. In section 5 we describe the experimental design, define the
used metrics and discuss the statistical technique we used to investigate the
relationship between lack of cohesion and testability metrics. Section 6 presents some
characteristics of the used systems. We also present and discuss the obtained results.
Finally, conclusions and some future work directions are given in section 7.

2 Software Testability

IEEE (IEEE, 1990) defines testability as the degree to which a system or component
facilitates the establishment of test criteria and the performance of tests to determine
whether those criteria have been met. ISO (ISO, 1991) defines testability (characteristic
of maintainability) as attributes of software that bear on the effort needed to validate the
software product.

Fenton et al. (Fenton, 1997) define testability as an external attribute. Freedman
introduced testability measures for software components based on two factors:
observability and controllability (Freedman, 1991). Voas defines testability as the
probability that a test case will fail if the program has a fault (Voas, 1992). Voas and
Miller propose a testability metric based on the inputs and outputs domains of a
software component (Voas, 1993), and the PIE (Propagation, Infection and Execution)
technique to analyze software testability (Voas, 1995).

Binder (Binder, 1994) discusses software testability based on six factors:
representation, implementation, built-in text, test suite, test support environment and
software process capability. Khoshgoftaar et al. modeled the relationship between
static software product measures and testability (Khoshgoftaar, 1995) and applied
neural networks to predict testability from static software metrics (Khoshgoftaar,
2000). McGregor et al. (McGregor, 1996) investigate testability in OOS and introduce
the visibility component (VC) measure. Bertolino et al. (Bertolino, 1996) investigate
the concept of testability and its use in dependability assessment. Le Traon et al. (Le
Traon, 1995; Le Traon, 1997; Le Traon, 2000) propose testability measures for
dataflow designs. Petrenko et al. (Petrenko, 1993) and Karoui et al. (Karoui, 1996)
address testability in the context of communication software. Sheppard et al.
(Sheppard, 2001) focuses on formal foundation of testability metrics.

Jungmayr (Jungmayr, 2002) investigates testability measurement based on static
dependencies within OOS. Gao et al. consider testability from the perspectives of
component-based software construction (Gao, 2003), and address component
testability issues by introducing a model for component testability analysis (Gao,
2005). Nguyen et al. (Nguyen, 2003) focused on testability analysis based on data
flow designs in the context of embedded software. Baudry et al. addressed testability
measurement (and improvement) of OO designs (Baudry, 2003; Baudry, 2004).
Bruntink et al. (Bruntink, 2004) evaluated a set of OO metrics with respect to their
capabilities to predict testability of classes of a Java system. More recently,
Chowdhary (Chowdhary, 2009) focuses on why it is so difficult to practice testability
in the real world.

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 81

3 Cohesion Metrics

Yourdon et al. (Yourdon, 1979) defined cohesion, in the procedural programming
paradigm, as a measure of the extent of the functional relationships between the
elements of a module. In the OO paradigm, Booch (Booch, 1994) described high
functional cohesion as existing when the elements of a class all work together to
provide some well-bounded behavior. There are several types of cohesion: functional
cohesion, sequential cohesion, coincidental cohesion, etc. (Henderson-Sellers, 1996;
Yourdon, 1979). In this work, we focus on functional cohesion.
 Many metrics have been proposed in the last several years in order to measure class
cohesion in OOS. The argument over the most meaningful of those metrics continues
to be debated (Counsell, 2006). Major of proposed cohesion metrics are based on the
notion of similarity of methods, and usually capture cohesion in terms of connections
between members of a class. They present, however, some differences in the
definition of the relationships between members of a class. A class is more cohesive,
as stated in (Chae, 2000), when a larger number of its instance variables are
referenced by a method (LCOM* (Henderson-Sellers, 1996), Coh (Briand, 1998)), or
a larger number of methods pairs share instance variables (LCOM1 (Chidamber,
1991), LCOM2 (Chidamber, 1994), LCOM3 (Li, 1993), LCOM4 (Hitz, 1995), Co
(Hitz, 1995), TCC and LCC (Bieman, 1995), DCD and DCI (Badri, 2004)).

These metrics are known as structural metrics, which is the most investigated
category of cohesion metrics. They measure cohesion on structural information
extracted from the source code. Several studies using the Principal Component
Analysis technique have been conducted in order to understand the underlying
orthogonal dimensions captured by some of these metrics (Aggarwal, 2006; Briand,
1998; Chae, 2000; Etzkorn, 2004; Marcus, 2005). Briand et al. (Briand, 1998)
developed a unified framework for cohesion measurement in OOS that classifies and
discusses several cohesion metrics. Development of metrics for class cohesion
assessment still continues (Badri, 2008; Chae, 2004; Chen, 2002; Counsell, 2006;
Marcus, 2005; Marcus, 2008; Meyers, 2004; Woo, 2009; Zhou, 2002; Zhou, 2003).
Recent approaches for assessing class cohesion focus on semantic cohesion (De
Lucia, 2008; Marcus, 2008). We focus in this work on structural cohesion metrics.

4 Class Cohesion Measurement

We give, in this section, a brief overview of our approach for class cohesion
assessment. For more details see (Badri, 2004; Badri, 2008). The adopted approach
for the estimation of class cohesion is based on different functional cohesion criteria:

- Used Attributes: Two methods Mi and Mj are directly related if there is at
least one attribute shared by the two methods.

- Invoked Methods: Two methods Mi and Mj are directly related if there is at
least one method invoked by the two methods. We also consider that Mi and
Mj are directly related if Mi invokes Mj, or vice-versa.

- Common Objects Parameters: Two methods Mi and Mj are directly related if
there is at least one parameter of object type used by the two methods.

82 L. Badri, M. Badri, and F. Toure

Let us consider a class C with n methods. The number of methods pairs is [n * (n – 1)
/ 2]. Consider an undirected graph GD, where the vertices are the methods of the class
C, and there is an edge between two vertices if the corresponding methods are directly
related. Let ED be the number of edges in the graph GD. The cohesion of the class C,
based on the direct relation between its methods, is defined as: DCD = |ED| / [n * (n –
1) / 2] Є [0,1]. DCD gives the percentage of methods pairs, which are directly related.
As mentioned in Section1, we associate to a class C a lack of cohesion measure (not
normalized) based on the direct relation given by: LCD = [n * (n – 1) / 2] – 2 * |ED|.
When the difference is negative, LCD is set to zero.

5 Experimental Design

We present, in this section, the empirical study we conducted to explore the
relationship between lack of cohesion and testability. We performed statistical tests
using correlation. The null and alternative hypotheses are:

- H0 : There is no significant correlation between lack of cohesion and
testability.

- H1 : There is a significant correlation between lack of cohesion and
testability.

The objective is to assess how extent the selected lack of cohesion metrics can be
used to predict class testability. In this experiment, rejecting the null hypothesis
indicates that there is a statistically significant relationship between lack of cohesion
metrics and the used testability metrics (chosen significance level α = 0.05).

5.1 Selected Metrics

Metrics related to lack of cohesion
In this experiment, we chose the lack of cohesion metrics LCOM (Chidamber, 1998),
LCOM* (Henderson-Sellers, 1996), and LCD. LCOM is defined as the number of
pairs of methods in a class, having no common attributes, minus the number of pairs
of methods having at least one common attribute. LCOM is set to zero when the value
is negative. LCOM* is somewhat different from the LCOM metric. LCOM* is
different also from the other versions of the LCOM metric proposed by Li et al. (Li,
1993) and Hitz et al. (Hitz, 1995). It considers that cohesion is directly proportional to
the number of instance variables that are referenced by the methods of a class.

Metrics related to testability
The objective of this paper is to explore empirically to what extent lack of cohesion
can be used to predict testability (in terms of testing effort) of classes in OOS. For our
experiments, we selected from each of the used systems only the classes for which
JUnit test cases exist. To indicate the testing effort required for a software class (noted
Cs), we used two metrics, introduced by Bruntink et al. in (Bruntink, 2004), to
quantify the corresponding JUnit test class (noted Ct).

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 83

JUnit1 (www.junit.org) is a simple framework for writing and running automated
unit tests for Java classes. A typical usage of JUnit is to test each class Cs of the
program by means of a dedicated test class Ct. We used in our experiments each pair
<Cs, Ct>, for classes for which test cases exist, to compare characteristics of Cs’s code
with characteristics of the corresponding test class Ct. The objective in this paper is to
use these pairs to evaluate the capability of lack of cohesion metrics to predict the
measured characteristics of the test classes Ct. To capture the testability of classes, we
decided to measure for each test class Ct, corresponding to a software class Cs, two
characteristics:

- TNbLOC: This metric gives the number of lines of code of the test class Ct. It is
used to indicate the size of the test suite corresponding to a class Cs.

- TNbOfAssert: This metric gives the number of invocations of JUnit assert
methods that occur in the code of a test class Ct. The set of JUnit assert methods
are, in fact, used by the testers to compare the expected behavior of the class under
test to its current behavior. This metric is used to indicate another perspective of
the size of a test suite.

The metrics TNbLOC and TNbOfAssert have already been used by Bruntink et al.
(Bruntink, 2004; Bruntink, 2006) to indicate the size of a test suite. Bruntink et al.
based the definition of these metrics on the work of Binder (Binder, 1994). We
assume, in this paper, that these metrics are indicators of the testability of software
classes Cs. The used metrics reflect, in fact, different source code factors as stated by
Bruntink et al. in (Bruntink, 2004; Bruntink, 2006): factors that influence the number
of test cases required to test the classes of a system, and factors that influence the
effort required to develop each individual test case. These two categories have been
referred as test case generation factors and test case construction factors.

Metrics data collection
The metrics LCOM, LCOM* and TNbLOC have been computed using the Borland
Together tool. The metrics LCD and TNbOfAssert have been computed using the tool
we developed.

5.2 Statistical Analysis

For the analysis of the collected data we used the Spearman’s correlation
coefficient. This technique, based on ranks of the observations, is widely used for
measuring the degree of linear relationship between two variables (two sets of
ranked data). It measures how tightly the ranked data clusters around a straight line.
Spearman's correlation coefficient will take a value between -1 and +1. A positive
correlation is one in which the ranks of both variables increase together. A negative
correlation is one in which the ranks of one variable increase as the ranks of the
other variable decrease. A correlation of +1 or -1 will arise if the relationship
between the ranks is exactly linear. A correlation close to zero means that there is
no linear relationship between the ranks. We used the XLSTAT software to perform
the statistical analysis.

1 www.junit.org

84 L. Badri, M. Badri, and F. Toure

6 The Case Studies

6.1 Selected Systems

In order to achieve significant results, the data used in our empirical study were
collected from two open source Java software systems. This selection was essentially
based on the number of classes who underwent testing using the JUnit framework.
The selected systems are:

- ANT (www.apache.org): a Java-based build tool, with functionalities similar to
the unix "make" utility.

- JFREECHART (http://www.jfree.org/jfreechart): a free chart library for the Java
platform.

Table 1. Some characteristics of the used systems

LOC # Classes

Mean

LOC

Attributes
Methods

Test

Classes

MeanLOC

TestedCL

LOC

TestedCL

ANT 64062 713 89.85 2419 5365 115 153.52 17655

JFC 92077 795 115.82 1616 7308 230 231.00 53131

Table 1 summarizes some characteristics of ANT and FREECHART (JFC)

systems: total number of lines of code, total number of classes, average value of lines
of code, total number of attributes, total number of methods, number of JUnit test
classes, average value of lines of code of the software classes for which JUnit test
classes have been developed, total number of lines of code of the software classes for
which JUnit test classes have been developed. These data will be used in the
discussion section (Section 6.3).

6.2 Results

The analysis of the data sets is done by calculating the Spearman’s correlation
coefficients for each pair of metrics (TNbLOC-LCOM, TNbLOC-LCOM*, TNbLOC-
LCD) and (TNbOfAssert-LCOM, TNbOfAssert-LCOM*, TNbOfAssert-LCD). We
have a total of six pairs of metrics. Table 2 and Table 3 summarize the results of the
correlation analysis. They show, for each system and between each distinct pair of
metrics, the obtained values for the Spearman’s correlation coefficients.

Table 2. Correlation values for ANT Table 3. Correlation values for JFREECHART

Variables TNbOfAssert TNbLOC

LCD 0.303 0.396

LCOM 0.326 0.404
ANT

LCOM* 0.218 0.237

Variables TNbOfAssert TNbLOC

LCD 0.392 0.315

LCOM 0.424 0.379
JFR

LCOM* 0.199 0.117

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 85

6.3 Discussion

Table 2 and Table 3 give the obtained Spearman’s correlation coefficients. They are
all significant at α=0.05 (indicated in bold) except for the pair of metrics LCOM*-
TNbLOC for JFREECHART. Moreover, all measures have positive correlation. Since
the used cohesion metrics are lack of cohesion measures, the positive coefficients
indicate that the ranks of both TNbOfAssert and TNbLOC and lack of cohesion
metrics increase together. The achieved results support the idea that there is a
statistically significant relationship between lack of cohesion and testability, in the
sense that the more the lack of cohesion of a class is high, the more important its
testing effort is likely to be (which is reflected by the two metrics TNbOfAssert and
TNbLOC). We reject then the null hypothesis.

For ANT, LCOM and LCD metrics are significantly better predictors of the number
of lines of code of test classes (TNbLOC) than the number of test cases
(TNbOfAssert). By cons, for JFREECHART, LCOM and LCD metrics are
significantly better predictors of the number of test cases (TNbOfAssert) than the
number of lines of code of test classes (TNbLOC). The results for JFREECHART
also show that the correlation values are not significant for the metric LCOM *
particularly with the number of lines of code of test classes (TNbLOC). Moreover, for
both ANT and JFREECHART, LCOM is slightly better predictor of the number of
test cases (TNbOfAssert) and the number of lines of code of test classes (TNbLOC)
than LCD, which gives better results than LCOM*.

By analyzing the values of the used lack of cohesion metrics more closely, we
found that LCD indicates, on average, a lower lack of cohesion value for both systems
(ANT: 123. 37 and JFreeChart: 303.59) than LCOM (ANT: 151.53 and JFreeChart:
350,780). This difference is, in fact, explained by the difference between the cohesion
criteria used by the two metrics (definition of the measures themselves). The two
metrics share the attribute usage criterion. The metric LCD uses, however, two other
criteria as mentioned in Section 4. This makes that the metric LCD captures more pairs
of connected methods than the metric LCOM (also LCOM*). This difference leads in
general to LCD values that are lower than LCOM values. Indeed, several experiments
in our previous work (Badri, 2004; Badri, 2008) have showed that the metric LCD, by
capturing more pairs of connected methods than LCOM, gives lower values of lack of
cohesion (which is plausible). Moreover, we observed also that (for the considered
case studies), overall, lack of cohesion values seem increasing with the size of classes
(and systems), which is plausible. In effect, large classes tend to lack cohesion. These
classes tend to have a (relatively) high number of attributes and methods. It is harder
in this case to have a high number of pairs of related methods (according to cohesion
criteria). By cons, cohesive classes tend to have a relatively low number of attributes
and methods. This makes, in our opinion, the metrics LCOM and LCD (and
particularly LCOM) sensitive to size. This may explain why LCOM is slightly better
correlated in some cases (than LCD) with the used testability metrics. Also, by
analyzing the source code of the JUnit test classes, we feel that some characteristics of
test classes are not captured by the used testability metrics (like the response set of a
test class which may indicate the effort required for testing the interactions with the
other classes to which a class under test is coupled).

86 L. Badri, M. Badri, and F. Toure

After these first observations, we decided to extend (and replicate) our experiments
by introducing a complementary set of metrics for attempting to explain the first
observations we made. We used, in fact, five other metrics. We used two metrics
(TRFC and TWMPC) to capture additional dimensions of test classes. The TRFC
metric gives the size of the response set for the test class Ct corresponding to a
software class Cs (like the traditional RFC (Chidamber, 1994) metric for a software
class). The RFC of a test class Ct is a count of methods of Ct and the number of
methods of other classes that are invoked by the methods of Ct. It includes methods
that can be invoked on other objects. A class Ct, which provides a larger response set
than another will be considered as more complex. This will reflect another perspective
of the testing effort corresponding to a class under test. The TWMPC metric (like the
traditional WMPC (Chidamber, 1994) metric for a software class) gives the sum of
the complexities of the methods of a test class, where each method is weighted by its
cyclomatic complexity. Only methods specified in a test class are included. We used
also three code based metrics to capture size of software classes for which JUnit test
classes exist: LOC (lines of code), NOA (number of attributes) and NOM (number of
methods).

Table 4. Correlation values between the used metrics for ANT

ANT TNbOfAssert TNbLOC TRFC TWMPC LCD LCOM LCOM* LOC NOA NOO

TNbOfAssert 1

TNbLOC 0.667 1

TRFC 0.067 0.477 1

TWMPC 0.140 0.574 0.796 1

LCD 0.303 0.396 0.236 0.365 1

LCOM 0.326 0.404 0.164 0.283 0.959 1

LCOM* 0.218 0.237 0.139 0.244 0.677 0.669 1

LOC 0.350 0.507 0.395 0.396 0.750 0.761 0.650 1

NOA 0.136 0.303 0.316 0.344 0.679 0.635 0.731 0.709 1

NOO 0.325 0.460 0.258 0.329 0.886 0.908 0.685 0.858 0.763 1

Table 5. Correlation values between the used metrics for JFREECHART

JFR TNbOfAssert TNbLOC TRFC TWMPC LCD LCOM LCOM* LOC NOA NOO

TNbOfAssert 1

TNbLOC 0.840 1

TRFC 0.727 0.862 1

TWMPC 0.570 0.732 0.792 1

LCD 0.392 0.315 0.332 0.121 1

LCOM 0.424 0.379 0.399 0.203 0.952 1

LCOM* 0.199 0.117 0.125 -0.044 0.625 0.583 1

LOC 0.393 0.426 0.459 0.326 0.704 0.772 0.510 1

NOA 0.357 0.353 0.275 0.056 0.731 0.719 0.720 0.678 1

NOO 0.479 0.467 0.526 0.311 0.761 0.811 0.577 0.814 0.721 1

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 87

We performed, for a second time, our experiments using all the selected metrics
(lack of cohesion, testability and size metrics).The correlation values between the
metrics are given in Table 4 and Table 5 respectively for systems ANT and
FREECHART. The obtained correlations seem confirming our first observations (the
significant values are indicated in bold). In effect, from Table 4 and Table 5 we can
observe that:

- For ANT (Table 4), the three lack of cohesion metrics LCOM, LCOM* and LCD
are significantly correlated to the metric TWMPC, which indicates the cyclomatic
complexity of a test class. In this case, the metric LCD is better predictor of the
cyclomatic complexity of the test class than the metrics LCOM and LCOM*.
Moreover, the metric LCD is also significantly correlated to the metric TRFC,
which indicates the response set of a test class. By cons, the metrics LCOM and
LCOM* are not correlated to the metric TRFC. For JFREECHART (Table 5),
only the metric LCOM is significantly correlated with TWMPC. Moreover, the
metrics LCD and LCOM are significantly correlated with the metric TRFC.
LCOM* is not correlated with the metric TRFC.

- For both ANT and JFREECHART, the three lack of cohesion metrics LCOM,
LCOM* and LCD are significantly correlated (and strongly correlated in some
cases) to size metrics (LOC, NOA and NOM). Overall, the metric LCOM is better
correlated to size metrics than LCD and LCOM*. This was somewhat a surprising
result. In effect, in a previous work (Badri, 2010), we demonstrated using several
OOS that LCD is better correlated to size metrics than LCOM. However, in the
present work, as mentioned previously, we analyzed only software classes for
which JUnit test cases have been developed. The number of tested classes for each
of the used systems is given in Table 1 (115 classes for ANT and 230 classes for
JFREECHART). This may affect the results of the study. Moreover, LCOM* is
better correlated to the NOA size metric than LOC and NOO metrics. In effect,
LCOM* considers that cohesion is directly proportional to the number of instance
variables that are referenced by the methods of a class.

- For ANT, the correlation values between the metrics TRFC and TWMPC and the
metric TNbOfAssert are not significant. By cons, the correlation values between
the metrics TRFC and TWMPC and the metric TNbLOC are significant. For
JFREECHART, the correlation values between the metrics TRFC and TWMPC
and the metric TNbOfAssert are significant. It is also the case for the correlation
values between TRFC and TWMPC and the metric TNbLOC. We can also
observe that, in general, the correlation values between the testability metrics
(TNbOfAssert, TNbLOC, TRFC and TWMPC) and the software classes’ size
metrics (LOC, NOA and NOM) are higher in the case of JFREECHART.

Table 6. Mean values of complexity and size metrics

Mean LOC

 Mean

WMPC

Mean WMPC

TestedCL

Mean LOC

TestedCL

ANT 89.85 17.1 30.37 153.52

JFC 115.82 19.91 46.08 231.00

88 L. Badri, M. Badri, and F. Toure

Consider now Table 6, which gives some descriptive statistics on the used systems:
average number of lines of code of software classes of a system (MeanLOC), average
cyclomatic complexity of software classes (MeanWMPC), average cyclomatic
complexity of the tested software classes (MeanWMPCTestedCL), and average
number of lines of code of the tested software classes (MeanLOCTestedCL). To
collect data for lack of cohesion (and other) metrics we only used the classes for
which JUnit test cases exist. As mentioned previously, for ANT we used 115 software
classes and corresponding JUnit test cases (which represents 16 % of the classes of
the system), and for JFREECHART we used 230 software classes and corresponding
JUnit test cases (which represents 29 % of the classes of the system). Moreover, from
Table 6 we can observe that the classes for which JUnit test cases have been
developed, classes which we used in our experiments, are complex and large classes.
This is true for both ANT and JFREECHART systems. Moreover, the tested classes
of JFREECHART are more complex (and larger) than the tested classes of ANT. This
may affect the results of our study in the sense that depending on the methodology
followed by the developers while developing test classes and the criteria they used
while selecting the software classes for which they developed test classes (randomly
or depending on their size or complexity for example, or on other criteria) the results
may be different. This may explain why the metric LCOM is (in many cases) slightly
better correlated to the used testability (and size) metrics than LCD. It would be
interesting to replicate this study using systems for which JUnit test cases have been
developed for a maximum number of classes. This will allow observing correlation
values between the used metrics for different types of classes (small, medium and
large classes). Moreover, by analyzing the source code of the JUnit test classes, we
observed also (for ANT as well as for JFREECHART) that, in many cases, they do
not cover all the methods of the corresponding software classes. This may also affect
the results of the study.

7 Conclusions

This paper investigates the relationship between lack of cohesion and testability in
OOS. The objective was also to get a better understanding of testability and
particularly of the contribution of (lack of) cohesion to testability. As a first attempt,
we designed and performed an empirical study on two open source Java software
systems. We used various metrics related to lack of cohesion and testability. The
obtained results support the idea that there is a statistically and practically significant
relationship between lack of cohesion of classes and testability. The analysis
performed here is correlational in nature. It only provides empirical evidence of the
relationship between lack of cohesion and testability. Such statistical relationships do
not imply causality. Only controlled experiments, which are difficult to perform in
practice, could really demonstrate causality (Briand, 2000).

The study performed in this paper should be replicated using many other systems
in order to draw more general conclusions. In fact, there are a number of limitations
that may affect the results of the study or limit their interpretation and generalization.
We investigated the relationship between lack of cohesion and testability using only
two open source Java software systems, which is a relatively small number of

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 89

systems. This may pose a threat to the scalability of the results. The study should be
replicated on a large number of OOS to increase the generality of the results. It is also
possible that facts such as the development process used to develop the analyzed
systems and the development style of a given development team might affect the
results or produce different results for specific applications. Moreover, knowing that
software testability is affected by many different factors, it would be interesting to
extend the used suite of metrics to better reflect the testing effort. Our experiments
involved only three code-based (lack of) cohesion metrics. It would be interesting to
extend this study by using other (structural and semantic) cohesion metrics, and
comparing cohesion metrics to traditional object-oriented metrics (such as coupling,
complexity, inheritance, etc.) in terms of predicting testability. Our study involved
only software systems written in Java. While there is no reason to suspect that the
results would be different with systems written in other object-oriented languages
(such as C++), it would be interesting to study systems written in other languages. We
hope, however, this study will help to a better understanding of what contributes to
testability, and particularly the relationship between (lack of) cohesion and testability.

Acknowledgements

This project was financially supported by NSERC (National Sciences and Engineering
Research Council of Canada).

References

Aggarwal, K.K., Yogesh, S., Arvinder, K., Ruchika, M.: Empirical study of object-oriented
metrics. Journal of Object Technology 5(8) (2006)

Aman, H., Yamasaki, K., Yamada, H., Noda, M.T.: A proposal of class cohesion metrics using
sizes of cohesive parts. In: Welzer, T., et al. (eds.) Knowledge-Based Sof. Engineering.
IOS Press, Amsterdam (2002)

Badri, L., Badri, M.: A proposal of a new class cohesion criterion: An empirical Study. Journal
of Object Technology 3(4) (2004); Special issue: TOOLS USA

Badri, L., Badri, M., Gueye, A.: Revisiting class cohesion, An empirical investigation on
several systems. Journal of Object Technology 7(6) (2008)

Badri, L., Badri, M., Toure, F.: Exploring empirically the relationship between lack of cohesion
in object-oriented systems and coupling and size. In: ICSOFT, Greece (July 2010)

Baudry, B., Le Traon, Y., Sunyé, G.: Testability analysis of a UML class diagram. In:
Proceeding of the 9th International Software Metrics Symposium (METRICS 2003). IEEE
Computer Society Press, Los Alamitos (2003)

Baudry, B., Le Traon, Y., Sunyé, G.: Improving the Testability of UML Class Diagrams. In:
Proceedings of IWoTA (International Workshop on Testability Analysis), France
(November 2004)

Bertolino, A., Strigini, L.: On the Use of Testability Measures for Dependability Assessment.
IEEE Transactions on Software Engineering 22(2) (February 1996)

Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. In: Proc. of the
Symposium on Software Reusability (1995)

Binder, R.V.: Design for Testability in Object-Oriented Systems. Com. of the ACM 37 (1994)

90 L. Badri, M. Badri, and F. Toure

Briand, L.C., Daly, J., Porter, V., Wuest, J.: A unified framework for cohesion measurement in
object-oriented systems. Empirical Software Engineering 3(1) (1998)

Booch, G.: Object-Oriented Analysis and Design With Applications, 2nd edn.
Benjamin/Cummings, Amsterdam (1994)

Briand, L.C., Daly, J., Porter, V., Wuest, J.: Exploring the relationships between design
measures and software quality in object-oriented systems. Journal of Systems and
Software (51) (2000)

Bruntink, M., Deursen, A.V.: Predicting Class Testability using Object-Oriented Metrics. In:
Fourth Int. Workshop on Source Code Analysis and Manipulation (SCAM). IEEE
Computer Society, Los Alamitos (2004)

Bruntink, M., Van Deursen, A.: An empirical study into class testability. JSS 79(9) (2006)
Chae, H.S., Kwon, Y.R., Bae, D.H.: A cohesion measure for object-oriented classes. Software

Practice and Experience (30) (2000)
Chae, H.S., Kwon, Y.R., Bae, D.H.: Improving cohesion metrics for classes by considering

dependent instance variables. IEEE TSE 30(11) (2004)
Chen, Z., Zhou, Y., Xu, B., Zhao, J., Yang, H.: A novel approach to measuring class cohesion

based on dependence analysis. In: Proc. 18th International Conferrence on Software
Maintenance (2002)

Chidamber, S.R., Kemerer, C.F.: Towards a Metrics Suite for Object-Oriented Design. Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), Special Issue of
SIGPLAN Notices 26(10) (1991)

Chidamber, S.R., Kemerer, C.F.: A Metrics suite for OO Design. IEEE TSE 20(6) (1994)
Chidamber, S.R., Darcy, D.P., Kemerer, C.F.: Managerial use of metrics for object-oriented

software: An exploratory analysis. IEEE TSE 24(8) (1998)
Chowdhary, V.: Practicing Testability in the Real World. In: International Conference on

Software Testing, Verification and Validation. IEEE Computer Society Press, Los
Alamitos (2009)

Counsell, S., Swift, S.: The interpretation and utility of three cohesion metrics for object-
oriented design. ACM TSEM 15(2) (2006)

De Lucia, A., Oliveto, R., Vorraro, L.: Using structural and semantic metrics to improve class
cohesion. In: International Conference on Software Maintenance (2008)

Etzkorn, L.H., Gholston, S.E., Fortune, J.L., Stein, C.E., Utley, D.: A comparison of cohesion
metrics for object-oriented systems. Information and Software Technology 46 (2004)

Fenton, N., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Company (1997)

Freedman, R.: Testability of software components. IEEE Transactions on Software
Engineering 17(6), 553–564 (1991)

Gao, J., Tsao, J., Wu, Y.: Testing and Quality Assurance for Component-Based Software.
Artech House Publishers, Boston (2003)

Gao, J., Shih, M.C.: A Component Testability Model for Verification and Measurement. In:
Proceedings of the 29th Annual International Computer Software and Applications
Conference (COMPSAC 2005). IEEE Computer Society, Los Alamitos (2005)

Henderson-Sellers, B.: Object-Oriented Metrics Measures of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented systems. In: Proc.
of the Int. Symp. on Applied Corporate Computing (1995)

IEEE, IEEE Standard Glossary of Software Engineering Terminology. IEEE CSP, NY (1990)
ISO, International Standard ISO/IEC 9126. information technology: Software product

evaluation: Quality characteristics and guidelines for their use (1991)

 Exploring Empirically the Relationship between Lack of Cohesion and Testability 91

Jungmayr, S.: Testability Measurement and Software Dependencies. In: Proceedings of the
12th International Workshop on Software Measurement (October 2002)

Kabaili, H., Keller, R.K., Lustman, F., Saint-Denis, G.: Class Cohesion Revisited: An
Empirical Study on Industrial Systems. In: Workshop on Quantitative Approaches OO
Software Engineering (2000)

Kabaili, H., Keller, R.K., Lustman, F.: Cohesion as Changeability Indicator in Object-Oriented
Systems. In: Proceedings of the Fifth European Conference on Software Maintenance and
Reengineering (CSMR 2001), Estoril Coast (Lisbon), Portugal (2001)

Karoui, K., Dssouli, R.: Specification transformations and design for testability. In:
Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM 1996),
London (1996)

Khoshgoftaar, T.M., Szabo, R.M.: Detecting Program Modules with Low Testability. In: 11th
ICSM, France (1995)

Khoshgoftaar, T.M., Allen, E.B., Xu, Z.: Predicting Testability of Program Modules Using a
Neural Network. In: 3rd IEEE Symposium on Application-Specific Systems and Software
Engineering Technology (2000)

Larman, G.: Applying UML and Design Patterns, An introduction to object-oriented analysis
and design and the unified process. Prentice Hall, Englewood Cliffs (2003)

Li, W., Henry, S.: Object-oriented metrics that predict maintainability. JSS 23 (1993)
Marcus, A., Poshyvanyk, D.: The conceptual cohesion of classes. In: Proc. 21th IEEE

International Conference on Software Maintenance (September 2005)
Marcus, A., Poshyvanyk, D., Ferenc, R.: Using the Conceptual Cohesion of Classes for Fault

Prediction in Object-Oriented Systems. IEEE TSE 34(2) (2008)
McGregor, J., Srinivas, S.: A measure of testing effort. In: Proceeding of the Conference on

Object-Oriented Technologies, pp. 129–142. USENIX Association (June 1996)
Meyers, T.M., Binkley, D.: Slice-Based cohesion metrics and software intervention. IEEE

WCRE (2004)
Nguyen, T.B., Delaunay, M., Robach, C.: Testability Analysis Applied to Embedded Data-

Flow Software. In: Proceedings of the 3rd International Conference on Quality Software,
QSIC 2003 (2003)

Petrenko, A., Dssouli, R., Koenig, H.: On Evaluation of Testability of Protocol Structures. In:
Proceedings of the International Workshop on Protocol Est Systems (IFIP), Pau, France
(1993)

Pressman, R.S.: Software Engineering, A practitioner’s approach. McGraw Hill, New York
(2005)

Sheppard, J.W., Kaufman, M.: Formal Specification of Testability Metrics in IEEE P1522.
IEEE AUTOTESTCON, Pennsylvania (August 2001)

Sommervile, I.: Software Engineering (2004)
Stein, C., Cox, G., Etzkorn, L.: Exploring the relationship between cohesion and complexity.

Journal of Computer Science 1(2) (2005)
Le Traon, Y., Robach, C.: Testability analysis of co-designed systems. In: Proceedings of the

4th Asian Test Symposium, ATS. IEEE Computer Society, Washington (November 1995)
Le Traon, Y., Robach, C.: Testability Measurements for Data Flow Design. In: Proceedings of

the Fourth International Software Metrics Symposium, New Mexico (November 1997)
Le Traon, Y., Ouabdessalam, F., Robach, C.: Analyzing testability on data flow designs. In:

Proceedings of ISSRE 2000, San Jose, CA, USA (October 2000)
Voas, J.M.: PIE: A dynamic failure-based technique. IEEE TSE 18(8) (August 1992)
Voas, J., Miller, K.W.: Semantic metrics for software testability. JSS 20 (1993)

92 L. Badri, M. Badri, and F. Toure

Voas, J.M., Miller, K.W.: Software Testability: The New Verification. IEEE Software 12(3)
(1995)

Yeh, P.L., Lin, J.C.: Software Testability Measurement Derived From Data Flow Analysis. In:
Proceedings of 2nd Euromicro Conference on Software Maintenance and Reengineering
(1998)

Woo, G., Chae, H.S., Cui, J.F., Ji, J.H.: Revising cohesion measures by considering the impact
of write interactions between class members. Information and Software Technology 51
(2009)

Yourdon, E., Constantine, L.: Structured Design. Prentice Hall, Englewood Cliffs (1979)
Zhao, L.: A New Approach for Software Testability Analysis. In: 28th ICSE (May 2006)
Zhou, Y., Xu, B., Zhao, J., Yang, H.: ICBMC: An improved cohesion measure for classes. In:

ICSM (2002)
Zhou, Y., Wen, L., Wang, J., Chen, Y., Lu, H., Xu, B.: DRC: dependence-relationships-based

cohesion measure for classes. In: Proc. 10th APSEC (2003)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 93–102, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Study of Imperfection in Rough Set on the Field of
Engineering and Education

Tian-Wei Sheu1, Jung-Chin Liang2, Mei-Li You3, and Kun-Li Wen4

1,2 Graduate Institute of Educational Measurement and Statistics
National Taichung University, Taichung, Taiwan

2 Department of Technological Product Design, Ling Tung University
Taichung, Taiwan

3 Department of General Education, Chienkuo Technology University
Changhua, Taiwan

4 Department of Electrical Engineering (Grey System Rough Center)
Chienkuo Technology University, Changhua, Taiwan

klw@ctu.edu.tw

Abstract. Based on the characteristic of rough set, rough set theory overlaps
with many other theories, especially with fuzzy set theory, evidence theory and
Boolean reasoning methods. And the rough set methodology has found many
real-life applications, such as medical data analysis, finance, banking,
engineering, voice recognition, image processing and others. Till now, there is
rare research associating to this issue in the imperfection of rough set. Hence,
the main purpose of this paper is to study the imperfection of rough set in the
field of engineering and education. First of all, we preview the mathematics
model of rough set, and a given two examples to enhance our approach, which
one is the weighting of influence factor in muzzle noise suppressor, and the
other is the weighting of evaluation factor in English learning. Third, we also
apply Matlab to develop a complete human-machine interface type of toolbox
in order to support the complex calculation and verification the huge data.
Finally, some further suggestions are indicated for the research in the future.

Keywords: Imperfection, Rough set, Muzzle noise suppressor, English learning,
Matlab toolbox.

1 Introduction

Because the main function of rough set theory is classification, according to the
analysis characteristic of rough set theory, If we want to use rough set theory to find
the weighting of the influence factor in system, we have to make sure two thing, one
is those being analyzed data must be under the discrete condition, and the other is that
the attribute factor and decision factor are under indiscernibility or discernibility
condition, and these two points mentioned above are the imperfection in rough set
theory[1]. According to past researches, The data in Taguchi method in Industry
Engineering and questionnaire analysis method in Education field already in discrete
condition[2,3]. Hence, we focus on the imperfection of indiscernibility and
discernibility in our paper.

94 T.-W. Sheu et al.

Dr. Pawlak presented the rough set in 1982, the basic topic of rough set includes:
set theory; conditional probability; membership function; attributes analysis and
uncertainty description of knowledge. And the main purpose of rough set is used the
difference of lower approximations and upper approximations, it not only can find out
the subjective result of clustered set, but also can use to find the weighting for factor
in the system. Hence, in our research, we present rough set model to find the
weighting in system, because after review the past research about this field, although
the have many studies in this field[4], did not find any paper to discuss the limitation
of rough set. Hence, we focus on this point, to study the limitation of rough set, hope
to provide the new approach for the weighting analysis system.

In this paper, first, in section 2, we introduce the basic mathematical foundation of
rough set model be our mathematics model. In section 3, we give two examples to
verify our point, which are the study on noise in gun and the evaluation of English
learning in education[3,5]. In section 4, the Matlab GUI toolbox is developed to
verify our approach[6], Also in section 5, we make some advantages and suggestions
for the further research in our study.

2 The Preview of Rough Set

In this section, we only simply introduce the basic concept of rough set[1].

1. Information system:),(AUIS = is called information system, where
},.....,,,{ 321 nxxxxU = is the universe finite set of object, and },...,,{ 21 maaaA = is

the set of attribute.
2. Information function: If exist a mapping aa VUf →: , then aV is the set of value

of a, call the domain of attribute a .
3. Discrete: The mathematics model of equal interval width is shown in equation

(1).

k

VV
t .min.max −

= (1)

 where: .maxV : Maximum value in the data, .minV : Minimum value in the

data.means the range of attribute value is],[min.max VV .

According to the result, we can get the interval corresponding to attribute value are

]},[,],,[],,{[12110 kk dddddd −" (2)

where: kiddVdVd iik ,,3,2,1,,, 1maxmin0 "=<== − , k is the grade of discrete.

4. Lower approximations and upper approximations
If UA ⊆ , then the lower approximations is defined as

}][| {x)(AxUAR R ⊆∈= }][|]{[Ax
R

U
x RR ⊆∈=∪ , }|{][Ryxyx R = (3)

and the upper approximations is defined as

}][| {x)(φ≠∈= AxUAR R ∩ }][|]{[φ≠∈= Ax
R

U
x RR ∩∪ , }|{][Ryxyx R = (4)

 The Study of Imperfection in Rough Set on the Field of Engineering and Education 95

In other words, the lower approximation of a set is the set of all elements that
surely belongs to U, whereas the upper approximation of U is the set of all
elements that possibly belong to U.

5. Indiscernibility: An indiscernibility relation is defined as for any ix and jx , if ix is

identical to jx , then ix and jx have all the same properties

6. Positive, negative and boundary: Base on the mentioned above, the positive,
negative and boundary are defined as

)()(XRXposR = ,)()(XRUXnegR −= ,)()()(ARARAbnR −= (5)

7. The dependents of attributes: The dependents of attributes is defined as

() ()
U

Dposc
Dc =γ (6)

means under Ca ∈ , the ratio in the whole set.
8. The significant value of attributes: In decision system, ()fVDCUS ,,, ∪= , under

Ca ∈ , the significant value of attributes is defined as

()() () { }()
()D

DD
a

c

acc
DC γ

γγ
σ −−

=, (7)

means significant value of attributes can be imaged as the weighting in system for
each factor.

3 Real Case Analysis

3.1 Attribute Factor-Muzzle Noise Suppressor

While the muzzle suppressor is an optional accessory for automatic weapons, a
suppressor that performs well improves the weapon's effectiveness and helps to
maintain the physical and psychological safety of the operator. Many overseas R&D
units have therefore developed suppressors for all types of firearms to meet the
different mission requirements. While this type of research is relatively lacking in
Taiwan, the demand for this type of devices can be expected to increase as more
emphasis is placed on lighter automatic weapons, commonality and operator safety.
There is still a great deal of room for development in sound suppression in
particular[5].

Based on the above, this study focused on the five potential control factors that
influence the suppression device, including; the suppressor's front cover(with and
without); the diameter of the side vents on the suppressor's external cylinder(1mm,
2mm and without); the position of side vents in the extension tube(15mm, 30mm and
without); the external cylinder's internal diameter(30mm, 40mm and 50mm) and the
external cylinder length(100mm, 125mm and 150mm). The 5.56mm carbine was used
as the subject to analyze the influence of each factor for ranking and clustering.

According to these five control factors and their individual levels, our research

used an)32(71
18 ×L orthogonal array. For the inner orthogonal array allocation of

experimental factors, we assigned the selected control factors R1, R2 , R3 , R4 and R5 to

column 1, 2, 3, 4 and 5 of the)32(71
18 ×L orthogonal array, respectively.

96 T.-W. Sheu et al.

Since our experiment focused on the noise of the rifle muzzle, the environmental
and rifle conditions might affect the results. So we assigned both of them outer factors

for the)32(71
18 ×L orthogonal array. They both had two levels. Condition of rifle for

test firing Two-level factor: level 1 assigned to use the durable rifle(a rifle used for a
long time but with good function); level 2 assigned to new rifle use.

The overall allocation of various experimental combinations in our study is shown
in Table 1. And the measurement of muzzle flash involved using a camera with the B
shutter (manual exposure) to take progressive pictures of the flash and maximum
flash area at a set distance (3m). During the experiment, a randomly selected L18
(21x37) orthogonal table was used to select experimental combinations for live fire.
And The photos of muzzle noise acquired through the experiment were processed
using image processing software to count the number of pixels within the effective
flame area. This was then used as the measurements for the quality characteristics as
shown in Table 2.

Based on the characteristic of rough set, the data must be discrete, and we take four
grades and take the values of dB in minimum the better, and are shown in Table 3.

Table 1. The orthogonal Table of muzzle flash suppressor

No R1 R2 R3 R4 R5
x1 With 1mm 15mm 30mm 100mm
x 2 with 1mm 30mm 40mm 125mm
x 3 with 1mm without 50mm 150mm
x 4 with 2mm 15mm 40mm 125mm
x 5 with 2mm 30mm 50mm 150mm

x 6 with 2mm without 30mm 100 mm
x 7 with without 15mm 30mm 150mm
x 8 with without 30mm 40mm 100mm
x 9 with without without 50mm 125mm
x 10 without 1mm 15mm 50mm 125mm
x 11 without 1mm 30mm 30mm 150mm

x 12 without 1mm without 40mm 100mm
x 13 without 2mm 15mm 50mm 100mm
x 14 without 2mm 30mm 30mm 125mm
x 15 without 2mm without 40mm 150mm
x16 without without 15mm 40mm 150mm
x17 without without 30mm 50mm 100mm

x18 without without without 30mm 125mm

 F Durable rifle New rifle Durable rifle New rifle
 Pixal(dB) Y1 Y2 Y3 Y4

Control factor:
R1: The suppressor's front cover.
R2: The diameter of the side vents on the suppressor's external cylinder.
R3: The position of side vents in the extension tube.
R4: The external cylinder's internal diameter.
R5: The external cylinder length.

Noise factor

F: The kinds of rifle.
Y1 ~Y4: The pixel of noise (dB).

 The Study of Imperfection in Rough Set on the Field of Engineering and Education 97

Table 2. The data of muzzle noise and its average value

No Y1(dB) Y2(dB) Y3(dB) Y4(dB) Average
x1 127.08 118.45 117.34 115.76 119.66
x 2 116.85 116.65 115.96 115.85 116.33
x 3 115.42 128.39 114.32 114.45 118.14
x 4 117.04 117.07 115.92 116.46 116.62
x 5 117.32 118.88 115.84 116.05 117.02
x 6 137.32 136.76 128.53 125.02 131.91
x 7 114.36 114.34 114.38 114.39 114.37
x 8 114.84 114.12 116.39 116.20 115.39
x 9 113.80 113.68 114.18 113.47 113.78
x 10 125.22 123.05 114.32 114.35 119.23
x 11 115.43 115.65 115.99 115.83 115.72
x 12 115.40 115.36 114.56 114.69 115.00
x 13 117.27 116.76 125.00 128.29 121.83
x 14 126.33 124.53 126.84 122.44 125.04
x 15 127.43 130.12 124.02 139.18 130.19
x16 113.82 113.68 123.46 113.86 116.20
x17 113.84 113.92 113.65 113.73 113.78
x18 114.54 114.22 114.65 114.75 114.54

Table 3. The data pre-processing

No R1 R2 R3 R4 R5 Average Discrete
x1 2 2 2 1 1 119.66 3
x 2 2 2 3 2 2 116.33 4
x 3 2 2 1 3 3 118.14 4
x 4 2 3 2 2 2 116.62 4
x 5 2 3 3 3 3 117.02 4
x 6 2 3 1 1 1 131.91 1
x 7 2 1 2 1 3 114.37 4
x 8 2 1 3 2 1 115.39 4
x 9 2 1 1 3 2 113.78 4
x 10 1 2 2 3 2 119.23 3
x 11 1 2 3 1 3 115.72 4
x 12 1 2 1 2 1 115.00 4
x 13 1 3 2 3 1 121.83 3
x 14 1 3 3 1 2 125.04 2
x 15 1 3 1 2 3 130.19 1
x 16 1 1 2 2 3 116.20 4
x 17 1 1 3 3 1 113.78 4
x 18 1 1 1 1 2 114.54 4

The calculation steps are shown below[1].

1. The dependents and significant, for condition attributes

},,,,{ 54321 RRRRR

U

C

U
= ={{ 1x },{ 2x },{ 3x },{ 4x },{ 5x },{ 6x },{ 7x },{ 8x },{ 9x },{

10x },{ 11x },{ 12x },{ 13x },{ 14x },{ 15x },{ 16x },{ 17x },{ 18x }}. For decision

attributes:
D

U
={{ 6x , 15x },{ 14x },{ 1x , 10x , 13x }{ 2x , 3x , 4x , 5x , 7x , 8x , 9x , 11x ,

12x , 16x , 17x , 18x }={ 1X , 2X , 3X , 4X }. Hence, =)(DposC { 1x , 2x , 3x , 4x , 5x ,

6x , 7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x , 16x , 17x , 18x }.substitute into equation

(7), we have () ()
U

Dpos
D C

c =γ 1
18

18
==

98 T.-W. Sheu et al.

2. Omit the attribute of 1R , the condition attributes

},,,{ 5432 RRRR

U

C

U
= ={{ 1x },{ 2x },{ 3x },{ 4x },{ 5x },{ 6x },{ 7x },{ 8x },{ 9x },{ 10x }

,{ 11x },{ 12x },{ 13x },{ 14x },{ 15x },{ 16x },{ 17x },{ 18x }}

D

U
={{ 6x , 15x },{ 14x },{ 1x , 10x , 13x }{ 2x , 3x , 4x , 5x , 7x , 8x , 9x , 11x , 12x , 16x , 17x ,

18x }={ 1X , 2X , 3X , 4X }. Hence,

=)(DposC { 1x , 2x , 3x , 4x , 5x , 6x , 7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x , 16x , 17x ,

18x }, substitute into the formula of dependents, we have () ()
U

Dpos
D C

Rc =− }{ 1
γ

1
18

18 == , then the significant of 1R is () 0
1

11
)(1, =−==RDCσ .

3. We also omit 2R , 3R , 4R and 5R , then the value of significant all are equal to 0.

3.2 Decision Factor- A Study of English Vocabulary Learning Strategies in
Taiwan College Students

Recently, English has played a key role in the dissemination ideas and thoughts
throughout the world. In order to foster a high quality international participation
developing English capability has been one of main national objectives. In the
“Education Policy 2005~2008” of Ministry of Education, all levels of schools are
required to develop a test “General English Proficiency Test(GEPT)” to achieve a
level of proficiency in English. In the highly competitive modern society of Taiwan,
English language ability is a powerful asset in seeking employment and securing
promotion[7]. Accordingly a plethora of organizations offer proficiency tests the most
common being TOEIC, IELTS, TOEFL, GET (Global English Test), Cambridge
Main Suite and FLPT (Foreign Language Proficiency Test). More and more colleges
require students to pass GEPT or a similar English proficiency test before graduation.
These requirements place a heavy psychological pressure on non-English major
students. In addition, many colleges even require their professors to select textbooks
in English and instruct in English. Therefore, listening and reading ability becomes
more and more important. Vocabulary learning strategy cultivation can develop
efficiency in reading ability.

In modern society, people are often judged not only by their appearance, but also
by their ability to speak whether they are students or teachers, politicians or salesmen.
According to the findings of domestic researchers, college students in Taiwan have
serious problems with vocabulary learning. Educators and language test organizations
expect the senior high school graduates to have a vocabulary size of 5,000 to 7,000
words in order to comprehend college English textbooks. But according to the past
research, 171 college students and conducted a “Vocabulary Level Test” which was
based on Laufer [8] and the Nation's vocabulary level test. The result of the study was
48.5% of the students could understand up to 1,000 words, 17% students with 2000
words. Only 2.3% of the students had an understanding of 3,000 words or more. This
means that up to 32.5% of the students had a vocabulary of less than 1,000 words [9].

 The Study of Imperfection in Rough Set on the Field of Engineering and Education 99

Most of time, students cannot comprehend the meaning of new words. Researchers
believed that insufficient vocabulary will apparently lead to poor reading
comprehension and subsequent academic achievement. Some foreign scholars also
suggest that if language learners can have a larger vocabulary, they can understand
more content and express themselves more clearly. They are also able to read broader
and deeper on subjects. Vocabulary ability is a very important indicator of reading
comprehension. In addition, good use of vocabulary learning strategies is an effective
way to achieving reading comprehension. Hence, in this example, the score is based
on Likert five points scale, and a total of 15 students were selected from each English
proficiency groups, and calculate the weighting 50 factors.

The test results by 15 students are listed in Table 6 to Table 7, and the calculation
steps are shown below.

Table 4. Likert five points scale

Score 1 2 3 4 5

Items All the time
Most of
the time

About
half the time

Some of the time Not at all

Table 5. The contents of questionnaire

No Content No Contents

Q1
I will analyze parts (verbs, nouns) of speech to
judge the meaning.

Q13 I will say a new word aloud when studying.

Q2 I will guess the meaning from textual context. Q14 I will underline the new word to enhance the
impression.

Q3 I will consult a bilingual dictionary. Q15 I will remember root, prefix and suffix of the word.
Q4 I will consult a monolingual dictionary. Q16 I will learn the whole phrase including the new

word.
Q5 I will consult a Chinese-English and English-

Chinese dictionary.
Q17 I will take notes in class.

Q6 I will ask teachers for a sentence including the
new word.

Q18 I will use the vocabulary section in the textbook to
learn new words.

Q7 I will discover a new word’s meaning through
group work activities.

Q19 I will listen to tapes of word lists.

Q8 I will study and practice a new word’s
meaning with classmates.

Q20 I will keep a vocabulary notebook to write down
new words.

Q9 I will interact with native speakers with new
vocabularies.

Q21 I will learn new words from watching English films.

Q10 I will connect the word to its synonyms and
antonyms.

Q22 I will learn new words from reading English
newspapers.

Q11 I will use new words in sentences. Q23 I will learn new words from reading English articles.

Q12
I will group words together within a storyline. Q24 I will learn new words from listening to English

radio programs.

Table 6. The test results from question 1 to question 13

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
x1 4 5 4 2 3 3 3 1 1 5 5 1 5
x 2 4 5 4 3 3 3 2 3 1 5 4 2 5
x 3 5 5 4 3 2 3 3 2 2 5 4 2 4
x 4 5 5 4 3 3 3 2 1 2 4 3 1 5
x 5 5 5 4 3 3 4 1 1 1 5 4 2 5
x 6 5 5 4 3 3 2 1 2 1 5 4 2 5
x 7 4 5 3 3 4 4 1 1 2 5 4 2 5
x 8 5 5 3 3 3 3 1 1 1 5 3 1 5

100 T.-W. Sheu et al.

Table 6 (continued)

x 9 4 5 3 2 3 3 1 1 1 5 4 1 5
x 10 5 5 2 3 3 3 1 1 1 5 4 1 5
x 11 4 5 3 2 2 3 1 2 1 5 3 2 5
x 12 5 5 2 2 4 3 1 1 2 5 4 1 5
x 13 4 5 2 3 3 3 1 1 2 5 5 2 5
x 14 5 5 3 2 3 2 1 2 1 5 4 1 5
x 15 5 5 4 1 3 3 1 1 2 5 3 2 5

Table 7. The test results from question 14 to question 24, and the output

 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q14 Output
x1 4 5 4 2 3 3 3 1 1 5 5 1 5
x 2 4 5 4 3 3 3 2 3 1 5 4 2 5
x 3 5 5 4 3 2 3 3 2 2 5 4 2 4
x 4 5 5 4 3 3 3 2 1 2 4 3 1 5
x 5 5 5 4 3 3 4 1 1 1 5 4 2 5
x 6 5 5 4 3 3 2 1 2 1 5 4 2 5
x 7 4 5 3 3 4 4 1 1 2 5 4 2 5
x 8 5 5 3 3 3 3 1 1 1 5 3 1 5
x 9 4 5 3 2 3 3 1 1 1 5 4 1 5
x 10 5 5 2 3 3 3 1 1 1 5 4 1 5
x 11 4 5 3 2 2 3 1 2 1 5 3 2 5
x 12 5 5 2 2 4 3 1 1 2 5 4 1 5
x 13 4 5 2 3 3 3 1 1 2 5 5 2 5
x 14 5 5 3 2 3 2 1 2 1 5 4 1 5
x 15 5 5 4 1 3 3 1 1 2 5 3 2 5

1. The dependents and significant, for condition attributes

},,,,{ 24321 QQQQ

U

C

U

"
= ={{ 1x },{ 2x },{ 3x },{ 4x },{ 5x },{ 6x },{ 7x },{ 8x },{ 9x },

{ 10x },{ 11x },{ 12x },{ 13x },{ 14x },{ 15x }}.For decision attributes:
D

U
={ 1x , 2x ,

3x , 4x , 5x , 6x , 7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x }={ 1X }. Hence,

=)(DposC { 1x , 2x , 3x , 4x , 5x , 6x , 7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x }, substitute

into equation (7), then, we have () ()
U

Dpos
D C

c =γ 1
15

15 == .

2. Omit the attribute of 1Q

The condition attributes=
},,,,{ 24432 QQQQ

U

C

U

"
= ={ 1x , 2x , 3x , 4x , 5x , 6x , 7x , 8x ,

9x , 10x , 11x , 12x , 13x , 14x , 15x }. For decision attributes:
D

U
={ 1x , 2x , 3x , 4x , 5x , 6x ,

7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x }={ 1X }. Hence, =)(DposC { 1x , 2x , 3x ,

4x , 5x , 6x , 7x , 8x , 9x , 10x , 11x , 12x , 13x , 14x , 15x }, substitute into the formula of

dependents, then, we have () ()
1

15

15
}{ 1

===−
U

Dpos
D C

Qcγ , then the significant of 1Q is

())(1, QDCσ = 0
1

11 =−
.

3. We also omit 2Q , 3Q , 24,Q" respectively, then the value of significant all are equal

to 0.

 The Study of Imperfection in Rough Set on the Field of Engineering and Education 101

4 The Design of Toolbox

In our paper, we develop a toolbox based on Matlab, it not only can reduce the huge
and complex calculation, but also can let the input data easily to calculate and make
the results on the analysis system more convincing and more practical[12].

4.1 The Characteristics of Toolbox

The development of the toolbox has the following characteristics.
1. The Toolbox changes the current processing of rough set formula and methods

into the GUI method.
2. The input interface adopts GUI in Matlab and reconciles with Microsoft so that it

can input set numbers randomly. Therefore, the user can easily use this data and
offer great help in dealing with examiners and subjects.

3. The requirements of toolbox are Window XP; Screen resolutions at least
7681024× ; Matlab 2007/a version and data type is Excel.

4.2 The Calculation of Toolbox

Fig . 1. The calculation in toolbox for muzzle noise

Fig. 2. The calculation in toolbox for English learning

Input data

Input data

significant

significant

102 T.-W. Sheu et al.

5 Conclusions

As mentioned in the abstract, the main function of rough set is classification, and its
limitation is that, when the discrete method and attribute factors of discernibility and
of decision factors both are indiscernibility, it is impossible for us to get their
weightings. Hence, in this paper, we use Taguchi method and questionnaires analysis
method to verify that when the attribute factors is in discernibility condition and
decision factor is indiscernbility condition, we can’t classify them and get a weighting
of each factor.

To sum up, the rough set theory is the new classification method in soft computing,
some practical problems in relation with application of rough sets had been applied in
many domains. In our paper, we have only provided two examples to verify the
imperfection of indiscernibility or discernibility in rough set theory, but this is our
main contribution in the paper. Besides, we also use Matab to develop a toolbox to
help the complex calculation in huge data, and this is the other contribution in our
paper.

Acknowledgment

The authors want to heartily thank Taiwan Kansei Information Association(TKIA),
for provide the toolbox to verify our results.

References

1. Wen, K.L., Nagai, M.T., Chang, T.C., Wen, H.C.: An introduction to rough set and
application. Wunam Published, Taipei (2008)

2. Chang, C.S., Liao, R.C., Wen, K.L., Wang, W.P.: A grey-based Taguchi method to optimal
design of muzzle flash restraint device. Int. J. of Advanced Manufacturing Technology 24,
860–864 (2004)

3. Liang, H.Y.: A study of English vocabulary learning strategies in Taiwan college students
via GM (0, N), Final Project Report of Chienkuo Technology University (2010)

4. Pawlak, Z.: Rough sets approach to multi-attribute decision analysis. European Journal of
Operational Research 72, 443–459 (1994)

5. Wen, K.L., Lu, K.Y., Chang, C.S.: Apply GM (h, N) to the optimize design of muzzle noise
suppressor. In: Proceedings of 2009 National Symposium on System Science and
Engineering, Taiwan (2009)

6. Wen, K.L., You, M.L.: The development of rough set toolbox via Matlab. In: Current
Development in Theory and Applications of Computer Science, Engineering and
Technology, vol. 1, pp. 1–15 (2010)

7. Taiwan Ministry of Education, Education main Policy 2005-2008 (2008),
http://torfl.pccu.edu.tw/torfl8_2.htm

8. Laufer, B.: How much lexis is necessary for reading comprehension? In: Be Joint, H.,
Arnaud, P. (eds.) Vocabulary and Applied Linguistics. MacMillan, London (1992)

9. Zhan, L.H.: What Reading Models EFL Teachers and Students Use in Freshman English
Classes, Master thesis, Southern Taiwan University of Technology, Applied Foreign
Languages (2009)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 103–109, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Software Industry in the Coffee Triangle of
Colombia

Albeiro Cuesta1, Luis Joyanes2, and Marcelo López3

1 Nacional University – Alsus IT Group, Street 70 No 23B-41, Manizales - Colombia
2 Pontificia University of Salamanca, Madrid Campus, P. Juan XXIII, 3, Madrid, Spain

3 Caldas University, Street 65 No 26-10, Manizales - Colombia
alcuestame@unal.edu.co, luis.joyanes@upsam.net,

mlopez@ucaldas.edu.co

Abstract. The so-called “Coffee Triangle” region is located in the Andean
Region, in central Colombia, South America. This Andean Region is composed
of the Departments of Caldas, Quindío and Risaralda. The Andean Region has
been characterized by the production of coffee as a worldwide industry
supported by high Quality and Research standards. These components have
become the key bastions to compete in international markets. After the decline
of the Coffee industry it is necessary to consider alternatives, supplemented by
the success of the Software Industry at the global level. The strengthening of
the Software Industry in the Coffee Triangle seeks to establish a productive
alternative for regional growth in a visionary way, where knowledge, a
fundamental input of the Software Industry, is emerging as one of the greatest
assets present in this geographical area - Andean Region - of Colombia.

Keywords: Software Quality, Software products and services, development
sectors, training.

1 Introduction

The software industry as well as the countries of India, Ireland, the United States and
China among others has been successful in software industrialization. These countries
have been characterized by promoting policies and institutions that aimed to
strengthen the technological framework, regulate incentives and taxation, and
promote the training of education and human talent, in the short, medium and long
term. In addition, models have been incorporated to assure quality standards
recognized worldwide and to create ways to attract foreign investment.

The research and the development of software engineering techniques and methods
have been consolidating; the purpose is to advance in the problem solutions of
software development. However, it is common that in the professional practice the
recommendations of the software engineering are not included or otherwise are not
applied carefully. If the software productive process in the Coffee Triangle were
evaluated with maturity models such as Capability Maturity Model Integration,
CMMI[1], we will find that the software development is usually in the beginning

www.SoftGozar.Com

104 A. Cuesta, L. Joyanes, and M. López

state. However by September 2009 there were six enterprises in Colombia certified in
the model IT Mark[2] by the European Software Institute – ESI -, four of which were
located in Bogotá. Alsus IT Group S.A. an enterprise from Manizales, becomes the
first one with this important distinction in the Coffee Triangle[3]. By July 2010 31
enterprises were already evident in Colombia, two of them from the Coffee Triangle
certified in IT Mark; six more enterprises in Manizales are in the process of
certification.

The quality of a product, for organizations and enterprises, in general, depends
directly on the processes, materials and the techniques used. Therefore, it is important
that the software developing enterprises and groups have an approach for their
software developing process, using the appropriate tools and techniques to ensure a
better quality of the final product and greater customer satisfaction.

The Coffee Triangle region presents a countless number of natural resources with
complex network interactions which determine the presence and behavior of human
settlements. These human settlements in turn are composed of complex social
networks, economic and symbolic relationships, which determine and modify
substantially the processes and interrelationships with the natural platform.

The productive bids in the Coffee Triangle region are related to agricultural
production, to tourism and to the Information and Communication Technologies ICT;
in the same way the strategic software projects of the region are oriented towards the
same[4].

There exists an emerging but still beginning software industry in the region. Also
there are initiatives of generic software applications developing at the local and the
national level. Various enterprises are even starting certification work using quality
standards models. In addition, progress is being made in setting policies and
regulations from the public sector to standardize certification.

2 The Software Industry in the Coffee Triangle

The information that follows was part of a Doctoral Thesis “A Model for the Software
Industrialization in the Coffee Triangle of Colombia”. Fieldwork was carried out
during 2009 primarily to locate and identify companies that make it clear that their
corporate purpose is to develop Software in the Coffee Triangle region, as well as
Informatics services and/or sales of software products. The identification of
companies was supported with information gathered from the Chambers of
Commerce located in the capitals of the three departments in the Coffee Triangle.
This information allowed us to work with a total of 48 Software Developing
Enterprises in the Coffee Triangle, 20 of them in Manizales, 16 in Pereira and 12 in
Armenia. Subsequently, fieldwork was done in all of the 48 enterprises of the region.

2.1 Products and Services

The next table shows the results related to the “type of product or service” that the
Coffee Triangle region (Manizales, Pereira and Armenia) Software enterprises offer.
It also shows the partial results for each city and the corresponding tendencies.

 The Software Industry in the Coffee Triangle of Colombia 105

Table 1. Type of Product or Service Offered by the Coffee Region Enterprises

 Outsourcing
Services

Packaged
Software

Customized
Software

Applications for
Mobile Devices

Web
Applications

Other

Manizales 7 12 16 3 12 3

Pereira 6 16 12 6 8 4

Armenia 4 5 6 3 8 5

 17 33 34 12 28 12

Figure 1 shows the “type of product and service” the Coffee Triangle region
enterprises offer, most have to do with “Customized Software”, “Packaged Software”
and “Web Applications.” The percentages of those enterprises that offer these
services are 25%, 24.26% and 20.59%, respectively. The products that are less
offered in the Coffee Triangle region are “Mobile Applications” and “Outsourcing
Services”.

Fig. 1. Service or Product offered by the Coffee Region

2.2 Sectors for Which the Software Is Developed

Figure 2 shows the percentage of the economic sectors for which the enterprises
develop software. It shows that the sectors with the greatest demand are those of
services, industry and government, with percentages of 16.23%, 11.84%, and 11.40%,
respectively.

106 A. Cuesta, L. Joyanes, and M. López

Fig. 2. Economic sectors for which the software is developed

2.3 Market Types

The software companies of the Coffee Triangle region sale more to the national
market followed by local and international markets.

Fig. 3. Market types

2.4 Annual Sales Range

In relation to annual sales most companies, have a percentage of 35.29%, on sales of
USD 26,317 - 52,632; 17.65% on sales of USD 52,633 - 105,263; 17.65% on sales of
USD 105,264 - USD 131,579; 5.88% on sales greater than USD 263,158 as observed
in Figure 4.

International

National

Regional

Local

 The Software Industry in the Coffee Triangle of Colombia 107

The number of enterprises in the Coffee Triangle region that record sales of less
than USD 26,316 is almost equal in the three department capitals. The number of
enterprises that made annual sales of USD 52,633 – 105,263 is located in Pereira.
Also the majority of enterprises with sales of USD 105,264 -263,158 are located in
Manizales. In addition, 80% of enterprises with annual sales greater than USD
263,158 are in Manizales, followed by Armenia with 20%, and the enterprises in
Pereira did not record annual sales greater than USD 263,158.

Fig. 4. Sales Rang

3 Academics in the Coffee Triangle

3.1 Academic Training

One of the main advantages for developing the Software Industry in the Coffee
Triangle Region is the presence of important universities in the three capitals of the
Coffee Region. These universities offer intensive academic offer programs related to
Informatics Engineering and related professions.

Table 2 shows the summary of the academic training that the Coffee region is
offering right now related to the Software Industry.

Table 2. Academic Training in the Coffee Region

Level Caldas Risaralda Quindío Total

Technology 4 1 0 5

Technological Specialization 1 0 0 1

Undergraduate 8 8 8 24

Bachelor Degree 2 2 1 5

Specialization 8 3 3 14

Mastery 1 1 0 2

108 A. Cuesta, L. Joyanes, and M. López

3.2 Graduates

In 2007, a research project was done in Manizales aimed at supplementing the
training of personnel in the Informatics area for Technical, Technological and
Undergraduate levels.

Table 3. Technical training

Number of
Graduates

Degree name Years

Number of
Graduates

Systems Technician 1987 - 2007

Table 4. Technological Training

Number of
Graduates

Degree name Years

1.145 Information Systems Technology 1997 - 2007

Table 5. Undergraduate Training

Number of
Graduates

Degree name Years

313
Systems and Telecommunications

Engineering
2004 – 2007

10 Systems and Computing Engineering 2006 – 2007

731 Systems Engineering 1989 – 2007

203 Information Systems Administration 1995 - 2007

Because of individual characteristics it is easier in the software industry to have
rapid expansion, in national as well as in international markets. Since it is a
knowledge industry it does not require conventional raw materials and in the same
way it does not require greater physical infrastructure. In addition the initial
investment is relatively low by comparison to other sectors; furthermore, if the
Software development is feasible the enterprise may become a global business
resulting in large worldwide markets. Finally, since it is a knowledge industry, there
is no comparative difference at the world level.

References

[1] Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and
Product Improvement, Boston, p. 663. Addison-Wesley, Reading (2009) ISBN:
9788478290963

[2] ESI Zamudio: ESI, consultado en (Febrero 8, 2010),
http://www.esi.es/Products&Services/ITCompetitiveness/itmark/
itmarkCompList.php.2010

 The Software Industry in the Coffee Triangle of Colombia 109

[3] ESI. List of IT Mark Certified Companies. Zamudio: European Software Institute,
consultado en (September 2009),
http://www.esi.es/Products&Services/ITCompetitiveness/itmark/
itmarkCompList.php.2009

[4] Cuesta, A., López, M., Joyanes, L.: Experiences of digital territory in Manizales and Caldas.
In: The IEEE Latin-American Conference on Communications - WorkShop, Medellin, Vol:
PP: n/a, Editado por. IEEE, Los Alamitos (2009); ISBN: 978-1-4244-4388-8

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 110–119, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Towards Maintainability Prediction for Relational
Database-Driven Software Applications: Evidence from

Software Practitioners

Mehwish Riaz, Emilia Mendes, and Ewan Tempero

Department of Computer Science,
The University of Auckland, New Zealand
mria007@aucklanduni.ac.nz,

{emilia,e.tempero}@cs.auckland.ac.nz

Abstract. The accurate maintainability prediction of relational database-driven
software applications can improve the project management for these
applications, thus benefitting software organisations. This paper presents an up-
to-date account of the state of practice in maintainability prediction for
relational database-driven software applications. Twelve semi-structured
interviews were conducted with software professionals. The results provide
both an account of the current state of practice in that area and a list of potential
maintainability predictors for relational database-driven software applications.

Keywords: Maintainability, Relational Database-Driven Software, Prediction.

1 Introduction

Software maintainability is defined as “the ease with which a software system or
component can be modified to correct faults, improve performance or other attributes,
or adapt to a changed environment” [5]. Intrinsically associated with it is the process
of software maintenance [15], which has long been known to consume the majority of
the cost of a Software Development Life Cycle (SDLC) [1]. Software maintainability
can significantly impact software costs [15]; therefore it is imperative to understand
software maintainability in order to control and improve it.

In order to improve software maintainability, it is important to understand the
factors that impact upon it and how they can be measured and used to predict it. A
maintainability prediction model can enable organizations to make informed decisions
about managing their maintenance resources and in adopting a defensive design [14].

Database-driven applications consist of a database, a database management system,
and a set of applications that interact with the database through this management
system [9]. When software requirements change, these applications undergo
maintenance resulting in storing an increased number of data sources and relationships
[11], leading to increased complexity of the database schema and coupling between the
database and application [11]. Hence, both application-specific and database-specific
features impact the maintainability of these applications.

Towards Maintainability Prediction for Relational Database-Driven Software Applications 111

Database-driven applications have gained substantial importance in the modern
software development [2] and anecdotal evidence suggests that most commonly used
databases are relational [4]. Due to the importance of relational database-driven
applications within the scope of modern software development, it is imperative to be
able to measure and forecast their maintainability. There is, however, little evidence
in the literature relating to the maintainability of these types of applications [2]. The
aim of this research is, therefore, to use evidence from industrial practice in order to
help improve the field of maintainability prediction for relational database-driven
applications. The evidence has been gathered from 12 interviews with software
practitioners (six each from Pakistani and New Zealand organizations). This paper
also extends the work in Riaz et al. [16] by combining their results with data
obtained from six additional interviews conducted with software professionals in
New Zealand.

The remaining of this paper is organised as follows. Section 2 presents the
background, Section 3 details the research methodology, Section 4 gives results, and
Section 5 discusses the results followed by conclusions and future work in Section 6.

2 Background

The research described herein was informed by the results of a Systematic Review
(SR) on the topic ‘software maintainability prediction and metrics’ [15]. The results
of the SR revealed very little evidence on software maintainability prediction. For
detailed results of the SR, refer to Riaz et al. [15].The 15 studies selected by the SR
[15] were further analyzed to assess if the datasets used in these studies completely or
partially comprised relational database-driven software applications. Only three of
these studies [3, 6, 7] had used relational database-driven software applications where
only one [6] presented a maintainability prediction model but did not provide its
prediction accuracy; the other two presented measures [3] and factors [7] impacting
software maintainability. None of these studies proposed predictors or factors related
specifically to a back-end database or to the interaction between a back-end database
and the front-end application.

In addition to the SR above mentioned, a complementary literature review was
carried out focusing on the topic of relational databases, details can be found in Riaz
et al [16], which suggested that there was no evidence on maintainability metrics or
prediction for relational databases or relational database schema.

The lack of existing literature focusing specifically on maintainability prediction
for relational database-driven software applications prompted us to carry out an
investigation with software practitioners in order to gather data on relational database-
driven applications maintainability predictors and metrics used in practice.

3 Research Methodology

The research methodology used herein was mainly qualitative in nature and is
detailed in the subsequent sub-sections.

112 M. Riaz, E. Mendes, and E. Tempero

3.1 Data Source

The data source used herein comprised interviews with 13 software professionals
from 10 different software companies in Pakistan and New Zealand. A total of 12
interviews were conducted, six in each country. In one of the interviews conducted in
Pakistan, two interviewees participated; however, the information provided by them
overlapped; therefore, their responses are considered to come from a single interview.
The interviewees were either Project Managers (PM), project Team Leads (TL) or
Quality Assurance (QA) professionals. These roles, , according to our observations,
are involved in all phases of SDLC and were therefore better able to reflect upon
their experiences and lessons learnt.

The two countries, Pakistan and New Zealand, were chosen for the following
reasons: i) the first author is originally from Pakistan; ii) most software companies in
Pakistan are well established, follow commercial quality standards and practices, and
deal with outsourced projects from the United States, United Kingdom, Denmark,
etc.; iii) all the three authors are affiliated to the University of Auckland, New
Zealand where the research is being carried out; and iv) we believe that the context of
this research was not culture-sensitive as the focus was on software applications and
not specific aspects related to people or their way of carrying out their work.

The interviewees were all at least at managerial positions in well established
companies with an average experience of 10.3 years in software development and
management. A summary of interviewees’ experience for each role is given in table 1.
All the companies, except one, where the interviewees worked developed only
relational database-driven software applications.

Table 1. Interviewees’ summary per role

Role No. of Interviewees
in Pakistan

No. of Interviewees
in New Zealand

Total Years of Experience
(Averaged per role)

PM 6 4 10.35
QA 1 0 7
TL 0 1 9
CEO & Founder 0 1 15

3.2 Semi-structured Interviews and Interview Procedure

Interviews are a commonly used qualitative data collection technique which can be
used to collect opinions or impressions about a phenomenon of interest [8]. For this
research, semi-structured interviews were conducted. This type of interviews were
best suited for this research as these comprise both open and closed ended questions
and aim eliciting expected information as well as unforeseen information [8].

Contacts were made with the companies and the participating employees both
through email and telephone. The interviews were conducted in two steps. In the first
step, six interviews were carried out with software professionals in Pakistan in July
2009. In the second step six interviews were conducted with software professionals in
New Zealand between August and November 2009 which were informed by the

Towards Maintainability Prediction for Relational Database-Driven Software Applications 113

responses obtained in the first step. All the interviews were face-to-face and recorded
on two digital recorders (the second recorder was used as a backup). During the
interviews, extensive notes were also taken.

Each of the interviews began with a short introduction to the research and its
objectives. It was emphasized that the research focused at relational database-driven
software applications. The questions asked during the interviews are given in the
appendix. The format and order of questions was the same for each interview.

The format of the questions and their order was the same for each interview. The
language used in the first step of interviews, conducted in Pakistan, was Urdu – the
native language of the country – to enable the interviewees to fully express their
thoughts and perceptions. In this step, the interviewer shared her perception of
maintainability with the interviewees, after asking them about their own views on the
topic. This was done so that both the interviewer and interviewee were on equal
grounds to discuss further concepts. The interviewer also shared some predictors of
maintainability from the SR [15] to give an example of the perception of predictors.

The second step of interviews was conducted in New Zealand in English. The same
process was followed, except that some predictors specific to database-driven
applications gathered from the first step of interviews were also discussed with the
interviewees. In both phases, the duration of the interviews ranged from 20 to 60
minutes with an average duration of 38 minutes.

3.3 Data Analysis

Prior to analysing the data obtained from the interviews, all the conducted interviews
had to be transcribed. The six interviews conducted in Pakistan had also to be
translated from Urdu to English. All the interviews were translated and transcribed by
the first author due to her familiarity with both languages. The translations and
transcriptions were further verified by a volunteer who listened to parts of interviews
at random and tallied them with the time stamped transcripts of the interviews.

The specific technique used for qualitative data analysis was ‘content analysis’,
using the framework and components defined by Krippendorff [10]. The components
that were used to proceed from text to results are as below:

• Unitizing – the systematic distinguishing of segments of text that are of interest
[10]. This was done in accordance to the interview questions.

• Sampling – allows the analyst to economize on research efforts by limiting
observations to a manageable subset [10]. It was carefully done by choosing
appropriate companies and roles for a better population representation.

• Recording/Coding – transformation of unedited text or unstructured sounds into
analyzable representations [10]. This was also carefully performed – recording
done on reliable digital recorders and coding done with the help of NVivo [13]
against the units of analysis.

• Reducing – serves the need for efficient representations [10]. This was done
alongside coding.

• Inferring - bridges the gap between descriptive accounts of texts and what they
mean [10]. This was done against the interview questions.

• Narrating - amounts to the researchers making their results comprehensible to
others [10]. This has been done in following Section.

114 M. Riaz, E. Mendes, and E. Tempero

4 Results Informed by Industrial Practice

The results obtained by performing content analysis on the conducted interviews, are
given below. Also it was ensured that the interviewees understood that the context of
the questions was specific to relational database-driven software applications.

4.1 Perception of Maintainability

The most common perception of maintainability, reflected in 7 of the 12 interviews
(58%), was to consider it as the ease or difficulty to implement changes in the software
or to carry out maintenance tasks. Four of the interviewees perceived maintainability as
the time taken to fix a software bug. The term ‘ease’ to them was a “bit of a relevant
term”, and was understood in the context of time. Two of the interviewees also
mentioned - “availability or low down time” in the context of database-driven
applications.

4.2 Should Applications Be Maintainable?

All the interviewees agreed that software applications should be maintainable. The
reasons provided included “scalability”; producing “quality” and “mature”
products”; making an application “customizable”; reduced “resource utilization”,
“cost”, “effort” and “development time for adding new features”; “convenience to the
developers and customers”; and “client satisfaction”.

4.3 Practical Experience with Maintainability Prediction

The analysis revealed that software maintainability prediction is not a common
concept in practice. This was reflected by the responses of all, except two,
interviewees, who in answer to whether they have any experience with
maintainability prediction said “yes in order to improve” and “yes …due to the older
technologies that we adopt (application) becomes obsolete and then we have to move
forward”. None of the interviewees had experience with predicting software
maintainability whereby it is done by following any specific prediction model or
formally done as part of the development or project planning processes. However, all
the interviewees agreed that maintainability should be predicted and also stated the
perceived benefits associated with its prediction, see Section 4.4.

4.4 Benefits of Predicting Maintainability

The benefits identified by the interviewees to predict software maintainability were: i)
improved costs and effort; ii) to help organizations in “decision making” and
“resource planning”; and iii) improved design. Note that the interviewees used the
terms design and software architecture interchangeably.

Other benefits narrated by the interviewees included “deep understanding of the
application”; ability to “negotiate with client” on cost, and allowing the team to spend
“more time on quality” and reducing “time spent on operations”; and the ability to
decide whether to bid on a project by considering “not just the initial cost of project’s
development but life time cost”.

Towards Maintainability Prediction for Relational Database-Driven Software Applications 115

4.5 Is Maintainability Predicted in Practice?

The responses of the interviewees on whether maintainability was predicted in their
respective companies were mixed. Eight interviewees (67%) gave a positive response
and said that maintainability is predicted based on “expert judgment”. One
interviewee gave a negative response. Since his company developed and managed
applications that interacted with large databases, his context was that of the features
provided by the tools used to develop these applications and stated that “the features
are not available”. Two interviewees initially answered no; however they later added
that they make a “judgment that is very subjective” and that it is not predicted using
“some measure but there are certain things that I do know”. None of the interviewees
suggested any quantitative measures of maintainability.

In relation to at what project stage maintainability can be best predicted, seven
interviewees (58%) supported the design stage. They said that they could make a
better judgment based on design than by considering resources, deliverables, or the
source code. The remaining interviewees gave no definite answer. The supporters of
design chose it because it can be improved before the implementation as “application
is the last thing to be challenged”. In summary, this means that at least those we
interviewed believed that maintainability of a relational database-driven application
can be subjectively predicted based on an application’s design or architecture.

4.6 Maintainability Measures

All the interviewees, except for one, believed software maintainability was nearly
impossible to measure. They stated that “we cannot say it on the basis of any
measurement”. However, they were of the view that software maintainability can be
judged by considering various factors such as those mentioned in Section 4.8. The
only interviewee who believed maintainability could be measured supported the idea
of “measuring maintainability in terms of man hour resources” or “in terms of
dollars” as he believed that “ultimately (it) comes down to it”.

4.7 Is There a Difference between Maintainability for Relational Database-
Driven Applications and Applications that Do Not Have Any Back-End
Database?

All the interviewees, except for one, corroborated that maintainability of relational
database-driven applications is different from that of applications that do not have any
back-end database by stating “if we consider the database-driven applications, not
only the factors related to database play a part but also those factors that are because
of the technical aspects of the DBMS are introduced”. Another interviewee, a very
strong supporter of database-driven applications, stated: “I call those applications
without a database more as tools, they are not applications. To me applications run
on the database”. The interviewee who differed in opinion was of the view that “if it
is a database-driven application, then one of your modules is database” and that
implementing changes to a database should be considered the same as implementing
changes to different parts of an application.

116 M. Riaz, E. Mendes, and E. Tempero

4.8 Factors That Should Be Considered When Predicting the Maintainability of
Relational Database-Driven Software Applications

Several factors specific to predicting the maintainability of relational database-driven
software applications that were identified by interviewees are given in Table 2.

Table 2. Factors for predicting maintainability of relational database-driven applications

Factors #Interviewees
Pakistan

#Interviewees
New Zealand

Total

Application’s architecture or design 5 5 10
Tools & technologies including development frameworks 5 5 10
Database design including the following:
1. proper normalization
2. database design complexity
3. correct definition of entities
4. de-normalization according to the needs

5
5
1
3
0

4
2
3
1
3

9
7
4
4
3

Follow processes, procedures and practices 4 4 8
Customizable or parameterized application 3 4 7
Documentation 3 4 7
Database performance 3 3 6
Application complexity 2 4 6
Maintenance effort 2 4 6
Experience and skill set of human resources 4 2 6
DB connectivity and interaction between DB & application 3 2 5
Understandability 1 4 5
Emphasis on properly conducting requirements phase 3 2 5
Choice of database engine 4 1 5
Amount of data 3 2 5
Use of stored procedures instead of inline queries 3 1 4
Code inspection & design and peer code reviews 2 2 4
Tiered approach for application development 2 2 4
Support for different database engines 1 3 4
Code quality 1 3 4
Coupling (both at design and code levels) 1 3 4
Code comments & their quality 1 3 4
Ability to foresee changes 3 1 4
Database availability 2 1 3
Number of application users 2 1 3
Project cost 1 2 3
Application size 1 2 3
Initial development effort 3 0 3
Following standards (coding and naming) 0 3 3
Implementation of basic checks at the database side 2 1 3

Note that Table 2 lists only the factors stated by three or more interviewees. There

are 12 other factors that were reported by 2 interviewees and several others reported
by only one. We argue that it is very likely that these factors would also be applicable
to other software companies beyond the ones who participated in this research, given
that most of the factors shown in Table 2 were selected by companies in both Pakistan
and New Zealand, thus suggesting that they are applicable across countries.

Towards Maintainability Prediction for Relational Database-Driven Software Applications 117

The factors listed in Table 2 suggest that the most important factor for relational
database-driven software application’s maintainability is the application architecture,
followed by the database design. This suggests that it is most important for
organisations to design their applications correctly. In addition, other factors such as
those related to code, design, software processes and people also seem to be relevant
predictors of maintainability. Note that the factors listed in Table 2 may seem to be at
different levels of abstraction and/or related; however we refrained from merging any
factors in order to present exactly the factors as emphasized by the interviewees.

5 Discussion

This paper presents evidence from the state of practice on maintainability prediction
for relational database-driven software applications. The results suggest that
maintainability is understood in practice as a quality attribute but sometimes also in
terms of time taken to correct issues in the software application. This can be attributed
to the fact that quality itself is rather an intangible concept and so maintainability is
dealt with as a relative concept understood in terms of time. Also, based on the
evidence presented herein, we believe that it can be argued that the maintainability of
relational database-driven software applications is perceived to be different from that
of the applications that do not interact with a back-end database.

It also appears that a formal prediction model or approach to predicting the
maintainability of relational database-driven applications is not used in practice.
However, the interviewees did suggest that they relied upon expert opinion when
making a judgment on the maintainability of such applications. Therefore the notion
that maintainability is unlikely to be predicted in practice may be slightly misleading
as ‘expert opinion’ also is a well-known prediction technique [12]. Nevertheless, the
use of subjective means for prediction is known to present several problems [12];
therefore there is a need to formalize this process by proposing and validating
maintainability prediction models that use predictors that are relevant in practice to
enable their adoption by the practitioners.

An analysis of the interviews shows that the answers given by the interviewees of
both countries are very similar; implying that maintainability prediction for relational
database-driven software applications may not be sensitive to culture, and in addition,
results may also be generalized outside the sample population used in this research.

As with most research, this research work also has some limitations. A first
limitation of possible missing details is due to the reason that the interviews are based
on the interviewees’ recollection of experiences. This was addressed for most part by
using appropriate prompts during the interviews to probe further on important details.

A second limitation can be that the interviewees during each step were told some
results from previous steps of the research – SR and interviews conducted in the first
step. While this had a disadvantage of introducing the interviewer’s own perceptions,
after much contemplation this was considered important especially in cases where it
was absolutely necessary to enable the discussion with the interviewees to take place.

A third limitation can be due to inaccurate hearing of the recorded interviews. This
was minimized by spending a generous amount of time on extensive pause-and-play
to hear unclear words, and by having a volunteer validate a subset of the transcripts.

118 M. Riaz, E. Mendes, and E. Tempero

A fourth limitation relates to the external validity of the results. This is because the
results come only from twelve interviews, which can be argued to be a small sample;
however the nature of the study is qualitative and does not involve statistical analysis
which requires large volumes of data. In addition, we also had to take into account the
time available to carry out this work.

6 Conclusions

This paper presents the current state of practice on software maintainability prediction
for relational database-driven software applications. The research involved
conducting twelve interviews with software professionals.

The results suggest that maintainability for relational database-driven applications
is understood in practice as a quality attribute; it is not measured or predicted using a
formal metric or prediction technique; the practitioners believe that it should be
predicted; the practitioners also believe that its prediction is different from that of the
applications that do not have a database back-end; and it is predicted in the domain of
relational database-driven applications based on expert judgment. The fact that expert
judgment is made on maintainability because it is required for these applications and
there is no formal prediction model for quantifying these judgments, suggests a strong
need for a formal technique that can be used to quantify maintainability prediction.
The predictors provided herein take formalizing the process of maintainability
prediction for the mentioned type of applications one step forward. These factors can
result in improved software maintainability, as the collected evidence suggests.

The future work involves further verification of these factors with the help of a
survey, followed by the use of these factors in software maintainability prediction
models built from real project data gathered from software companies.

References

1. Bhatt, P., et al.: Influencing Factors in Outsources Software Maintenance. SIGSOFT
SEN 31(3), 1–6 (2006)

2. Fadlalla, A., et al.: Survey of DBMS Use and Satisfaction. Info. Sys. Mgmt. 14(2) (1973)
3. Ferneley, E.H.: Design Metrics as an Aid to Software Maintenance: An Empirical Study. J.

Softw. Maint.: Res. Pract. 11, 55–72 (1999)
4. Gardiokiotis, S.K., et al.: A Structural Approach towards the Maintenance of Database

Applications. In: IDEAS 2004, pp. 277–282 (2004)
5. IEEE Std. 610.12-1990: Standard Glossary of Software Engineering Terminology. IEEE

Computer Society Press, Los Alamitos, CA (1993)
6. Genero, M., Olivas, J., Piattini, M., Romero, F.: Using Metrics to Predict OO Information

Systems Maintainability. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001.
LNCS, vol. 2068, pp. 388–401. Springer, Heidelberg (2001)

7. Lim, J.S., et al.: An Empirical Investigation of the Impact of OO Paradigm on the
Maintainability of Real-World Mission-Critical Software. J. Syst. Soft. 77, 131–138 (2005)

8. Seaman, C.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

9. Kapfhammer, G.M., Soffa, M.L.: A Family of Test Adequacy Criteria for Database-Driven
Applications. In: ESEC/FSE 2003, pp. 98–107 (2003)

Towards Maintainability Prediction for Relational Database-Driven Software Applications 119

10. Krippendorff, K.: Content Analysis – An Introduction to Its Methodology, 2nd edn. Sage
Publications, Thousand Oaks (2004)

11. Maule, A., et al.: Impact Analysis of DB Schema Changes. In: ICSE 2008, pp. 451–460
(2008)

12. Mendes, E., Mosley, N.: Web Engineering. Springer, Heidelberg (2006) ISBN-10 3-540-
28196-7, ISBN-13 978-3-540-28196-2

13. QSR International Pty Ltd.: Nvivo version 8 (2010),
http://www.qsrinternational.com/products_nvivo.aspx

14. Oman, P., Hagemeister, J.: Construction and Testing of Polynomials Predicting Software
Maintainability. J. Syst. Software 24, 251–266 (1994)

15. Riaz, M., Mendes, E., Tempero, E.: A Systematic Review of Software Maintainability
Prediction and Metrics. In: ESEM 2009, pp. 367–377 (2009)

16. Riaz, M., Mendes, E., Tempero, E.: Maintainability Prediction for Database-Driven
Software Applications – Preliminary Results from Interviews with Software Professionals.
In: SEDE 2010 (2010)

Appendix: Interview Questions

1. What is your understanding of maintainability?
2. Do you believe that software applications should be maintainable? If yes, why?
3. What is your view and/or experience with software maintainability prediction?
4. What, in your opinion, may be the benefits of predicting software maintainability?
5. Is maintainability measured and/or predicted in your company, even if it is based

on expert judgment?
a. If yes:

i. What are the factors that you take into account when predicting
maintainability?

ii. How do you measure maintainability?
b. If no:

i. Why not?
ii. What would you consider in terms of artefacts e.g., design, resources,

deliverables, source code etc. in order to predict maintainability?
iii. What factors would you consider in order to predict maintainability?

6. When dealing with maintainability, do you differentiate between database-driven
and non database-driven applications? Why? What are the additional factor(s) that
need to be considered when developing a database-driven software application?

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 120–129, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Software and Web Process Improvement – Predicting
SPI Success for Small and Medium Companies

Muhammad Sulayman and Emilia Mendes

Department of Computer Science, Private Bag 92019,
The University of Auckland, New Zealand
msul028@aucklanduni.ac.nz,
emilia@cs.auckland.ac.nz

Abstract. This study revisits our previous work in SPI success factors for small
and medium companies [26] in order to investigate separately SPI success
factors for Web companies that only develop Web applications (Web
development companies (12 companies and 41 respondents)) from SPI success
factors for Web companies that develop Web as well as software applications
(Web & software development companies (8 companies and 31 respondents)).
We have replicated Dyba’s theoretical model of SPI success factors [12] in
[26], and later also in this paper. However, the study described herein differs
from [12] and [26] in that Dyba used data from both software and Web
companies, and Sulayman and Mendes used data from Web companies that
developed Web applications and sometimes also software applications by
employing quantitative assessment techniques. The comparison was also
performed against the existing theoretical model of SPI success factors
replicated in this study. The results indicate that SPI success factors contribute
in different ratios for both types of companies.

Keywords: Success Factors, Web Companies, Software Process Improvement.

1 Introduction

Software processes facilitate software development companies by introducing mature
and structured practices [1]. Nearly all software development companies face time
and cost related constraints in their projects [2] [9]. To cater their needs, companies
embark on software process improvement (SPI) (see [3] to have a view of different
models and techniques) to improve processes and engineer quality software [4].
Companies invest in SPI to obtain benefits i.e. better quality software, lesser
development time, enhanced productivity [4], improved overall company flexibility
and client contentment [5] [6] [10]. Numerous researchers have also investigated SPI
success factors [11] [12] [13] [14] and people issues as they adopt new processes and
also support in approving existing ways of performing tasks [6].

It has been also been observed that small and medium software development
companies formulate a large proportion of the overall quantity of software companies.
A recent survey has reported that 99.2% of the overall software development
companies are either small or medium [7] many of them are working in the domain of
Web development [8].

 Software and Web Process Improvement 121

This paper investigates the suitability of an existing theoretical model of SPI
success factors, proposed for small and large software companies [12] to two different
types of companies i.e., small and medium ‘Web’ and ‘Web and software’
development companies. ‘Web development’ companies are considered as companies
that are engaged in pure Web and Web application development, whereas ‘Web and
Software development’ companies are considered to develop Web applications and
also other types of applications, which include telecommunications, desktop
applications, system software etc. For the purpose of this paper, the theoretical model
of SPI success factors proposed by Dyba [46] was applied to two different datasets
separately. Finally, a comparison between the results from using these two datasets
and those from Dyba’s [12] and our previous replicated study [26] was carried out.
The reasons to choose two datasets include: (1) a tangible difference between
traditional software and Web engineering; (2) to investigate whether similar factors
would predict SPI success for both types of companies as both are engaged totally or
partially in managing ‘Web’ projects.

The main contribution of this paper is to investigate the extent to which SPI
success factors proposed for software companies are also applicable to small and
medium ‘Web’ and ‘Web and Software’ companies. This paper also revisits our
previous work [26] by splitting its single dataset into two datasets – one containing
data solely from Web companies, and another containing data from companies that
develop both Web and software applications. In addition, this paper also reports on
the differences between SPI success factors for small and medium ‘Web’ companies
and SPI success for small and medium ‘Web and Software’ companies.

2 Literature Review Theoretical Model of SPI Success Factors

The authors of this paper conducted a systematic literature review (SLR) on SPI for
Small and Medium Web Companies’ [23] and one of the aim was to gather
evidence on specific SPI success factors for small and medium Web companies. No
evidence was found on this aspect; however, only one of the studies found in the
primary search phase of the SLR had presented SPI success factors within a broader
context – that of small and large companies (software and Web companies) [15].
This was the primary reason for its selection for replication in comparison to the
other selected studies of the SLR. Other publications of the same author further
clarified the model replicated by us [12] [16]. Population in [12] [15] and [16], had
a very small sample which comprised Web development companies and no
specialized success factors of the SPI success for small and medium Web
companies were presetned. Dyba’s theoretical model consists of seven independent
variables/hypotheses – ‘business orientation’, ‘involved leadership’, ‘employee
participation’, ‘concern for measurement’, ‘exploitation of existing knowledge’, and
‘exploration of new knowledge’ (hypotheses 1-6) [12]. These six variables
independently and collectively measure ‘SPI success’ as a dependent variable
(hypothesis 7) [12] [15]. Two moderating variables – ‘organizational size’ and
‘environmental conditions’ - are also a part of the model [12] [15].

122 M. Sulayman and E. Mendes

3 Research Process

3.1 Population and Subjects of the Research

The population of this research comprises small and medium ‘Web development’ and
‘Web & Software development’ companies, whereas participants comprise
professionals involved in Web development, and sometimes also in software
development. The summary of the respondents’ and companies characteristics for
both company types are given in appendix.

Primary reason of selecting data from Pakistani companies was that Pakistan has a
growing and vibrant Web development industry because of the outsourcing market.
Initially, CEOs and managers from a random sample of 28 small and medium
Pakistani ‘Web development’ and ‘Web & Software development’ companies were
contacted. The management of 20 companies (12/17 ‘Web’ development companies,
8/11 ‘Web & Software’ development companies) agreed to be surveyed, signifying a
response rates of 70.58% and 72.72% respectively, which is much better than the
specified minimum range of 40% [17]. The difference between two company types as
well as the context of the research was elaborated to the contacted CEOs. It was
requested from the CEOs of ‘Web & software’ development companies that the
participants they choose from within their companies should be involved in both
‘Web’ and ‘Web & software’ projects. As a result, a total of 41/68 ‘Web’ and 31/47
Web & software development professionals participated in the investigation, showing
response rates of 60.29% and 65.95% respectively.

3.2 Variables and Measurement Scales

The conducted survey based on [12] and [26] had three sections. First two sections
gathered characteristics and demographics of companies and participants. The last
section questioned about SPI success factors in the surveyed company. Detailed
questionnaire is presented in the appendix.

The same variables (dependent, independent and moderating) and the similar scale
types by Dyba [12] [16] and Sulayman and Mendes [26] were used to determine
important conditions to find the differences in ‘Web development’ and ‘Web &
Software development’ organizations in the context of SPI success.

3.3 Reliability of the Measurement Scales and Detailed Item Analysis

Cronbach alpha [18] was used to determine the reliability of scales in this research.
(as also in [12] [16] [26]). Values of α for each independent variable for both
company types are presented in the appendix. According to Cronbach [18], α > 0.7 for
a variable represents sufficient reliability. Hence, all the scales used in this research
for both company types are reliable.

Similar to Dyba [12] [16] and Sulayman and Mendes [26], we performed a
detailed item analysis based on Nanually’s method [19] to evaluate item assignments
for both ‘Web development’ and ‘Web & software development’ companies
separately. The variables which do not show significant correlation values are
removed from the analysis [19] [58]. The suggested cut-off value is ≈ 0.3 [19] [58].
Correlated matrix for the variables of both company types, and proposed by Dyba
[12] is given in appendix.

 Software and Web Process Improvement 123

Items 14, 29, 30 and 36 did not meet the cut-off criterion for ‘Web & software
development’ companies whereas, items 11,13,29,36 and 37 did not meet the cut-off
criteria for ‘Web development’ companies (see appendix) and were hence removed
from the further analysis steps.

3.4 Validity of the Measurement Scales and Statistical Data Analysis

The concept of validity of the measurement scales determines that how accurate
measurement scales are. We have validated the construct and criteria validity of the
data using the same procedures as used by Dyba [16] and previously used by us [26].
The content validity was also satisfied as this study is based on two previously
conducted studies [16] [26].

Scree tests [60] and eigenvalue rules [20] were used to check construct validity in
[12] and [26], hence we have also used same measures for that purpose. Eigenvalues
must be represented by positive numbers, whereas excellent item loading ranges are
great or equal to 0.6; and good item loading ranges are between 0.4 and less than 0.6
are considered to be fair [20]. The calculated valyes for eigenvalues and item loadings
are given in appendix. Scree plot for all variables in both company types represented
elbow shaped curves which is the passing requirement of tests (see appendix).

Criterion validity determines the independent relationship of the each dependent
variable with the independent variables. All six independent variables were positively
correlated with the dependent variables for both cases (proposed in [12] [16] and used
in [26]), which is relative criteria for us. We have used the the same statistical
techniques used in [12] and which we have already applied in [26]: Multiple
regression analysis, Pearson correlation coefficient, T-tests and F statistic. Prior to
performing the analysis, we ensured that values for K-S tests, skewness, and kurtosis
were falling within the prescribed limits.

4 Empirical Findings

As in [12] and [26], we also present bivariate and partial order correlations for the
independent variables calculated for both company types (Tables 1 and 2).

Four correlation scores out of a total fifteen scores showed higher values than 0.5,
which is a significant outcome for small and medium ‘Web development’ companies.
‘Leadership involvement’ and ‘Exploration of Existing Knowledge’ showed the
highest correlation with ‘Business Orientation’ for ‘Web development’ companies as
given in Table 1.

Table 1. Correlations among Independent Variables (Web)

124 M. Sulayman and E. Mendes

For small and medium ‘Web & Software development’ companies six out of fifteen
correlation scores were higher than 0.5. ‘Leadership Involvement’, ‘Employee
Participation’ and ‘Exploration of Existing Knowledge’ showed the highest correlation
with ‘Business Orientation’ as given in Table 2.

Table 2. Correlations among Independent Variables (Web & Software)

4.1 Measurements for Success Factors

Success factors or hypotheses were tested similar to the way presented in [12] and
[26], which using bivariate correlations. Bivariate correlations included zero orders
and partial correlations. Regarding zero order correlations (r), the moderating
variables were considered constant and for partial correlations (pr) exact values of
moderating variables were considered for the data sets of both company types.

Results (see Tables 3 & 4) showed that all correlations, which were positive,
showed high values and the values were significant for both company types. Table 5
and 6 show the regression analysis results for overall SPI success of small and medium
‘Web development’ and ‘Web & Software development’ companies. As in [12] and
[26], stepwise regression analysis was employed for both types of companies to find
which factors influenced SPI success more significantly. In case of small and medium
‘Web development’ companies ‘Leadership Involvement’ was the most influential
factor, contributing 26% towards SPI in the first model. ‘Employee Participation’
along with ‘Leadership Involvement’ contributed 35% towards SPI success. ‘Concern
for Measurement’ with ‘Employee Participation’ and ‘Leadership Involvement’
contributed 42% towards SPI success. For ‘Web and software development’
companies ‘Business Orientation’ contributed 26% towards SPI success.

All the independent variables presented high and significant values of correlations
for both company types. Along with that, the three variables ‘Leadership
Involvement’, ‘Employee Participation’ and ‘Concern for Measurement’ were also
selected by the stepwise regression in case of ‘Web development’ companies and
‘Business Orientation’ was selected for ‘Web & software development’ companies.

Hypotheses 7 was tested using the same technique used in [12] and [26] - Cohen’s
coefficient (f2 = R2/ (1- R2)) [21], to check the variance of the independent variables in
SPI success. In our case f2 was 0.40 for ‘Web & software development’ companies
and 0.87 (Model 3) in the case of ‘Web development’ companies, demonstrating a
high effect. Very high values of test statistic (Cr) were found, demonstrating a normal
distribution, when we used Konishi’s extension [22] to Fisher R-to-Z transformation,
which supported our hypotheses 7 for the two data sets.

 Software and Web Process Improvement 125

Table 3. Hypotheses 1-6/Success Factors Correlations (Web)

Table 4. Hypotheses 1-6/Success Factors Correlations (Web and Software)

Table 5. Stepwise Regression Analysis Results (Web)

Table 6. Stepwise Regression Analysis Results (Web and Software)

4.2 Comparison of SPI Success Factors between Small and Medium Companies

Small and large software companies’ SPI success factors were compared by Dyba
[16]. We, in our previous study [26], differentiated between small and medium Web
and software development companies. However, in this study we have differentiated
between small and medium ‘Web development’ and between small and medium ‘Web
& software development’ companies. Based on the expert opinion of academics and
industry practitioners [15] [24] [25] [67] we have used the variable ‘Organizational
size’ to differentiate between small and medium companies for both data sets, as
follows: according to Steel [67] companies having less than twenty development staff
are small; and companies having twenty to hindered development staff were said to be
medium sized.

126 M. Sulayman and E. Mendes

Similar to [16] and [26], we have employed 2-tailed –tests for the comparison of
means for the data sets from two companies’, where considering α = 0.05. The results
are shown in appendix and there were no significant differences between small and
medium companies for any of the independent variables for the data sets from both
company types.

5 Discussion

This study revisits our previous work [26] on success factors for SPI in small and
medium Web companies by splitting the original data set into two data sets – one for
‘Web development’ and second for ‘Web & software development’ small and
medium companies. The study was conducted to identify whether any differences
exist between the SPI success factors for the two types of companies. The intention
was to separate the SPI success factors for the two types of companies so that future
research can be conducted as well as SPI initiatives can be taken by taking these
differences into consideration.

A comparison of the overall findings of Dyba’s study [12], our previously
conducted study [26], and this study are given in table 13. The table clearly shows
that the extent to which most factors (‘Business Orientation’, ‘Leadership
Involvement’, ‘Employee Participation’, ‘Measurement’) explain SPI success for
small and medium ‘Web’ companies is different to the extent the same factors explain
it for small and medium ‘Web and Software’ companies. This difference suggests that
SPI success is not explained for the two types of companies mentioned herein in the
same manner. The differences also clearly indicate that the approach towards SPI for
the mentioned types of companies should be different as the same factors do not play
the same role in both types of companies’ SPI success.

Table 7. Comparison of Results for the Support of Hypotheses between the Three Studies

Hypothesis Dyba’s
results [12]

Sulayman & Mendes’
results [26]

Our results
(Web)

Our results (Web
& software)

1 (Business Orientation) Strong Partial Partial Strong
2 (Leadership Involvement) Partial Strong Strong Partial
3 (Employee Participation) Strong Strong Strong Partial
4 (Measurement) Strong Strong Strong Partial
5 (Exploitation) Strong Partial Partial Partial
6 (Exploration) Partial Partial Partial Partial
7 (Overall SPI Success) Strong Strong Strong Strong

In addition to the differences highlighted in table 13, the results of the stepwise

regression analysis (see tables 9 and 10) for both types of companies discussed in this
paper and in Sulayman and Mendes [26] indicate very low scores. This means that
SPI success for small and medium ‘Web’ and ‘Web and Software’ companies may
not be explained only on the basis of the six independent variables presented in Dyba
[12] and investigated by this study’s authors. This means that there are more factors
that may contribute to SPI success for the mentioned types of companies that have not
been investigated as yet. This suggests a need for conducting an inductive study to
investigate these factors in the given context, which is a line of our future work.

 Software and Web Process Improvement 127

The level of support for the 7 hypotheses was in most cases different for the three
studies and 4 discussed cases Dyba’s results [12], our previous findings [69 and
findings of this study for two data sets, as shown in table 7. One important finding of
this study is that the strength of the support for all the hypotheses in case of small and
medium ‘Web development’ companies is exactly the same as that of Sulayman and
Mendes [26]. This further validates the findings given in [26]. The results for small
and medium ‘Web development’ and ‘Web & software development’ companies
converge for hypotheses 5-7 but differ for hypotheses 1-4. Further analysis of the
results (see Table 13) reveal that the hypotheses 5-7 converge and 1-4 differ between
‘Web & software development’ companies and our findings in [26], whereas
hypotheses 1-2, 6-7 converge while 3-5 diverge from Dyba’s findings [12].

The study uses the same theoretical model, techniques, questionnaire and statistics
proposed in [12] and used in [26]. Also, the data set used was the same as [26] but it
was split for the two types of companies, as mentioned above. The data was split based
on the responses gathered from the participants where the participants mentioned the
types of applications developed by their respective companies. All the techniques for
data analysis were then applied on the two data sets separately but simultaneously. The
similarities and differences were noted between the two data sets and compared with
Dyba’s findings [12] [15] [16] and the findings of our previously conducted study [26].

The population of interest for this study is different from that of Dyba’s [12] where
the population of interest was small and large software companies. This study’s
population of interest is small and medium ‘Web development’ and ‘Web & software
development’ companies. Note that the dataset used herein is the same as that of our
previous study [26] in which a combined data analysis was performed due to the fact
that all participating companies developed Web applications.

Various similarities as well as differences were observed between this study’s
findings, the findings from Dyba’s studies [12] [15] [16] and those from our previous
study [26]. In terms of similarities, similarly to previous studies [12] [26], all the
hypotheses (1-7) were also supported herein. Dyba [12] removed sub-factor 29 and our
previous study [26] removed sub-factors 29 and 36 (see appendix) from the
corresponding scales due to their low correlation scores. However, for this study sub-
factors 14, 29, 30 and 36 were removed for ‘Web & software development’ companies
and sub-factors 11,13,29,36 and 37 were removed for ‘Web development’ companies,
from their corresponding scales (Section 3.4). This was the first point of differentiation
between the SPI success factors for the two types of companies used herein.

The main reason, in our opinion, which may have contributed towards the
differences in our results may relate to the different nature of the software developed
in the two types of companies. However, the difference from Dyba’s findings [12]
may be attributed to contextual factors given that he investigated small and large
companies, where some developed Web applications.

There are certain threats to the validity of this research. We surveyed seventy two
respondents from twenty ‘Web development’ and ‘Web & Software Development’
companies in Pakistan, which represented a relatively small sample size, all from a
single country. Due to the difference of cultures and different environments, there can
be different or other SPI success factors in other countries of the world. Further
replications of the same model in other countries may clarify the applicability of the
model further.

128 M. Sulayman and E. Mendes

6 Conclusions

This research investigated the effects of SPI success factors on the specialized domain
of ‘Web development’ and ‘Web & software development’ providing useful results to
these types of companies which are willing to engage in SPI activities. The study has
empirically obtained evidence in support of the theoretical model of SPI success
factors proposed by Dyba [12] and already validated in [26]. This study performed a
quantitative assessment of SPI success factors for 12 small and medium ‘Web
development’ and 8 ‘Web & software development’ companies by revisiting our
previous work [26], which replicated the work presented by Dyba [12].

References

1. Glass, R.: Software creativity. Prentice-Hall, Inc., Upper Saddle River (1994)
2. Cugola, G., Ghezzi, C.: Software Processes: a Retrospective and a Path to the Future.

Software Process: Improvement and Practice 4(3), 101–123 (1998)
3. Thomson, H., Mayhew, P.: Approaches to software process improvement. Software

Process: Improvement and Practice 3(1), 3–17 (1997)
4. Zahran, S.: Software process improvement: practical guidelines for business success.

Addison-Wesley, Reading (1998)
5. Florac, W., Park, R., Carleton, A., INST, C.-M. U. P. P. S. E.: Practical software

measurement: Measuring for process management and improvement (1997)
6. Abrahamsson, P.: Rethinking the concept of commitment in software process

improvement. Scandinavian Journal of Information Systems 13, 69–98 (2001)
7. Fayad, M., Laitinen, M., Ward, R.: Thinking objectively: software engineering in the

small. Communications of the ACM 43(3), 118 (2000)
8. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an approach to software process

improvement for small to medium enterprises (2003)
9. Salo, O.: Improving Software Development Practices in an Agile Fashion. Agile

Newsletter 2 (2005)
10. van Solingen, R.: Measuring the ROI of software process improvement. IEEE

Software 21(3), 32–38 (2004)
11. Niazi, M., Wilson, D., Zowghi, D.: Critical success factors for software process

improvement implementation: an empirical study. Software Process: Improvement and
Practice 11(2), 193–211 (2006)

12. Dyba, T.: An empirical investigation of the key factors for success in software process
improvement. IEEE Transactions on Software Engineering 31(5), 410–424 (2005)

13. Alexandre, S., Renault, A., Habra, N., Cetic, G.: OWPL: A Gradual Approach for
Software Process Improvement In SMEs (2006)

14. Wilson, D., Hall, T., Baddoo, N.: A framework for evaluation and prediction of software
process improvement success. Journal of Systems and Software 59(2), 135–142 (2001)

15. Dybå, T.: Factors of software process improvement success in small and large
organizations: an empirical study in the scandinavian context (2003)

16. Dyba, T.: An instrument for measuring the key factors of success in software process
improvement. Empirical Software Engineering 5(4), 357–390 (2000)

17. Baruch, Y.: Response rate in academic studies—A comparative analysis. Human
Relations 52(4), 421–438 (1999)

 Software and Web Process Improvement 129

18. Cronbach, L.: Coefficient alpha and the internal structure of tests. Psychometrika 16(3),
297–334 (1951)

19. Nunnally, J., Bernstein, I.: Psychometric theory New York (2004)
20. Kaiser, H.: The application of electronic computers to factor analysis. Educational and

Psychological Measurement 20(1), 141 (1960)
21. Cohen, J.: Statistical power analysis for the behavioral sciences. Lawrence Erlbaum,

Mahwah (1988)
22. Konishi, S.: Normalizing transformations of some statistics in multivariate analysis.

Biometrika 68(3), 647–652 (1981)
23. Sulayman, M., Mendes, E.: A Systematic Literature Review of Software Process

Improvement in Small and Medium Web Companies. In: Advances in SE (ASEA 2009),
pp. 1–8 (2009)

24. Cater-Steel, A., Toleman, M., Rout, T.: Process improvement for small firms: An
evaluation of the RAPID assessment-based method. IST 48(5), 323–334 (2006)

25. El Emam, K., Birk, A.: Validating the ISO/IEC 15504 measures of software development
process capability. Journal of Systems and Software 51(2), 119–149 (2000)

26. Sulayman, M., Mendes, E.: Quantitative assessments of key success factors in software
process improvement for small and medium web companies (2010)

Appendix

Respondents and companies’ characteristics, all the measurement scales and their sub
factors, coefficient alpha (α), eigenvalues and item loading ranges, scree plots,
variables’ correlated matrix and comparison of small and medium ‘Web’ and ‘Web &
Software’ Development Companies that are used in this study are mentioned in this
appendix which can be browsed at:
http://www.cs.auckland.ac.nz/~mria007/Sulayman/Repstudy2

www.SoftGozar.Com

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 130–140, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Test Prioritization at Different Modeling Levels

Fevzi Belli1 and Nida Gökçe1,2

1 University of Paderborn, Department of Computer Science, Electrical Engineering and
Mathematics, 33098 Paderborn, Germany

2 Mugla University, Faculty of Arts and Sciences, Department of Statistics,
48000, Mugla, Turkey

{belli,goekce}@adt.upb.de

Abstract. Validation of real-life software systems often leads to a large number
of tests; which, due to time and cost constraints, cannot exhaustively be run.
Therefore, it is essential to prioritize the test cases in accordance with their im-
portance the tester perceives. This paper introduces a model-based approach for
ranking tests according to their preference degrees, which are determined indi-
rectly, through event classification. For construction of event groups, Gustafson
- Kessel clustering algorithms are used. Prioritizing is performed at different
granularity levels in order to justify the effectiveness of the clustering algorithm
used. A case study demonstrates and validates the approach.

Keywords: Model- based test prioritization, fault detection, clustering.

1 Introduction and Related Works

Testing is the traditional validation method in the software industry. For a productive
generation of tests, model based techniques focus on particular, relevant aspects of the
requirements of the system under test (SUT) and its environment. Once the model is
established, it ‘guides’ the test process to generate and select test cases (test suites).
The test selection is ruled by an adequacy criterion, which provides a measure of how
effective a given set of test cases is in terms of its potential to reveal faults [7]. Most
of the existing adequacy criteria are coverage-oriented; they rate the portion of the
system specification (behavioral aspects) or implementation (code) that is covered by
the given test case set when it is applied to exercise the SUT [10].

In this paper, we focus on model based specification and coverage-oriented testing.
In this context, event sequence graphs (ESG) [11] are favored. ESG approach views
the system behavior and user actions as events.

The costs of testing often tend to run out the limits of the test budget. In these cas-
es, the tester may request a complete test suite and attempt to run as many tests as
affordable, testing the most important items first. This leads to the Test Case Prioriti-
zation Problem, a formal definition of which is represented in [4] as follows:

Given: A test suite T; The set PT of permutations of T; A function f from PT to the
real numbers that represents the preference of the tester while testing.

Problem: Find T’ PT such that (T”) (T” T’) [f(T’) f(T”)] ∈ ∀ ≠ ≥

 Test Prioritization at Different Modeling Levels 131

Existing approaches to solve this problem usually suggest constructing a density
covering array in which all pair-wise interactions are covered [1, 4]. In order to cap-
ture significant interactions among pairs of choices, the importance of pairs is defined
as the “benefit” of the tests. Every pair covered by the test contributes to the total
benefit of a test suite by its individual benefit. Therefore, the tests given by a test suite
are to be ordered according to the importance of corresponding pairs. In order to gen-
erate a test set achieving arc coverage from a given ESG, a variant of Chinese Post-
man Problem [2] is solved. Thus, a minimum test set is constructed.

In our previous work, we suggest a prioritized testing approach that attempts to
improve the testing capacity of the algorithm described in [3] and provides the rank-
ing of the test cases to be run. For this aim, to each of the tests, a degree of preference
is assigned. This degree is indirectly determined through qualification of events by
several attributes [5, 6]. These attributes depend on the system and their values
are justified by their significance to the user. We give some examples how to define
such attributes and assign values to them, based on a graphical representation of cor-
responding events. We suggest [5, 6] representing those events as an unstructured
multidimensional data set and dividing them into groups which correspond to their
importance.

Clustering methods, such as adaptive competitive learning [5], fuzzy c-means [8, 9]
and Gustafson Kessel [12] clustering algorithms are used to derive event groups. The
advantage of the proposed approach is that no priori information is needed about the
tests, e.g., as in regression testing [4]. Most, if not all, of the existing works require
such prior information [1, 4].

Section 2 summarizes background information on the modeling with ESG, test
case generation and Gustafson Kessel clustering method based on soft computing.
Section 3 explains the approach to model-based test prioritization. Section 4 presents
the test selection strategies at different levels based on prioritization, and a case study
demonstrates and validates the approach. Finally, Section 5 discusses the results of
the case study.

2 Background

2.1 Event Sequence Graphs

An event, an externally observable phenomenon, can be a user stimulus or a system
response, punctuating different stages of the system activity. Event Sequence Graphs
(ESG) graphically represents the system behavior interacting with the user’s actions.
In following, only a brief introduction into ESG concept is given that is necessary and
sufficient to understand the test prioritization approach represented in this paper; more
detail has been published before ([11]).

Mathematically speaking, an ESG is a directed, labeled graph and may be thought
of as an ordered pair ESG=(V, E), where V is a finite set of nodes (vertices) uniquely
labeled by some input symbols of the alphabet Σ, denoting events, and E: V V, a
precedence relation, possibly empty, on α. The elements of E represent directed arcs
(edges) between the nodes in V. Given two nodes a and b in V, a directed arc ab from
a to b signifies that event b can follow event a, defining an event pair (EP) ab

132 F. Belli and N. Gökçe

(Fig. 1(a)). The remaining pairs given by the alphabet Σ, but not in the ESG, form the
set of faulty event pairs (FEP), e.g., ba for ESG of Fig.1(a). As a convention, a dedi-
cated, start vertex e.g., [, is the entry of the ESG whereas a final vertex e.g.,]
represents the exit. Note that [and] are not included in Σ. The set of FEPs constitutes
the complement of the given ESG (ܩܵܧതതതതതത in Fig.1(a)).

Fig. 1. (a) is an event sequence graph ESG and ܩܵܧതതതതതത as the complement of the given ESG; (b) is
refinement of a vertex v and its embedding in the refined ESG

A sequence of n+ 1 consecutive event that represents the sequence of n arcs is
called an event sequence (ES) of the length n+1, e.g., an EP (event pair) is an ES of
length 2. An ES is complete if it starts at the initial state of the ESG and ends at the fi-
nal event; in this case it is called a complete ES (CES). Occasionally, we call CES
also as walks (or paths) through the ESG given [3].

Given an ESG, say 1ܩܵܧ ൌ ሺܸ1, ݒ 1ሻ, a vertexܧ א ܸ1, and an ESG, say 2ܩܵܧ ൌሺܸ2, ,ൌሺܸ3 3ܩܵܧ say ,1ܩܵܧ produces a refinement of 2ܩܵܧ by ݒ 2ሻ. Then replacingܧ 3ሻ with ܸ3ܧ ൌ 1ܸ ܸ2\ሼݒሽ, and 3ܧ ൌ 1ܧ 2ܧ ݁ݎܧ set :\) ݈݀݁ܿܽ݁ݎ1ܧ\ݐݏܧ
difference operation), wherein ݁ݎܧ ൌ ܰିሺݒሻ ൈ -2ሻ (connections of the predeܩܵܧሺߌ
cessors of v with the entry nodes of ESG2), ݐݏܧ ൌ 2ሻܩܵܧሺ߁ ൈ ܰାሺݒሻ (connections
of exit nodes of ESG2 with the successors of v), and ݈݀݁ܿܽ݁ݎ1ܧ ൌ ሼሺ݅ݒ , ,ሻݒ ሺݒ, ሻሽ ݇ݒ with א ݅ݒ ܰିሺݒሻ and א ݇ݒ ܰାሺݒሻ (replaced arcs of ESG1) [3].

Fig. 1(b) shows that ESG1 is ‘mother’ ESG of higher level abstraction and ESG2 is
refinement of the vertex v of ESG1. ESG3 represents resultant refined ‘mother’ ESG1;
the refinement of its vertex v is embedded in the context. As Fig. 1(b) illustrates, every
predecessor of vertex v of the ESG of higher level abstraction points to the entries of
the refined ESG. In analogy, every exit of the refined ESG points to the successors of
v. The refinement of v in its context within the original ESG of higher level abstract-
tion contains no pseudo vertices [and] because they are only needed for the identify-
cation of entries and exits of the ESG of a refined vertex [3].

2.2 Test Cases Generation

Since, in this work, testing is performed based on a model, to generate test cases from
ESGs, arc coverage is used. In this perspective, arc coverage provides a measure on
how many of all possible event transitions in the system have been covered. Fulfilling
of arc coverage criteria in the ESG modeling structure leads to, Chinese Postman
Problem (CPP) [2].

 Test Prioritization at Different Modeling Levels 133

2.3 Test Cost

The number and length of the event sequences are the primary factors that influence
the cost of the testing. The test costs for CESs are defined as [3], where ߰ாௌ is the
maximum number of CESs, ߚ א Թ as the weight factor for conducted multiple tests, ڔ the cost of each click and ݈௩ as the sum of lengths ߙ ,as the number of CESs ܵܧܥ
of CESs to cover all ESs of up to a given maximum length ݈௫. ߰ாௌ ൌ .ߚ ڔ ܵܧܥ .ߙ ݈௩ (1)

2.4 Clustering

Clustering is used to generate an optimal partition of a given data set into a predefined
number of clusters. Mathematically speaking, clustering partitions dataset ܺ ൌሼݔଵ, … , ,ݔ … , ሽݔ ؿ Թ into c number clusters or groups ܵ in the form of hyper
spherical clouds of input vectors ݔଵ ൌ ൛ݔଵ, … , ,ݔ … , ൟݔ א Թ, where Թ is the set
of real numbers, p is the number of dimension.

We chose Gustafson Kessel clustering (soft clustering) as it allows elements to be-
long to several clusters, which reflects the situation in testing.

2.5 Gustafson Kessel Clustering

Gustafson and Kessel (GK, [12]) extended the standard fuzzy c-means algorithm [10]
by employing an adaptive distance norm in order to detect clusters of different geo-
metrical shapes in one data set. GK algorithm associates each cluster with both a point
and a matrix, respectively representing the cluster centre and its covariance. Whereas
fuzzy c-means algorithms make the implicit hypothesis that clusters are spherical, GK
algorithm is not subject to this constraint and can identify ellipsoidal clusters [12].
The objective function of the GK algorithm is defined by ܬሺܺ; ܷ, ܸ, ሼܣሽሻ ൌ ሺݑሻܦೖଶୀଵୀଵ (2)

Each cluster has its own norm-inducing matrix ܣ, which yields the following inner-
product norm: ܦೖଶ ൌ ሺݔ െ ݔሺܣሻ்ݒ െ ሻ (3)ݒ

The matrices ܣ can be defined as the inverse of the covariance matrix of X. ܣ are
used as optimization variables in the c-means functional, thus allowing each cluster to
adapt the distance norm to the local topological structure of the data.

3 Model-Based Test Case Prioritization

The ordering of the CESs as test cases is in accordance with their importance degree
that is defined indirectly, i.e., by estimation of events that are the nodes of ESG and
represent objects (modules, components) of SUT. Events are presented as a multidi-
mensional data vector ݔ ൌ ൛ݔଵ, … , ൟ where p is the number of its attributes. Aݔ

134 F. Belli and N. Gökçe

data set ܺ ൌ ሼݔଵ, … , ,ݔ … , ሽݔ ؿ Թ where n is the number of events, is constructed
which being an unstructured one is divided into c groups. Table 1 exemplifies the
approach for qualifying an event corresponding to a node in ESG, introducing eleven
attributes (p=11) that determine the dimension of a data point.

Table 1. The Attributes Table

No Attributes
xi1 The number of level in which the graph exist
xi2 The number of sub-windows to reach an event from the entry [(gives its distance to the beginning).
xi3 The number of incoming and outgoing edges (invokes usage density of a node, i.e., an event).
xi4 The number of nodes that are directly and indirectly reachable from an event except entry and exit

(indicates its “traffic” significance).
xi5 The maximum number of nodes to the entry [(its maximum distance in terms of events to the entry).
xi6 The number of nodes of a sub-node as sub-menus that can be reached from this node (maximum

number of sub-functions that can be invoked further).
xi7 The total number of occurrences of an event (a node) within all CESs, i.e., walks.
xi8 The averaged frequencies of the usage of events ሺ݂ݎݒܣሺݔሻሻ(4) within the CESs (all graphs).

(Determine the averaged occurrence of each event within all CESs (See (4)).
xi9 The balancing degree determines balancing a node as the sum of all incoming edges (as plus (+)) and

outgoing edges (as minus (-)) for a given node.
xi10 The averaged frequencies of the usage of events (4) within the CESs (only one graph), where fq(xi) is

frequency of occurrence of event ith within CESq and ݈ሺܵܧܥሻ is length of CESq, d is determined
that events belonging to number of CESs as ݀ r.

xi11 The number of FEPs connected to the node under consideration (takes the number of all potential
faulty events entailed by the event given into account).

ሻݔሺ݂ݎݒܣ ൌ ଵௗቆ ሺ௫ሻሺாௌሻೝసభ ቇ ݍ ൌ 1, … , ݎ א ܰ; ݅ ൌ 1, … , ݊ א ܰ; ݀ א ܰ (4)

where fq(xi) is frequency of occurrence of event ith within CESq and ݈ሺܵܧܥሻ is length
of CESq, d is determined that events belonging to number of CESs as݀ .ݎ

3.1 Importance Degree of Groups

The importance degree of groups (ܦ݉ܫሺܵሻ) has been assigned by ordering length
of the groups mean vector ݈ሺݔҧ) from higher to lower. The group with the highest ݈ሺݔҧ) value has importance degree 1 (the most important group). Importance index ݉ܫሺݔሻ of ith event belonging to kth group is defined as follows: ݉ܫሺݔሻ ൌ ܿ െ ሺܵሻܦ݉ܫ 1 (5)

where c is the optimal number of the groups; ImpD(Sk) is the importance degree of the
group ܵ (7) the ith event belongs to. ܲܦ݂݁ݎ൫ܵܧܥ൯ ൌ ሻୀଵݔሺ݉ܫ ሻݔௌೖሺߤ ݂ሺݔሻ (6)

where r is the number of CESs, Imp(xi) is importance index of the ith event (5), ߤௌೖሺݔሻis membership degree of the ith event belonging to the group ܵ (7), and fq(xi)
is frequency of occurrence of event ith within CESq.

 ܵ ൌ ൛ݔ|ߤ ,ߤ ݇ ് ݆ ݇ ൌ 1, … , ܿൟ (7)

 Test Prioritization at Different Modeling Levels 135

Finally, the CESs are ordered, choosing the events with their degree of member-
ship from the ordered groups, and using importance index of events. Their descending
preference degrees begin from the maximal one. The assignment of preference de-
grees to CESs is based on the rule that is given as follows:

• The CES under consideration has the highest degree if it contains the events that
belong to the “top” group(s) with utmost importance degrees, i.e., that is placed
within the highest part of group ordering.

• The under consideration has the lowest degree if it contains the events which be-
long to the group(s) that are within the lowest part of the “bottom” group(s) with
least importance degree i.e., that is placed within the lowest part of group ordering.

Priorities of the test cases are determined by ranking PrefD(CESq) from higher to
lower. The path with the highest PrefD(CESq) value has priority 1, (which is the high-
est priority value). The proposed test prioritizing algorithm is presented as follows.

Indirect Determination of the Test Prioritizing Algorithm:

Step 1 Construction of a set of events ܺ ൌ ሼݔሽ where ݅ ൌ 1, … , ݊ ; ݅߳ܰ is an event index, and ݆ ൌ 1, … , ; ݆߳ܰ is an attribute index.
Step 2 Clustering the events using GK clustering algorithms.
Step 3 Classification of the events into c fuzzy groups.
Step 4 Determination of importance degrees of groups to length ݈ሺݔҧሻ of group means vectors for all

type of groups.
Step 5 Determination of importance index of event groups (5) with respect to crisp groups and fuzzy

qualified groups.
Step 6 An ordering of the CESs as test cases using the preference degree (PrefD(CESq)) (6) for prioritiz-

ing the test process.

4 Case Study

ISELTA is an online reservation system for hotel providers and agents. It is a cooper-
ative product of the work between a mid-size travel agency (ISIK Touristik Ltd.) and
University of Paderborn. For the test case study, a relatively small part of ISELTA
called “Special Module” is used to prioritize the test cases. Through this module, one
is able to add special prices to the specified number of rooms of certain type for the
determined period of time in the given hotel. Consequently, one can edit existing
specials and also remove them.

4.1 Modeling

SUT is tested using combination of sub-graphs of three levels. The legends of the
nodes are given in Table 2. In Fig 2 (a), IS represents the first level of specials mod-
ule. S0, S1, and S2+ (symbolically represented such as 1,3,6) are used to denote the
current condition of the system. In case of S0, no entries exist in the system. In S1,
there is only one special and finally S2+ means that there are two or more specials in
the system.

136 F. Belli and N. Gökçe

(a)

(b)

(c)

(d)

(e)

Fig. 2. ESGs of (a) ISELTA Special Module (IS); (b) Incomplete Data (ICD); (c) Enter Com-
plete Data Module (ECD); (d) Change Data (CD); (e) Select Date (SD)

Table 2. Legend of the nodes

Nodes Legends Nodes Legends Nodes Legends
S0
S1
S2+
ICD
ECD
CD
add
edit
Ok

 no special
 in a special
 in two or more specials
 Incomplete Data
 Enter Complete Data
 Change Data
 click add button
 click edit button
 click ok button

save
can
NP
YP
DP
CI
SD
AP
Cancel

click save button
click cancel button
There isn’t Photo
There is Photo
Delete Photo
Change Information
Select Date
Add Photo
click cancel button

OK
AI
SD_1
SD_2
today
select
Message
close

click ok button
 Add Information
 select the arrival date
 select the departure date
 click today button
 select a date
 error message
 click close button

In second level, the nodes ICD (2, 17, 22), ECD (4, 15, 20) and CD (8, 26) are re-

finement (Fig. 2(b), Fig. 2(c) and Fig. 2(d) respectively. Fig. 2(b)), ICD (Incomplete
Data Module), shows how to enter missing data and SD (Select Date) gives in detail
in third level as in Fig. 2(e). Fig. 2(c), ECD (Enter Complete Data Module), repre-
sents complete data entry, and Fig. 2(d) explains editing an existing special.

4.2 Clustering

Test case generation algorithm is mentioned in Section 3 and described in [3] in
detail. CESs generated are listed in Table 3. As a follow-on step, each event, i.e.,

 Test Prioritization at Different Modeling Levels 137

Table 3. List of the Test Cases

Levels ESGs No CESs Preference Degrees
First

Level
IS CES1 [3 1 1 4 5 6 7 8 8 9 6 7 8 11 6 10 12 3 4 5 6 10 13 6 10 13 7 9 6

14 14 15 16 18 19 19 20 21 18 19 25 25 26 25 26 26 27 18 20 21
18 25 27 18 25 30 18 25 29 31 18 25 29 31 7 11 7 11 10 13 14
15 16 18 25 29 32 25 29 32 26 30 18 25 29 32 27 18 24 28 18 24
28 25 29 32 30 18 24 28 24 23 6 15 16 18]

355,03

CES2 [18 22 22 19 22 19 24 23 18] 31,78
CES3 [3 2 2 1 2 1 4 5 6] 31,1
CES4 [6 17 17 14 17 14 15 16 18] 31,07
CES5 [3] 3

Second
Level

ICD
(2,
17,
22)

CES6 [33 33 34 34 36 36] 5,94
CES7 [33 35 35 36] 3,96
CES8 [35] 0,99
CES9 [34] 0,99
CES10 [33] 0,98

ECD
(4,
15,
20)

CES11 [37 37 40 40 42 42] 6
CES12 [38 38 41 41 42] 5
CES13 [39 39 38 41] 4
CES14 [39 37 40] 3

CD
(8,
26)

CES15 [43 48 48 49 48 50 48] 7
CES16 [44 45 46 45 46] 5,88
CES17 [43 49 49 50 49] 5
CES18 [44 45 47 43] 4,44
CES19 [44 45 47] 3,44
CES20 [43 50 50] 3
CES21 [44 49] 2
CES22 [44 48] 2
CES23 [44] 1

Third
Level

SD
(35,
38,
40,
49)

CES24 [51 52 52 54 51 52 53 51 54 57 58 58 59 51 54 55 56 51 54] 37,7
CES25 [57 58 60 51 53 57 60 57 60 62 61 51 53] 25,88
CES26 [51 55 56 57 58 59] 11,94
CES27 [57 62 61 57 62 61] 12
CES28 [51 55 56] 5,94
CES29 [57 60] 4

corresponding node in the ESG, is represented as a multidimensional data point using
the values of eleven attributes as defined in the previous section.

For the dataset gained from the case study, the optimal number c of clusters is de-
termined to be 4. In order to divide the given dataset into clusters, we apply the clus-
tering algorithm mentioned in Section 3. After the clustering process, the importance
degrees of groups and so the events are determined by using (5). The preference de-
grees of the CESs are determined indirectly by (6) that depend on the importance
degree of the events (5) and frequency of event(s) within the CES. Finally, we deter-
mine an ordering of CESs according to their descending preference degrees. The as-
signment of preference degree is based on the rule that is given as follows: The CES
has the highest preference degree is that contains the events which belong to the most
important groups, and the CES has the lowest preference degree is that contains the
events which belong to the less important groups. Table 3 presents the results of the
analysis.

138 F. Belli and N. Gökçe

4.3 Testing

Test process is performed by executing test sequences CES1-CES5 (see Table 3) by re-
fining them in three levels. Table 4 gives the cost of testing (ࡿࡱ࣒) required for these
three types of refinements. With the number of levels, test cost excessively increase
(Table 3). We assume it is not possible to execute all test cases of second and third
levels. Thus, we select test sequences detecting faults. The number of faults occurred
during testing and test cases numbers are given in Table 4.

4.4 Test Selection Strategies Based on Prioritization

Strategy 1. In the first level, in case of no refinements, test sequences are ranked ac-
cording to the preference degrees, and they are executed by these rankings. In our
case, CES1, CES2, CES3, CES4, CES5, are executed in the given order.

Strategy 2. 1st level test sequences are refined using the highest priority test se-
quences from the second level, i.e., each composite event is always replaced by the
same highest priority test sequence related to it.

Example 1. In 1st + 2nd level, tests are executed as follow:

In CES1, 4, 8, 15, 20 and 26 are composite events. Thus, during execution, they are
replaced by CES11, CES15, CES11, CES11, CES15, respectively.

Table 4. Cost of CESs

Refinement
Levels

 ࢜ࢉMean of ࡿࡱ࣒
ڔ ࡿࡱ Test

cases
Detected

faults
Additional

faults
1st (no refinement) ߙ 134 +ߚ 5 27 5 59 8 8
1st + 2nd 8.109 ߙ 1,5.1013+ߚ 198 ~8.109 656 11 3
1st + 2nd + 3rd ߙ 1,6.1033+ߚ 1030 1424 ~1030 5368 12 1

Strategy 3. 1st level test sequences are refined using the highest priority test se-
quences from the second and third levels, i.e., each composite event is always re-
placed by the same highest priority test sequence.

Example 2. In 1st + 2nd + 3rd levels, tests are executed as follow:

In CES1, 4, 8, 15, 20 and 26 are composite events. Thus during execution, they are
replaced by CES11, CES15, CES11, CES11, CES15, respectively. In addition, in CES11,
40 and in CES15, 49 are composite events, so that they are replaced by CES24, CES24.

4.5 Results

The execution first test sequence (CES1) revealed seven faults in the system (see Ta-
ble 5). The second test sequence (CES2) revealed one additional fault, and the other
test sequences revealed no new fault. In the second level, only test sequences having
the highest priority (CES6, CES11, CES15) are replaced into the first level test se-
quences. Three new faults are revealed; two of them are detected by refined CESs. In

 Test Prioritization at Different Modeling Levels 139

Table 5. List of Faults

Levels CESs Faults
First CES1 • The number of special offers available can be set to zero.
 • Today button does not work
 • In existing offers the arrival date can be set to dates into the past.
 • In existing offers the departure date can be set to dates into the past.
 • Departure date is falsely autocorrected
 • Departure date is not autocorrected.
 • Missing warning for wrong file types.
 CES2 • A special can be inserted with missing start date
Second CES1 • If a departure date in the past is set to another day in the past, the arrival is set to the current date.

• Missing warning for incorrect prices and number of special offers
CES2 • Missing warnings for empty dates.

Third CES2 • Departure and arrival date can be selected previously date.

second and third level, test sequences with the highest priorities are replaced into the
second and first level refinements. As a result, only one fault is detected.

5 Conclusions, Limitations, Scalability Aspects, and Future Work

A model-based, coverage-and specification-oriented approach is presented for order-
ing test cases according to their degree of preference at different modeling levels. No
prior knowledge about the tests carried out before is needed. The priorities of test se-
quences are determined using GK clustering technique.

Note that the approach heavily relies on model used. As models usually focus on
some selected features of SUT and thus neglect the others, the results can largely dif-
fer if other features dominate by modeling.

The case study (Section 4) used a relatively small application; for applying the ap-
proach to larger modules, rudimentary tools are available. The completion and im-
provement of these tools are planned to increase the scalability of the approach.

We plan to extend the approach by considering n-tuple events coverage (with n=3,
4, 5, …) instead of the pair-wise event coverage (n=2) as studied in this paper. Addi-
tionally, more empirical research is planned.

References

1. Bryce, R.C., Colbourn, C.C.: Prioritized Interaction Testing for Paire-wise Coverage with
seeding and Constraints. Information and Software Technology 48, 960–970 (2006)

2. Edmonds, J., Johnson, E.L.: Matching, Euler Tours and the Chinese Postman. Math. Pro-
gramming, 88–124 (1973)

3. Belli, F., Budnik, C.J., White, L.: Event-based Modelling, analysis and testing of user Inte-
ractions- Approach and Case Study. J. Software Testing, Verification & Reliability 16(1),
3–32 (2006)

4. Elbaum, S., Malishevsky, A., Rothermel, G.: Test Case Prioritization: A Family of Empir-
ical Studies. IEEE Transactions on Software Engineering 28(2), 182–191 (2002)

140 F. Belli and N. Gökçe

5. Gökçe, N., Eminov, M., Belli, F.: Coverage-Based, Prioritized Testing Using Neural net-
work Clustering. In: Levi, A., Savaş, E., Yenigün, H., Balcısoy, S., Saygın, Y. (eds.) ISCIS
2006. LNCS, vol. 4263, pp. 1060–1071. Springer, Heidelberg (2006)

6. Belli, F., Eminov, M., Gökçe, N.: Coverage Oriented Prioritized Testing- A fuzzy Cluster-
ing Approach and Case Study. In: Bondavalli, A., Brasileiro, F., Rajsbaum, S. (eds.)
LADC 2007. LNCS, vol. 4746, pp. 95–110. Springer, Heidelberg (2007)

7. Binder, R.V.: Testing Object-Oriented Systems. Addison-Wesley, Reading (2000)
8. Bezdek, C.J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum

Press, New York (1981)
9. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley,

Chichester (1999)
10. Yhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy. ACM

Computing Surveys 29(4) (December 1997)
11. Belli, F.: Finite-State Testing and Analysis of Graphical User Interfaces. In: Proc. 12th Int.

Symp. Software Reliability Eng. (ISSRE 2001), pp. 34–43 (2001)
12. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc.

IEEE Conf. Decision Contr., San Diego, CA, pp. 761–766 (1979)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 141–150, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Adoption of Requirements Engineering Practices in
Malaysian Software Development Companies

Badariah Solemon1, Shamsul Sahibuddin2, and Abdul Azim Abd Ghani3

1 College of IT, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong,
43009 Kajang, Selangor, Malaysia
badariah@uniten.edu.my

2 Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
shamsul@utm.my

3 Universiti Putra Malaysia, Selangor, Malaysia
azim@fsktm.upm.edu.my

Abstract. This paper presents exploratory survey results on Requirements
Engineering (RE) practices of some software development companies in
Malaysia. The survey attempted to identify patterns of RE practices the
companies are implementing. Information required for the survey was obtained
through a survey, mailed self-administered questionnaires distributed to project
managers and software developers who are working at software development
companies operated across the country. The results showed that the overall
adoption of the RE practices in these companies is strong. However, the results
also indicated that fewer companies in the survey have use appropriate CASE
tools or software to support their RE process and practices, define traceability
policies and maintain traceability manual in their projects.

Keywords: Requirements Engineering (RE), RE practices, adoption.

1 Introduction

Good RE practices, according to Davis and Zowghi [1], can “either reduces the cost
of the development project or increases the quality of the resulting project when used
in specific situation”. There exist in the literature several empirical research that
study the RE practices in different companies in different parts of the world. Such
empirical research include those by El Emam and Madhavji in 1995 [2], a study of 60
(12 interviews and 48 document inspection) cases in Canada; Nikula and colleagues.
in 2000 [2], a survey of 15 respondents in twelve small and medium enterprises
(SMEs) in Finland; Neill and Laplante in 2003, as explained in [4], a survey of 194
respondents from diverse mix of industries in US; and Damian and colleagues in 2004
[5], a study within a single Australian company. Findings from these studies not only
show the different types of RE practices implemented but also provide empirical
evidence that improved RE practices help in improving the software development
projects.

However, results from most of these surveys may not appropriate to be generalized
from such a relatively small samples used. In addition, the situation in Malaysia was

142 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

not quite known as there was no research to study both the state of the RE problems
and RE practices in the country. Hence, we designed and conducted a survey to find
out the current RE problems and practices amongst these software development
companies. The survey is adapted from three surveys as reported in [2], [6], and [7].
One of the objectives of the survey is to investigate the pattern of RE problems and
practices amongst the software development companies in Malaysia. In this paper,
however, the focus is only at presenting the pattern of RE practices implemented in
the software companies. In the next two sections, the materials and data collection
methods, and the results on valid responses, and the analyses performed to interpret
the results of the study are explained.

2 Materials and Methods

To help investigate the patterns of current RE problems and practices, the survey
method was used. Self-administered, mailed questionnaire was chosen as the
instrument of the survey. The questionnaire was constructed with four sections to
capture the required information: Section A, Section B, Section C and Section D.
Section A focuses at the background information on the companies, the respondents’
profile and attitude to the importance of the RE process and software process
improvement (SPI). Section B was intended to identify RE problems, while Section
C was looking for information related to the adoption and adequacy of RE practices
implementations in the companies. Finally, Section D allows respondents to add
other RE practices not addressed in the questionnaire but are important to ensure
software development project success in their organizations, and to comment on any
aspect they choose. This paper aims to present only the results of section C.
Meanwhile, results of the first two sections have been reported in other articles
including in [8], [9], and [10].

The survey questionnaires were mailed to 500 randomly selected samples of
software development companies in Malaysia. A software development company in
the survey is defined following the definition by Sison and colleagues [11] as “[...] a
for-profit organization whose main business is the development of software for
customers external to the organization. Included in this definition are developers of
generic software products (e.g., Microsoft) as well as providers of software solutions
for specific domain (e.g., Infosys). Excluded in this definition are IT departments that
cater primarily to the needs of the organization of which they are part”. As mentioned
in [8], the survey data was collected through February and March 2008. Although a
total of 90 responses were received, making up 18% response rate, only 64 responses
are complete and considered valid for analysis. Most are excluded mainly due to
incomplete answers. Although this response rate is fairly low, we decided to proceed
with analyzing the responses because according to [12], a low response rate of about
5% would already be sufficient for an exploratory study of this kind. Moreover, the
13% response rate is virtually the same with that reported in [11].

3 Results and Discussion

As mentioned earlier, Section C of the questionnaire was looking for information
related to the adoption and adequacy of RE practices implementations in the

 Adoption of Requirements Engineering Practices 143

companies. The information was obtained using a revised list of 72 RE practices
items. These items are categorized into 6 key practices: requirements elicitation (Item
3.1-Item 3.13), requirements analysis and negotiation (Item 4.1 – Item 4.9),
requirements specifications and documentation (Item 5.1 – Item 5.20), requirements
verification and validation (Item 6.1 – Item 6.9), requirements management (Item 7.1
– Item 7.10), and other practices (Item 8.1 – Item 8.11). The RE practices were
gathered from the literature such as [7], [13], [14], [15], [16], and [17]. Each item in
the list uses a 0 to 3 Likert scale, which will be scored based on the REAIMS
assessment (0 = never, 1 = used at discretion of project manager, 2 = normal used, 3 =
standardized) as proposed in [14]. A zero scale also mean a non-adoption of the RE
practice, whereas the other scale numbers represent different adequacy level of the RE
practice implementation in the respondent’s organization. However, due to limited
space, this paper focuses at presenting only the results related to the adoption level of
the RE practices.

3.1 Adoption of RE Practices

First, we queried respondents on their requirements elicitation practices as this key
practice is an especially critical part of the RE process [18]. Table A-1 in Appendix A
summarizes the results on requirements elicitation practices. The mean overall
adoption level of the requirements elicitation practices in the companies in our survey
is 96.03%, which is expectably high for such important practices. All 100% of the
responding companies define the system’s operating environment (Item 3.5), use
business concerns to drive requirements elicitation (Item 3.6), and define operational
processes (Item 3.12) as part of their requirements elicitation practices. The practices
with the lowest three adoption level are prototype poorly understood requirements
(Item 3.10), be sensitive to organizational and political considerations (Item 3.2), and
look for domain constraints (Item 3.7).

Next, table A-2 summarizes the results of the requirements analysis and
negotiation practices. From this table, the mean overall adoption level of the
requirements analysis and negotiation practices is relatively high at 89.58%. It can be
observed that the most top adopted requirements analysis and negotiation practice is
define system boundaries (Item 4.1). The second most adopted practice in this key
practice is Item 4.6, prioritize requirements. This is followed by Item 4.7, classify
requirements into classes or sections. Meanwhile, the lowest three adopted
requirements analysis and negotiation practices are use interaction matrices to find
conflicts and overlaps (Item 4.8), provide software or tools to support negotiations
(Item 4.4), and assess requirements risks (Item 4.9).

Table A-3 lists the adoption level of the requirements specification and
documentation practices. The mean overall adoption level of the requirements
specification and documentation practices is high too (92.7%). At least one out of 20
requirements specification and documentation practices (i.e., apply the standard
structure to all of your requirements documents) is rated with 100% adoption by the
responding companies. The top three most adopted practices are Item 5.3 which is
apply the standard structure to all of your requirements, Item 5.8 which is layout the
document for readability, and Item 5.12 which is model the system architecture
showing the entire system, subsystem and the links between them. Whilst the bottom

144 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

three adopted practices are Item 5.2 which is tailor a requirements standard such as
IEEE Std 830.1998, Item 5.20 which is specify non-functional requirements
quantitatively, and Item 5.15 which is shows traceability between stakeholder
requirements and system models.

From table A-4, it can be observed that the mean overall adoption level of the
requirements verification and validation practices is 89.06%. All 100% of the
responding companies check that the requirements document meets their standard
(Item 6.1). The other two top most adopted practices in this RE key practices include
perform requirements reviews (Item 6.2), and produce requirements test cases (Item
6.8). Meanwhile, the lowest three adopted requirements verification and validation
practices are Item 6.7 which is write a draft user manual at early stage in the process,
Item 6.4, which is set-up inspections team and perform formal inspections for
requirements and Item 6.9, which is paraphrase system models.

Table A-5 summarizes the adoption level of the requirements management
practices. The mean overall adoption level of the requirements management practices
(87.97%) is the lowest adoption level of all the 6 key practices. Nevertheless, Item
7.1, Uniquely identify each requirement is being implemented by all of the
responding companies). Meanwhile, the other two highly adopted requirements
management practices are Item 7.10, Define the real (actual) requirements, and Item
7.7, Identify reusable system requirements. The bottom three adopted requirements
management practices are Item 7.5, Use a database to manage requirements, Item 7.4,
Maintain traceability manual, and Item 7.3, Define traceability policies.

Finally, it can be observed from Table A-6 that the mean overall adoption level of
the other RE practices is high too (89.90%). The top three adopted RE practices under
this key practice category are define the requirements process using best practices
(Item 8.5), assign skilled project managers and team members to RE activities (Item
8.3), and establish and utilize a joint team responsible for the requirements (Item 8.4).
The lowest adopted practice under this key practice category is use appropriate CASE
tools for RE support and others (Item 8.1), (Item 8.11), and (Item 8.2).

3.2 Top and Lowest Ten RE Practices

The mean overall adoption level of the all the RE practices presented is high
(91.21%). Table 1 summarizes the top and lowest 10 RE practices adopted in the
responding companies. At least six out of 72 RE practices are rated with 100%
adoption by the responding companies. These practices include define the system's
operating environment (Item 3.5), use business concerns to drive requirements
elicitation (Item 3.6), define operational processes (Item 3.12), apply the standard
structure to all of your requirements documents (5.3), check that the requirements
document meets your standard (Item 6.1), and uniquely identify each requirements
(Item 7.1). Data in the table also suggest that majority of these top 10 RE practices
adopted are actually categorized under the requirements elicitation, and requirements
specification and documentation key practices. At least two out of the top ten RE
practices fall under the requirements verification and validation, and requirements
management key practice categories.

According to the survey results, three of the lowest RE practices are related to
adoption of software or tool to support RE process and its practices. They are Item 8.1

 Adoption of Requirements Engineering Practices 145

which is use appropriate CASE tools for RE support and others, Item 4.8 which is use
interaction matrices to find conflicts and overlaps requirements and system models,
and Item 4.4 which is provide software or tools to support negotiations. It is also
interesting to see that at least two out of the ten lowest RE practices are attributed to
the traceability related practices i.e., maintain traceability manual (Item 7.4), and
define traceability policies (Item 7.3).
4.1 Top and Lowest Ten RE Practices

Table 1. Top and lowest ten RE practices

Top ten practices Lowest ten practices

3.5 Define the system's operating environment 5.2 Tailor a requirements standard such as
IEEE Std 830.1998

3.6 Use business concerns to drive requirements
elicitation

8.1 Use appropriate CASE tools for RE
support and others

3.12 Define operational processes 8.2 Use interaction matrices to find conflicts
and overlaps

5.3 Apply the standard structure to all of your
requirements documents

7.5 Use a database to manage requirements

6.1 Check that the requirements document meets
your standard

6.7 Write a draft user manual at early stage
in the process

7.1 Uniquely identify each requirements 7.4 Maintain traceability manual

5.8 Layout the document for readability 4.4 Provide software or tools to support
negotiations

7.10 Define the real (actual) requirements 5.20 Specify non-functional requirements
quantitatively (put a figure on)

3.3 Identify and consult system stakeholders 7.3 Define traceability policies
5.12 Model the system architecture showing the

entire system, subsystem and the links
between them

6.4 Set-up inspections team and perform
formal inspections for requirements

3.3 Findings

The high mean overall adoption level of the all the RE practices, as presented earlier,
suggests that the overall adoption of the practices in these companies is actually
strong. It also indicates that the companies had implemented almost all of the
practices. This is true especially for practices that received 100% rating such as define
the system's operating environment, use business concerns to drive requirements
elicitation, define operational processes, apply the standard structure to all of your
requirements documents, check that the requirements document meets your standard,
and uniquely identify each requirements. Data in the table also suggest that majority
of these top 10 RE practices are actually categorized under the requirements
elicitation, and requirements specification and documentation categories. Two of the
top ten activities fall under the requirements verification and validation, and
requirements management categories.

Meanwhile, the results in the survey also suggest that there is a relatively low
adoption of software or CASE tool to support RE process and practices similar to those
findings discovered in other related studies (e.g., [19], and [20]). This low adoption
may be due to reasons such as cost, lack of measurable returns and unrealistic
expectations as suggested in [21]. According to Kannenberg and Saiedian [22],

146 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

requirements traceability has been demonstrated to provide many benefits to software
companies. In spite of the benefits that traceability offers to the RE process and
software engineering industry, less companies in the survey define traceability policies
or maintain traceability manual in their projects. Perhaps this has to do with the low
CASE tool adoption amongst these practitioners as poor tool support is the biggest
challenge to the implementation of requirements traceability as discussed in [22].

4 Conclusion

As presented earlier, this part of the survey has identified and analyzed the adoption
level of RE practices implementation specifically in software development companies
operated in Malaysia. The overall adoption of the RE practices, which was described
according to the 6 key RE practices, has been presented in this paper. Also, the top ten
and the bottom ten RE practices adopted in these companies have been listed. It
concludes that the overall adoption of the RE practices in these companies is strong.
However, the results also indicated that fewer companies in the survey have use
appropriate CASE tools or software to support their RE process and practices, define
traceability policies and maintain traceability manual in their projects.

As stated in [23], “surveys are of course based on self-reported data which reflects
what people say happened, not what they actually did or experienced”. Because we
surveyed project managers and software developers, the results are limited to their
knowledge, attitudes, and beliefs regarding the RE problems, RE practices and the
software development projects with which they have taken part. While every care has
been taken to ensure the validity and reliability of the information gathered, its
representativeness cannot be 100% guaranteed as the data were obtained from
sampled population. To mitigate the possible threats to empirical validity of the
survey results, several measures have been taken to evaluate the four criteria (i.e.,
construct validity, internal validity, external validity, and reliability) for validity
suggested in [24]. While we would not assume that the survey results are typical of all
software development companies, we believe that they are reasonably typical of
software development companies in Malaysia.

Acknowledgement

We would like to thank the respondents for their cooperation and willingness to share
their experiences and data. Also, we would like to give special acknowledgment to the
Universiti Tenaga Nasional, which provided funding for this work through grant
number J5100-14-018.

References

1. Davis, A.M., Zowghi, D.: Good Requirements Practices are neither Necessary nor
Sufficient. In: Requirements Eng., vol. 11, pp. 1–3. Springer, London (2006)

2. El Emam, K., Madhavji, N.H.: A Field Study of Requirements Engineering Practices in
Information Systems Development. In: 2nd IEEE International Symposium of
Requirements Engineering, pp. 68–80. IEEE Press, New York (1995)

 Adoption of Requirements Engineering Practices 147

3. Nikula, U., Sajaniemi, J., Kalviainen, H.: A State-of-the-Practice Survey on Requirements
Engineering in Small- and Medium-Sized Enterprises. Technical Report. Telecom
Business Research Center, Lappeenranta University of Technology, Finland (2000)

4. Laplante, P.A., Neill, C.J., Jacobs, C.: Software Requirements Practices: Some Real Data.
In: Proceedings of the 27th Annual NASA Goddard/IEEE Software Engineering
Workshop, SEW-27 2002 (2003)

5. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An industrial case study of
immediate benefits of requirements engineering process improvement at the Australian
Center for Unisys Software. Empirical Software Engineering Journal 9(1-2), 45–754 (2004)

6. Beecham, S., Hall, T., Rainer, A.: Software Process Improvement Problems in Twelve
Software Companies: An Empirical Analysis. Empirical Software Engineering 8(1), 7–42
(2003)

7. Niazi, M., Shastry, S.: Role of Requirements Engineering in Software Development
Process: An Empirical Study. In: IEEE INMIC 2003, pp. 402–407 (2003)

8. Solemon, B., Sahibuddin, S., Ghani, A.A.A.: Requirements Engineering Problems and
Practices in Software Companies: An Industrial Survey. In: International Conference on
Advanced Software Engineering and Its Applications, ASEA 2009 Held as Part of the
Future Generation Information Technology Conference, FGIT 2009, Jeju Island, Korea,
December 10-12, pp. 70–77 (2009)

9. Solemon, B., Sahibuddin, S., Ghani, A.A.A.: Requirements Engineering Problems in 63
Software Companies in Malaysia. In: International Symposium on Information
Technology 2008 (ITSIM 2008), August 26-28 (2008)

10. Solemon, B., Sahibuddin, S., Ghani, A.A.A.: An Exploratory Study of Requirements
Engineering Practices in Malaysia. In: 4th Malaysian Software Engineering Conference,
Universiti Malaysia Terengganu (UMT), Terengganu (2008)

11. Sison, R., Jarzabek, S., Hock, O.S., Rivepiboon, W., Hai, N.N.: Software Practices in Five
ASEAN Countries: An Exploratory Study. In: The 28th International Conference in
Software Engineering, ICSE 2006, pp. 628–631. ACM, China (2006)

12. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying Software Engineers: Data Collection
Techniques for Software Field Studies. In: Empirical Software Engineering, vol. 10, pp.
311–341. Springer Science + Business Media, Inc., The Netherlands (2005)

13. Kotonya, G., Sommerville, I.: Requirements Engineering. Processes and Techniques. John
Wiley & Sons, Chichester (1997)

14. Sommerville, I., Sawyer, P.: Requirements Engineering. A Good Practice Guide. John
Wiley & Sons, Chichester (1997)

15. Hofmann, H.F., Lehner, F.: Requirements Engineering as a Success Factor in Software
Projects. IEEE Software, 58–66 (2001)

16. Young, R.R.: Effective Requirements Practices. Addison-Wesley, Boston (2001)
17. Beecham, S., Hall, T., Rainer, A.: Defining a Requirements Process Improvement Model.

Software Quality Journal 13, 247–279 (2005)
18. Pfleeger, S.L., Atlee, J.M.: Software Engineering. In: Theory and Practice, 3rd edn.,

Pearson Prentice Hall, New Jersey (2006)
19. Aaen, I., Siltanen, A., Sørensen, C., Tahvanainen, V.-P.: A Tale of Two Countries: CASE

Experiences and Expectations. In: Kendall, K.E., Lyytinen, K., DeGross, J. (eds.) The
Impact of Computer Supported Technologies on Information Systems Development, IFIP
Transactions A-8, pp. 61–91. North-Holland, Amsterdam (1992)

20. Kusters, R.J., ja Wijers, G.M.: On the Practical Use of CASE-tools: Results of a Survey,
CASE 1993. In: Proceedings of the 6th International Workshop on CASE, Singapore, pp.
2–10. IEEE Computer Society Press, Los Alamitos (1993)

148 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

21. Lending, D., Chervany, N.L.: The Use of CASE Tools. In: Proceedings of the 1998 ACM
Special Interest Group on Computer Personnel Research Annual Conference, Boston,
Massachessetts, US, pp. 49–58 (1998)

22. Kannenberg, A., Saiedian, H.: Why Software Requirements Traceability Remains a
Challenge. The Journal of Defense Software Engineering (July/August 2009),
http://www.stsc.hill.af.mil/crosstalk/2009/07/
0907KannenbergSaiedian.html (retrieved July 10, 2010)

23. Verner, J., Cox, K., Bleistein, S., Cerpa, N.: Requirements Engineering and Software
Project Success: An Industrial Survey in Australia and the U.S. Australasian Journal of
Information Systems 13(1), 225–238 (2005)

24. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting Empirical Methods for
Software Engineering Research. In: Shull, F., Singer, J. (eds.) Guide to Advanced
Empirical Software Engineering, pp. 285–311. Springer, London (2007)

Appendix A

Table A-1. Adoption of requirements elicitation practices

Adoption
Level

Item Valid
Responses

%

3.1 Assess system feasibility 64 96.88

3.2 Be sensitive to organizational and political considerations 64 92.19

3.3 Identify and consult system stakeholders 64 98.44

3.4 Record requirements sources 64 96.88

3.5 Define the system's operating environment 64 100.00

3.6 Use business concerns to drive requirements elicitation 64 100.00

3.7 Look for domain constraints 64 92.19

3.8 Record requirements rationale 63 93.65

3.9 Collect requirements from multiple viewpoints (sources) 64 96.88

3.10 Prototype poorly understood requirements 64 87.50

3.11 Use scenarios to elicit requirements 64 96.88

3.12 Define operational processes 64 100.00

3.13 Reuse requirements 64 96.88

Table A-2. Adoption of requirements analysis and negotiation practices

Adoption
Level

Item Valid
Responses

%
4.1 Define system boundaries 64 98.43
4.2 Use checklists for requirements analysis 64 95.31
4.3 Use operational definitions to define requirements 64 93.75
4.4 Provide software or tools to support negotiations 64 78.13
4.5 Plan for conflicts and conflict resolution 64 89.07
4.6 Prioritize requirements 63 96.83
4.7 Classify requirements into classes or sections 64 96.87
4.8 Use interaction matrices to find conflicts and overlaps 64 70.32
4.9 Assess requirements risks 64 89.06

 Adoption of Requirements Engineering Practices 149

Table A-3. Adoption of requirements specification and documentation practices

Adoption
Level

Item Valid
Responses

%

5.1 Define a standard requirements document structure 64 96.87

5.2 Tailor a requirements standard such as IEEE Std 830.1998 64 62.50
5.3 Apply the standard structure to all of your requirements

documents
63 100.00

5.4 Explain how to use the document 63 85.94
5.5 Include a summary of the requirements (in an overview

section)
63 95.32

5.6 Make a business case for the system (showing the systems part
in the business)

63 95.31

5.7 Define specialized terms 63 96.88
5.8 Layout the document for readability 63 98.44
5.9 Make the document easy to change 63 95.31
5.10 Develop complementary system models 64 95.31
5.11 Model the system's environment 64 96.88
5.12 Model the system architecture showing the entire system,

subsystem and the links between them
64 98.43

5.13 Use systematic approaches for systems modelling 64 93.75
5.14 Use a data dictionary 64 93.76
5.15 Shows traceability between stakeholder requirements and

system models
64 82.81

5.16 Define standard templates for describing requirements 64 90.62
5.17 Use simple and concise language 64 96.87
5.18 Use diagrams appropriately 63 95.31
5.19 Supplement natural language with other descriptions of

requirements
63 90.62

5.20 Specify non-functional requirements quantitatively (put a
figure on)

64 79.69

Table A-4. Adoption of requirements verification and validation practices

Adoption
Level

Item Valid
Responses

%

6.1 Check that the requirements document meets your standard 64 100.00
6.2 Perform requirements reviews 64 98.43
6.3 Use multi-disciplinary teams to review requirements 64 85.93
6.4 Set-up inspections team and perform formal inspections for

requirements
64 81.26

6.5 Define and document validation checklists 64 92.19
6.6 Use prototyping to validate the requirements 64 89.06
6.7 Write a draft user manual at early stage in the process 64 75.01
6.8 Produce requirements test cases 64 96.88
6.9 Paraphrase system models (convert system models into natural

language)
64 82.82

150 B. Solemon, S. Sahibuddin, and A.A.A. Ghani

Table A-5. Adoption of requirements management practices

Adoption
Level

Item Valid
Responses

%

7.1 Uniquely identify each requirements 64 100.00

7.2 Define policies for requirements management 64 85.94
7.3 Define traceability policies 64 81.25
7.4 Maintain traceability manual 64 78.12
7.5 Use a database to manage requirements 64 73.44
7.6 Define change management policies 64 89.06
7.7 Identify reusable system requirements 64 96.88
7.8 Identify volatile requirements 64 92.19
7.9 Record rejected requirements 64 84.38
7.10 Define the real (actual) requirements 64 98.44

Table A-6. Adoption of other RE practices

Adoption
Level

Item Valid
Responses

%

8.1 Use appropriate CASE tools for RE support and others 63 65.62
8.2 Allocate 15% to 30% of total project effort to RE activities 63 85.93
8.3 Assign skilled project managers and team members to RE

activities
63 93.75

8.4 Establish and utilize a joint team responsible for the
requirements

63 93.75

8.5 Define the requirements process using best practices 63 95.31
8.6 Use and continually improve a requirements process 63 93.74
8.7 Iterate the system requirements and the system architecture

repeatedly
63 93.74

8.8 Use a mechanism to maintain project communication 63 89.06
8.9 Select familiar methods and maintain a set of work products 63 90.62
8.10 Conduct careful and objective post-mortem analysis to project 63 89.06
8.11 Conduct Software Quality Assurance (SQA) activities in this

RE process
63 82.81

Minimum Distortion Data Hiding�

Md. Amiruzzaman1, M. Abdullah-Al-Wadud2, and Yoojin Chung3,��

1 Department of Computer Science

Kent State University, Kent, Ohio 44242, USA

{mamiruzz,peyravi}@cs.kent.edu
2 Department of Industrial and Management Engineering,

Hankuk University of Foreign Studies,

Kyonggi, 449-791, South Korea

wadud@hufs.ac.kr
3 Department of Computer Science,

Hankuk University of Foreign Studies,

Kyonggi, 449-791, South Korea

chungyj@hufs.ac.kr

Abstract. In this paper a new steganographic method is presented with

minimum distortion, and better resistance against steganalysis. There are

two ways to control detectability of stego message: one is less distortion,

and another is less modification. Concerning the less distortion, this pa-

per focuses on DCT rounding error, and optimizes the rounding error

in a very easy way, resulting stego image has less distortion than other

existing methods. The proposed method compared with other existing

popular steganographic algorithms, and the proposed method achieved

better performance. This paper considered the DCT rounding error for

lower distortion with possibly higher embedding capacity.

Keywords: Steganography, JPEG image, coefficient, rounding error,

distortions, information hiding.

1 Introduction

As more and more data hiding techniques are developed and improved, Steganal-
ysis techniques are also advanced. As the Steganalysis advances, the steganog-
raphy becomes more complicated. Among all steganographic method, the Least
Significant Bit (LSB) modification method is considered as a pioneer work of
steganography. The LSB modification and LSB matching have two different ap-
plication areas. LSB modification is popular for uncompressed domain, while
LSB matching is popular for compressed domain. It is found that detection
processes of these techniques are also different. Nowadays, steganographic tech-
niques are getting more secure against statistical attacks and undetectable by
other different attacks. Many innovative steganographic algorithms are devel-
oped within last decade. Among them, [5], [6], [7], [8], [9] are most popular.
� This work was supported by Hankuk University of Foreign Studies Research Fund

of 2010.
�� Corresponding author.

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 151–163, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

152 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

However, many researchers are also having interest to break steganographic
schemes. There are several steganalysis methods invented within last decade
[3], [10]. Among them statistical attack [10] is one of the most popular and ef-
fective attacks in steganographic world. Another famous attack is the calibrated
statistics attack [1], [2]. However, there are several other attacks available. Thus,
data hiding methods have to be designed to make them secure from statistical
attack because this attack is relatively easy to combat. Simple solution against
this attack is keeping the same or similar stego image histogram to the original
image histogram. However, keeping the same shape of a magnitude histogram is
not easy to achieve as long as the coefficient magnitudes are altered. Note that
one branch of past history of steganography was inventing methods to preserve
the original histogram perfectly. LSB overwriting methods including OutGuess
[5] can preserve the original histogram almost perfect (in fact, not absolutely
perfect). This method modifies half of the nonzero coefficients and corrects the
distorted histogram by adjusting with the rest of unused coefficients. In general,
perfect preservation is not possible because data pattern is not ideal, but random.
The most popular and revolutionary method is F5 by Westfeld [10]. F5 method
[10] also tries to narrow the gap between original and modified histograms by
decrementing nonzero JPEG coefficients to 0 and applying matrix embedding
and permutative straddling. Sallee models the marginal distribution of DCT co-
efficients in JPEG-compressed images by the generalized Cauchy distribution [6].
Thus, the embedded message is adapted to the generalized Cauchy distribution
using arithmetic coding. Arithmetic coding transforms unevenly distributed bit
streams into shorter, uniform ones. This procedure is known as MBS1. One weak
point of the MBS1 is that block artifact increases with growing size of the pay-
load. MBS2 has presented a method to overcome this weakness [7]. The MBS2
embeds message in the same way as MBS1 does, but its embedding capacity is
only half of that of MBS1. The other half of the nonzero DCT coefficients is
reserved for de-blocking purpose.

For the first time, in [4], mentioned about the distortion by rounding oper-
ation in JPEG image processing. In their paper they gave a detail description
of rounding errors. They also proposed an embedding technique by LSB modi-
fication with a modified matrix embedding. In this proposed method instead of
matrix a group/block of coefficients are used. The main advantage of the pro-
posed method is variable length of group/block, easy to implement and easy to
control the hiding capacity.

The rest of this paper is organized as follows: In Section 2, existing method
(i.e. F5, OutGuess, MBS1, MBS2 etc.). Section 3, the proposed method. In
Section 4, summarizes experimental results, and Section 5 concludes the paper.

2 Existing Methods

Sallee models the marginal distribution of DCT coefficients in JPEG-compressed
images by the generalized Cauchy distribution (i.e., MBS1) [6]. Thus, the em-
bedded message is adapted to the generalized Cauchy distribution using arith-
metic coding. Arithmetic coding transforms unevenly distributed bit streams

Minimum Distortion Data Hiding 153

into shorter, uniform ones. One weak point of the MBS1 is that block arti-
fact increases with growing size of the payload. MBS2 has presented a method
to overcome this weakness [7]. The MBS2 embeds message in the same way
as MBS1 does, but its embedding capacity is only half of that of MBS1. The
other half of the nonzero DCT coefficients is reserved for de-blocking purpose. F5
steganographic method proposed by Westfeld [10], perhaps which is first method
of data hiding with less modification. F5 algorithm based on matrix encoding
technique, where among seven nonzero AC coefficients only one coefficient was
modified to hide three bit of hidden message. The time when F5 algorithm was
introduced, F5 was secure against existing steganalysis techniques. Still now, F5
is considering as a good steganographic method. However, F5 method has several
limitations, such as F5 algorithm has no freedom to select position for modifi-
cation (i.e., positions are coming from matrix). F5 is not modifying the LSB in
a smart way, as a result number of zeros are increasing. Existing, F5 algorithm
does not minimize the distortion. In [5], Provos kept the histogram shape of
the DCT coefficients by compensating distortion of modified image (after data
hiding). He has divided the set of the DCT coefficients into two disjoint subsets:
first subset is used for data hiding, and second subset is used for compensat-
ing the modification distortions after data hiding to the first subset. As result,
the histogram of the DCT coefficients after data hiding has the same shape as
original histogram. Methods presented in [12] and [13] used similar approach.

2.1 F5 Method

F5 steganographic method proposed by Westfeld [10], perhaps which is first
method of data hiding with less modification. F5 algorithm based on matrix en-
coding technique, where among seven nonzero AC coefficients only one coefficient
was modified to hide three bit of hidden message. The time when F5 algorithm
was introduced, F5 was secure against existing steganalysis techniques. Still now,
F5 is considering as a good steganographic method. However, F5 method has
several limitations, such as F5 algorithm has no freedom to select position for
modification (i.e., positions are coming from matrix). F5 is not modifying the
LSB in a smart way, as a result number of zeros are increasing. Existing, F5
algorithm does not minimize the distortion.

Let, the nonzero AC coefficients LSBs are denoted by ci (where, i = 1, 2, 3,
· · · , 7, is a one row and seven column martix), hidden message bits are denoted
by bi (where, i = 1, · · · , 3). As bi is three bit message which may represent like
following way (denoted by H).

H =

⎛

⎝
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞

⎠

Matrix H is multiplying with the transpose matrix nonzero AC coefficients LSB
matrix ci (see Eq. 1).

H ∗ cT
i (1)

154 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

Encoding. To get the position to change the coefficient Eq. 1 need to subtract
from message bits bi (see Eq. 2). After getting the information of modified po-
sition (pi), that particular coefficient’s LSB will be modified and produce c′i.

pi = bi − H ∗ cT
i (2)

Decoding. from the modified coefficients LSB matrix c′i, decoder can extract
hidden message bits bi by following equation (see Eq. 3).

bi = H ∗ c′i (3)

Example. Suppose, seven nonzero AC coefficients are (5 2 3 1 -2 -5 -1) and
corresponding LSB matrix Coef = (1 0 1 1 0 1 1), message bits bi = (1 0 1).
Thus,

H ∗ cT
i =

⎛

⎝
1
1
1

⎞

⎠

and the position of the coefficient is

bi − H ∗ cT
i =

⎛

⎝
0
1
0

⎞

⎠

(need to modify), From the matrix H , the coefficient position is second (i.e., 2),
After modification the coefficients will be (5 1 3 1 -2 -5 -1) and corresponding
modified LSB matrix c′i = (1 1 1 1 0 1 1).

2.2 Model Based Steganographic Method

Model based steganography is general framework for constructing steganographic
systems that preserve a chosen model of the cover media [6], [7]. Suppose, the
cover media is ci, and ci is modeled as a random variable which is split in to
2 components (cinv , cemb), where cinv is invariant to embedding and cemb is for
modification during embedding.

2.3 OutGuess Method

The OutGuess is popular steganographic algorithm, works as a 2-pass procedure.
First pass embeds secret message bits along a pseudo-random walk of the LSBs
of the DCT coefficients, skipping coefficients whose magnitude is zero or unity.
Second pass, corrections are made to the magnitudes of the coefficients in order
to ensure that the histogram of the DCTs of the stego image match those of the
cover image.

Prior to embedding, outguess calculates the maximum length of a randomly
spread message that can be embedded in the image during the first pass, while
ensuring that one will be able to make corrections to adjust the histogram to
the original values during the second pass.

Minimum Distortion Data Hiding 155

2.4 StegHide Method

At first, the secret data is compressed and encrypted. Then a sequence of po-
sitions of pixels in the cover file is created based on a pseudo-random number
generator initialized with the pass-phrase (the secret data will be embedded in
the pixels at these positions). Of these positions those that do not need to be
changed (because they already contain the correct value by chance) are sorted
out. Then a graph-theoretic matching algorithm finds pairs of positions such
that exchanging their values has the effect of embedding the corresponding part
of the secret data. If the algorithm cannot find any more such pairs all exchanges
are actually performed. The pixels at the remaining positions (the positions that
are not part of such a pair) are also modified to contain the embedded data (but
this is done by overwriting them, not by exchanging them with other pixels).
The fact that (most of) the embedding is done by exchanging pixel values im-
plies that the first-order statistics (i.e. the number of times a color occurs in the
picture) is not changed. For audio files the algorithm is the same, except that
audio samples are used instead of pixels.

2.5 JP Hide and Seek Method

JPHide and JPSeek are programs which allow you to hide a file in a jpeg visual
image. There are lots of versions of similar programs available on the internet but
JPHide and JPSeek are rather special. The design objective was not simply to
hide a file but rather to do this in such a way that it is impossible to prove that
the host file contains a hidden file. Given a typical visual image, a low insertion
rate (under 5%) and the absence of the original file, it is not possible to conclude
with any worthwhile certainty that the host file contains inserted data. As the
insertion percentage increases the statistical nature of the jpeg coefficients differs
from ”normal” to the extent that it raises suspicion. Above 15% the effects begin
to become visible to the naked eye.

3 Proposed Method

The proposed method is so simple, and easy to implement. At first proposed
method collected all the nonzero AC coefficients in a single array which is called
coefficient stream (denoted by cl). The coefficient stream is divided into
small coefficient blocks (denoted by blocki, Where l, i = 1, 2, 3 · · · , n), and one
block is used to represent one bit of hidden message. The number of blocks are
same with number of hidden message bits, number of hidden message bits are
denoted by α (see Eq. 4).

blocki = �cl

α
� (4)

To hide secret message, this method collected all LSB value from the blocki,
and made sum of LSBs. The LSB value is checked, whether it is odd or even.
A message representation scheme is introduced in way so that odd sum can
represent hidden message bit bi = 1, while even sum can represent bi = 0.

156 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

When, hidden message requires to modify the LSB sum to represent message bit
then only one LSB modification is enough.

1001101

number of 1’s are 4

4 mod 2 = 0

1101101

number of 1’s are 5

5 mod 2 = 1

As the proposed method has freedom to modify any one LSB from the block,
thus this method modified that particular AC coefficient (i.e. LSB) which makes
less distortion. To minimize the modification distortion, this method apply a
pre-processing before embed the secret data.

3.1 Minimizing the Distortion

After the DCT quantization, all nonzero AC coefficients before the rounding
operation collected in a array which is denoted by ri (where, i = 1, 2, 3 · · · , n),
and after the rounding collected in r′i (where, i = 1, 2, 3 · · · , n) array (see Eq.
5, and Eq. 6)

ri = nonzero AC coefficients before rounding (5)

r′i = nonzero AC coefficients after rounding (6)

As before the rounding operation the DCT values are having floating point
numbers, and after the rounding DCT values are becoming DCT coefficients,
which means floating point value to integer value. Thus, the rounding operation
is causing some error (i.e., rounding error). The rounding errors are denoted by
ei (where, i = 1, 2, 3 · · · , n), and calculated by equation 4 (see Eq. 7),and saved
that value in rounding error record array.

ei = r′i − ri (7)

Later, the rounding error record array used to choose AC coefficient for modifi-
cation with minimum distortion. Using ei value, the minimum distortion method
[4] modification by following equation.

r′′i =

⎧
⎪⎪⎨

⎪⎪⎩

r′i + 1, if ei > 0, and ri �= −1
r′i − 1, if ei < 0, and ri �= 1
r′i + 1, if ei < 0, and ri = 1
r′i − 1, if ei > 0, and ri = −1

(8)

Minimum Distortion Data Hiding 157

Now the modification distortion of the chosen group of coefficients (i.e., blocki)
can be obtain by following equation (see Eq. 9)

e′i = r′′i − ri (9)

and from the above equation, the optimized distortion can be found if the method
will follow like (see Eq. 10),

di =|| e′i | − | ei || (10)

while the least distortion can be found by using the equation given bellow.

min{dj ∀dj ∈ {di}} (11)

Using the minimum distortion obtained from equation (11)in a given blocki, this
method modified the LSB bit and hides secret data.

3.2 Encoding

During the encoding only nonzero coefficients was considered. A number of nonzero
coefficients are representing one bit of secret message. During simulation, a set of
random bit was generated by Pseudo Random Generator (PRG). Hidden bits are
nothing but 0 and 1.

The encoding scheme is very simple and easy to implement. encoding scheme
working as follows:

(1) Make blocki same with hidden number of hidden message bits. Make sum of
all LSBs of blocks. If sum is odd then that sum can represent hidden bit 1,
and if sum is even then that can represent hidden message bit 0.

(2) Modify one LSB following the less distortion rule (if necessary).

3.3 Decoding

As number of nonzero coefficients are representing one bit of secret message.
Thus, during the decoding only the LSB sum of nonzero coefficients was consid-
ered. Extracted bits are nothing but 0 and 1 as well (same with encoding).

Decoding scheme is simplest than encoding technique. Decoding scheme work-
ing as follows:

(1) Make blocki same with hidden number of hidden message bits. Make sum
of all LSBs of blocks. If sum is odd then hidden bit is 1, and if sum is even
then hidden message bit is 0.

Example, suppose in a certain hiding capacity an AC coefficients group/block
has five nonzero value, such as -0.6994, 0.8534, 0.7352, 1.6229, -2.6861 (before
rounding), and -1, 1, 2, 2, -3 (after rounding). So, the rounding errors are -
0.3006, 0.1466, 0.2648, 0.3771, -0.3139,and modification can be done by adding
as -1, 1, 1, -1, 1. However, the modification will occur errors like, 0.6994, -0.8534,
-0.7352, 1.3771, -1.3139. If the proposed method wants to make a choice to make
minimum distortion from following distortions record, and then the best choice
will be 0.6994 (i.e. changing the first nonzero coefficient value by adding -1).

158 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

4 Experimental Results and Comparisons

The proposed method tested over 1173 gray scale image and successfully ob-
tained better results (see Table 1, 2). The proposed method and F5 method
compared with two different image quality factor (QF). In case of QF = 50, it
is found that F5 algorithm has higher Steganalysis error probability than the
proposed method.

Table 1. Error Probability (EP) comparisons

Steganalysis by Error Probability (EP)

5% 10% 15% 20%

QF = 50 Proposed 44.80 33.04 18.99 4.42

F5 method 23.80 4.59 2.0443 0.51

MBS1 16.31 2.73 0.55 0.09

MBS2 11.58 1.49 0.34 0.09

OutGuess 1.24 0.00 0.00 0.00

StegHide 2.13 0.17 0.04 0.04

JP Hide&Seek 9.11 3.24 1.66 1.02

QF = 75 Proposed 44.97 33.30 17.46 3.83

F5 method 18.39 2.12 0.68 0.25

MBS1 11.46 1.96 0.47 0.09

MBS2 8.73 1.11 0.26 0.04

OutGuess 0.51 0.04 0.00 0.00

StegHide 1.79 0.13 0.00 0.00

JP Hide&Seek 10.31 4.81 2.43 1.45

Table 2. Mean Distortion (MD) comparisons

Steganalysis by Mean Distortion (MD)

5% 10% 15% 20%

QF = 50 Proposed 120.80 460.60 903.70 1,701.00

F5 method 818.13 2,132.90 3,201.53 4,780.75

MBS1 1,461.58 2,924.14 4,385.47 5,846.26

MBS2 2,032.42 4,044.73 6,034.74 8,006.70

OutGuess 2,270.50 4,558.26 6,849.15 9,129.43

StegHide 1,846.62 3,416.75 4,979.28 6,549.80

JP Hide&Seek 1,023.23 2,050.42 3,066.44 4,073.56

QF = 75 Proposed 167.20 637.60 1,252.00 2,347.00

F5 method 1,137.03 2,977.09 4,465.49 6,709.05

MBS1 2,196.04 4,391.61 6,586.95 8,785.02

MBS2 3,004.81 5,990.65 8,949.79 11,889.28

OutGuess 3,281.20 6,578.67 9,867.18 13,149.89

StegHide 2,612.12 4,950.25 7,284.26 9,626.10

JP Hide&Seek 1,737.09 3,475.43 5,202.58 6,929.67

Minimum Distortion Data Hiding 159

5 10 15 20
0

5

10

15

20

25

30

35

40

45

Embedding Rate

E
rr

or
P
ro

ba
li
li
ty

Proposed
MBS 1
MBS 2
F5
OutGuess
StegHide
JP Hide&Seek

5 10 15 20
0

5

10

15

20

25

30

35

40

45

Embedding Rate (%)

E
rr

or
P
ro

ba
li
li
ty

Proposed
MBS 1
MBS 2
F5
OutGuess
StegHide
JP Hide&Seek

Fig. 1. Steganalysis comparison by support vector machine (SVM) of the proposed

method with other existing algorithms (Top: with quality factor 75, and Bottom: with

quality factor 80)

www.SoftGozar.Com

160 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Embedding Rate (%)

M
ea

nD
is

to
rt

io
n

Proposed
MBS 1
MBS 2
F5
OutGuess
StegHide
JP Hide&Seek

5 10 15 20
0

2000

4000

6000

8000

10000

12000

14000

Embedding Rate (%)

M
ea

nD
is

to
rt

io
n

Proposed
MBS 1
MBS 2
F5
OutGuess
StegHide
JP Hide&Seek

Fig. 2. Distortion comparison by Mean distortion (MD) Vs Embedding rate (ER) of

the proposed method with other existing algorithms (Top: with quality factor 75, and

Bottom: with quality factor 80)

Minimum Distortion Data Hiding 161

4.1 Experimental Results

With 5% data hiding capacity F5 algorithm has 23.085 Steganalysis error prob-
ability, while the proposed method has 44.8041 (for the best situation the error
probability is 50%). With 10% data hiding capacity and with QF = 50, F5 algo-
rithm has 4.5997 Steganalysis error probability, while the proposed method has
33.0494. With 15% data hiding capacity and with QF = 50, F5 algorithm has
2.0443 Steganalysis error probability, while the proposed method has 18.9949.
Again, with 20% data hiding capacity and with QF = 50, F5 algorithm has 0.5111
Steganalysis error probability; while the proposed method has 4.4293 (see Table
1, 2). Similarly, with 5% data hiding capacity and QF = 75, F5 algorithm has
18.3986 Steganalysis error probability, while the proposed method has 44.9744.
With 10% data hiding capacity and with QF = 75, F5 algorithm has 2.1995 Ste-
ganalysis error probability, while the proposed method has 33.3049. With 15%
data hiding capacity and with QF = 50 F5 algorithm has 0.6814 Steganalysis
error probability, while the proposed method has 17.4617. Again, with 20% data
hiding capacity and with QF = 50 F5 algorithm has 0.2555 Steganalysis error
probability; while the proposed method has 3.8330 (see Table 1, 2).

4.2 Comparisons

The proposed method and F5, was tested with support vector machine to detect
Steganalysis probability, the following comparison are prepared after getting the
Steganalysis detection result (see Fig 1 and Fig 2).

During the performance testing, the error probability and embedding rate was
considered with QF = 50, and QF = 75. With both QF, the proposed method
has achieved better performance than F5 and proposed method (see Fig 1).

During the performance testing, the mean distortion and embedding rate was
considered with QF = 50, and QF = 75. With both QF, the proposed method
has achieved better performance than F5 and proposed method (see Fig 2).

5 Conclusions

The proposed method has better resistance against steganalysis than popular
steganographic method F5. In case of steganography attacks are more important
than capacity, while this method has better hiding capacity also. The main
advantage of this proposed method is freedom of modifying any coefficients.
Resulting better quality of stego image and higher resistance against attacks. The
F5 [10], reduced the modification or flip not the modification distortion, while
the proposed method reduced the modification distortion. Proposed method did
not increased number of zeros, while F5 method did. As a future work less
modification or less flipping can be considered.

References

1. Fridrich, J., Goljan, M., Hogea, H.: Attacking the Out-Guess. In: Proc. of the ACM

Workshop on Multimedia and Security, pp. 967–982 (2002)

162 Md. Amiruzzaman, M. Abdullah-Al-Wadud, and Y. Chung

2. Fridrich, J., Goljan, M., Hogea, H.: Steganalysis of JPEG image: Breaking the

F5 algorithm. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 310–323.

Springer, Heidelberg (2003)

3. Fridrich, J.: Feature-based steganalysis for JPEG images and its implications for

future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS,

vol. 3200, pp. 67–81. Springer, Heidelberg (2004)

4. Pevny, T., Fridrich, J.: Merging Markov and DCT Features for Multi-Class JPEG

Steganalysis. In: Proc. of SPIE Electronic Imaging, Photonics West, pp. 03–04

(2007)

5. Provos, N.: Defending against Statistical Steganalysis. In: Proc. of the 10th

USENIX Security Symposium, pp. 323–335 (2001)

6. Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.)

IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)

7. Sallee, P.: Model-based methods for steganography and steganalysis. International

Journal of Image and Graphics 5(1), 167–190 (2005)

8. Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: Yet another steganographic

scheme that resists blind steganalysis. In: Furon, T., Cayre, F., Doërr, G., Bas,

P. (eds.) IH 2007. LNCS, vol. 4567, pp. 16–31. Springer, Heidelberg (2008)

9. Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann,

A. (ed.) IH 1999. LNCS, vol. 1768, pp. 61–75. Springer, Heidelberg (2000)

10. Westfeld, A.: F5: A steganographic algorithm: High capacity despite better ste-

ganalysis. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302.

Springer, Heidelberg (2001)

11. StegHide Steganographic Method,

http://www.stegui.sourceforge.net/steghide.html
12. Eggers, J., Bauml, R., Girod, B.: A communications approach to steganography.

In: SPIE, Electronic Imaging, Security, and Watermarking of Multimedia Contents,

San Jose, CA (2002)

13. Noda, H., Niimi, M., Kawaguchi, E.: Application of QIM with dead zone for his-

togram preserving JPEG steeganography. In: Processing ICIP, Genova, Italy (2005)

Appendix

If in a particular block non zero AC Coefficients are (-1, 1, 2, 2, 3), their LSBs
are (1, 1, 0, 0, 1). So, the sum of all LSBs is 3, which is a odd number. Now,
if the hidden bit is 0 then the sum value need to be modify. To modify the
sum value (i.e., odd to even) the proposed method modifies on LSB. As in the
given example, it is already defined that first LSB modification by adding -1 has
less distortion thus the method modifies according to that (see Fig 3, and Fig
4). The modified AC coefficients are now, (-2, 1, 2, 2, -3), and corresponding
LSBs are (0, 1, 0, 0, 1) (sum value of LSBs is 2). As, the proposed method has
less modification distortion, thus the embedded images are having almost same
quality like original JPEG images (see Fig 5).

Fig. 3. Before modification

Minimum Distortion Data Hiding 163

Fig. 4. After modification

Fig. 5. Top: Original Lena (left) Modified Lena (right) image (after data embedding by

the proposed method, with 5% of total embedding capacity). Bottom: Original Baboon

(left) Modified Baboon (right) image (after data embedding by the proposed method,

with 5% of total embedding capacity).

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 164–173, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Model-Based Higher-Order Mutation Analysis

Fevzi Belli1, Nevin Güler2, Axel Hollmann1, Gökhan Suna3, and Esra Yildiz3

1 University of Paderborn, Department of Electrical Engineering and
Information Technology, Paderborn, Germany

2 University of Mugla, Department of Statistics, Mugla, Turkey
3 Izmir Institute of Technology, Department of Computer Engineering, Izmir, Turkey

{belli,ngueler,hollmann}@adt.upb.de,
gokhansuna44@hotmail.com, esrayildiz@gmail.com

Abstract. Mutation analysis is widely used as an implementation-oriented
method for software testing and test adequacy assessment. It is based on
creating different versions of the software by seeding faults into its source code
and constructing test cases to reveal these changes. However, in case that
source code of software is not available, mutation analysis is not applicable. In
such cases, the approach introduced in this paper suggests the alternative use of
a model of the software under test. The objectives of this approach are (i)
introduction of a new technique for first-order and higher-order mutation
analysis using two basic mutation operators on graph-based models, (ii)
comparison of the fault detection ability of first-order and higher-order mutants,
and (iii) validity assessment of the coupling effect.

Keywords: Software Testing, Higher-Order Mutation Analysis, Coupling Ef-
fect, Basic Mutation Operators, Event Sequence Graphs.

1 Introduction and Related Work

One of the major goals of software testing is to reveal defects/bugs by comparing the
observed behavior of the software with its expected behavior. There are many ap-
proaches used in software testing. Mutation analysis (MA), originally proposed by
DeMillo et al. [4] and Hamlet [7], is a method for analyzing the adequacy of a test set
to reveal faults [17], [20]. It bases on the idea of seeding artificial defects (mutations)
into the system under test (SUT).

MA has two main steps. In the first step, faults are injected into the software by
applying mutation operators to the original software. The mutation operators cause
syntactic changes and represent certain fault models. Each of the faulty versions of
the software generated is called a “mutant”. In the second step, a test set is executed
against the mutants. A mutant is considered "killed" if the expected output predicted
by the test set differs from the actual output of the mutant. Otherwise, the mutant is
“live”. In that case, the fault(s) could not be revealed or the mutant is equivalent to the
original version. If all mutants are killed by a test set, the test set is considered to be
adequate in detecting the faults that were injected into the mutants.

 Model-Based Higher-Order Mutation Analysis 165

MA relies on two assumptions: the competent programmer hypothesis and the
coupling effect [4], [15]. The competent programmer hypothesis claims that experi-
enced programmers tend to implement software that is almost correct. The coupling
effect assumes that a test set that detects all simple faults defined by first-order mu-
tants (FOM) is also able to detect complex faults defined by higher-order mutants
(HOM) [4]. The coupling effect has been studied by many researchers. Offutt ([15],
[16]) described empirical investigations about the coupling effect over a specific class
of software faults and showed that the coupling effect hypothesis is valid. Wah [19]
presented a theoretical study of fault coupling, based on a simple model of fault-based
testing. He shows that fault coupling occurs infrequently, at least when only two
faults are involved. In another study, Wah [18] dealt with the coupling effect from a
theoretical standpoint and he found out that the hypothesis of a coupling effect is
largely valid.

Although many studies have shown the validity of the coupling effect, Harman et
al. [8] argued that HOMs are potentially better able to simulate real faults. However,
higher-order mutation analysis has been believed to be expensive and impractical.
Therefore, they argue that higher-order mutation analysis can be available using a
process that searches fitter mutants from the space of all possible mutants. Jia et al.
([10], [11]) also investigated HOMs. They introduced the concept of a subsuming
HOMs that denote subtle fault combinations. The objective of that study is to seek
valuable HOMs using automated search-based optimization techniques.

MA can be very expensive since there is a great number of different mutation op-
erators for generating mutants. Therefore, another important issue of MA is the selec-
tion of appropriate mutation operators. Several studies have been carried out to find a
smaller set of mutation operators without significant loss of test effectiveness. This
idea was proposed by Mathur [12]. In his study, two mutation operators, array refer-
ence for scalar variable replacement (ASR) and scalar variable replacement (SVR)
that generated most of the mutants are omitted to reduce the number of generated
mutants. This idea was extended by omitting four mutation operators (4-selective
mutation) and omitting six mutation operators (6-selective mutation). Offutt et al. [14]
have shown that selective mutation is an effective alternative to non-selective muta-
tion by presenting empirical results that support the hypothesis. Mresa and Bottaci
[13] proposed a different selective mutation based on assigning a score to each muta-
tion operator.

In this paper we suggest reducing the broad variety of mutation operators known
from literature to two basic operators and their combination. MA is usually applied to
the source code of SUT. However, its source code is not always available or easily
modifiable in case of hardware. To overcome this problem, this paper applies muta-
tion analysis to a model that describes the relevant aspects of SUT. Belli et al. [1]
introduced event sequence graphs (ESGs) for modeling the behavior of an SUT. ESGs
consist of vertices (nodes) representing externally observable phenomena (“events”)
and directed edges (arcs) defining allowed sequences among events. For our ap-
proach, an ESG model is mutated by using mutation operators such as insertion and
omission of directed edges or vertices. Thus, fault models of SUT are obtained. For
each mutant a model-based test case generation algorithm is used to generate a test
set. Concluding, SUT is executed against each test set and the mutants are classified
as killed or live.

166 F. Belli et al.

This paper focuses on an investigation of FOMs and HOMs based on mutants
generated from ESG and comparison of higher-order mutation operators with basic
mutation operators. The primary objective of this paper is to answer the following
questions:

• Do test sets that detect all FOMs detect most of the HOMs, i.e., does the
coupling effect hold?

• Are basic mutation operators sufficient for measuring test effectiveness of
higher-order mutation analysis?

Now, the question might arise why ESG is used for modeling, and not UML dia-
grams. Formally speaking, ESG is directed graph enriched by elementary semantics to
represent sequential processes, having the same representative power as finite-state
automata, which are equivalent to type-3 (regular) grammars [1], [3]. The formalism
used in ESG notation enables the direct adoption of mathematical results known from
graph theory, automata theory, etc., as needed by our approach.

The rest of this paper is organized as follows: Section 2 presents modeling with
ESG. Section 3 introduces basic mutation operators for ESG and a process for ESG-
based mutation analysis. A case study in Section 4 validates the approach using a
large commercial web-based system. Section 5 concludes the paper summarizing the
results and outlines future work.

2 Modeling with Event Sequence Graphs

An event is an externally observable phenomenon, such as an environmental or a user
stimulus, or a system response punctuating different stages of system activity. ESGs
[1] represent system behavior and user-system interaction focusing on events.

Definition 1. An event sequence graph ESG=(V, E, Ξ, Γ) is a directed graph with V as
a finite set of vertices (events), E⊆V×V a finite set of arcs, and Ξ, Γ⊆V as finite sets
of distinguished vertices called entry events and exit events.

The semantics of an ESG is as follows: Any v∈V represents an event. For two events
v,v’∈V, the event v’ must be enabled after the execution of v if (v, v’)∈E. Ξ(ESG),
Γ(ESG) represent the entry and exit events of a given ESG. To mark the entry and exit
events, every ξ∈Ξ is preceded by a pseudo event [∉V and every γ∈Γ is followed by
]∉V. For each v∈V there is at least one sequence of vertices (ξ,v1,…,vm) from ξ∈Ξ to
vm=v and one sequence of vertices (v1,…,vm,γ) from v1=v to γ∈Γ with (vi,vi+1)∈E, for
i=1,…,m-1 and v≠ξ and v≠γ. Fig. 1 shows an example of an ESG with V={a,b,c},
E={(a,b), (a,c), (b,c), (c,b)}, Ξ={a}, and Γ={b}.

Definition 2. Let ESG=(V, E, Ξ, Γ) be an ESG. Any sequence of vertices (v1,…,vm) is
called an event sequence (ES) if (vi,vi+1)∈E, for i=1,…,m-1.

Let α and ω be the functions to determine the entry vertex and exit vertex of an ES.
For example, given ES=(v1,…,vm), the entry and exit vertices are α(ES)=v1 and
ω(ES)=vm, respectively. Note that the pseudo vertices [,] are not included in the ES.
An ES = (vi, vj) of length 2 is called an event pair (EP).

 Model-Based Higher-Order Mutation Analysis 167

The function l (length) determines the number of vertices of an ES. In particular, if
l(ES)=1 then it is an event sequence of length 1. The pseudo vertices [and] are not
included in any ES. Neither are they considered to determine the entry and exit verti-
ces, or to compute the length of an ES.

Fig. 1. Example of simple event sequence graph

Definition 3. An ES is a complete event sequence (CES) if α(ES)∈Ξ and ω(ES)∈Γ.

Each CES represents a walk from an entry of the ESG to an exit realized by the
form: (initial) user inputs→ (interim) system responses → … → (final) system re-
sponse. Based on the notion of CES a test case generation algorithm Φ is described by
Algorithm 1. Applying algorithm Φ to an ESG (denoted by Φ(ESG)) delivers a test
set T that is an ordered pair of (input to SUT, expected output of SUT) to be executed
against SUT. Details of an algorithm as well as minimization of test sets have been
published in previous work ([1]).

Algorithm 1. Test case generation Φ

Input: ESG = (V, E, Ξ, Γ), len := maximum length of CES to be covered
Output: Test report of succeeded and failed test cases
FOR i := 1 TO len
BEGIN
 Cover all ESs of ESG of length i by means of CESs;
END
Apply the test cases given by CESs to SUT; Observe output of SUT;

3 ESG-Based Mutation Analysis

Based on ESG this section defines basic ([2]) and higher-order mutation operators to
generate faulty models (mutants) and defines a mutation analysis process using ESG
and these operators.

3.1 Basic Mutation Operators

A given ESG specifies the expected, desirable behavior of SUT. An ESG can be
changed by manipulating either the arcs or the events resulting in a faulty model ESG*.
There are two basic mutation operators that can be defined for different model ele-
ments – insertion (I) and omission (O).

Definition 4. Basic Mutation operators.

• An arc insertion operator (aI) extends an ESG by inserting a new arc α∉E
into the given ESG: aI(ESG, α) := (V, E∪{α}, Ξ, Γ).

168 F. Belli et al.

• An arc omission operator (aO) removes an arc α∈E from the given ESG:
aO(ESG, α) := (V, E\{α}, Ξ, Γ).

• An event insertion operator (eI) extends an ESG by inserting an event e into
the given ESG: eI(ESG, e) := (V∪{e}, E, Ξ, Γ).

• An event omission operator (eO) removes an event e∈E from the given
ESG: eO(ESG, e) := (V\{e}, E, Ξ, Γ).

The eI-operator requires adding extra arcs to/from the inserted event from/to other
nodes. After applying an eO-operator, adjacent arcs of event e have to be removed.

The set of first-order basic mutation operators is thereby given by Δ1 := {aI, aO, eI,
eO}. Higher-order mutants are constructed as follows:

Definition 5. The set of all n-order (n>1) mutation operators are given by Δn := Δ1
n

Traditional mutation operators as defined in the literature (e.g. [5],[6]) can be directly
represented by the basic operators or as a combination. As an example, the operators
manipulating the events of an FSM as defined in [6]) can be represented as follows:
“event-missing” by basic operator eO∈Δ1, “event-extra” by basic operator eI∈Δ1, and
“event-exchanged” as a second-order operator (eO, eI)∈Δ2. The direction of an arc of
an ESG is changed by a second-order operator cdA := (aO, aI).

3.2 ESG-Based Mutation Analysis

It is assumed that test cases generated by test case algorithm Φ (Algorithm 1) based
on ESG do no reveal any more faults in SUT and that the source code of SUT is not
available. Therefore, mutants are constructed based on the model and not the system
itself. The goal is to evaluate the fault detection effectiveness of algorithm Φ and its
test cases generated, i.e. its capability to distinguish the mutants from SUT. Algorithm
2 describes an ESG-based mutation analysis.

Algorithm 2. ESG-based mutation analysis

Input: ESG that describes SUT, Δ ⊆ Δ1 ∪ … ∪ Δn (set of mutation operators)
 k := maximum number of mutants to be generated by each operator
 Φ (test generation algorithm)
Output: Killed and live mutants
FOREACH δ∈Δ
BEGIN
 FOR i := 1 TO k
 BEGIN
 ESG*

δ,i := δ(ESG);
 T*

δ,i := Φ(ESG*
δ,i);

 Execute SUT against T*
δ,i;

 Compare expected output contained in T*
δ,i with actual output of SUT;

 END
END

 Model-Based Higher-Order Mutation Analysis 169

An ESG representing SUT and a set of mutation operators Δ ⊆ Δ1 ∪ … ∪ Δn is
used to generate up to k mutants for each mutation operator δ∈Δ. For each mutant
ESG*

δ,i test case generation algorithm Φ is used to generate a test set T*
δ,i. SUT is exe-

cuted against this set to compare the predicted output contained in T*
δ,i with the output

observed by SUT. If the output differs, the mutant ESG*
δ,i is killed. Otherwise, the

mutant remains live or is equivalent to the original model.

Definition 6. Given an ESG, a set of mutation operators Δ, the number of mutants k,
and a test case generation algorithm Φ, the test generation mutation score is defined
as: TGMS(ESG, Δ, k, Φ) := No. of killed mutants / (all mutants – no. of equivalent
mutants).

4 Case Study

To analyze the practicability, characteristic features, and limitations of our approach,
an experimental case study based on a commercial web-based system has been
conducted. Our main focus is to answer the research questions from the introduction.

4.1 Modeling, Test Generation and Execution

SUT is a commercial web portal (ISELTA – Isik‘s System for Enterprise-Level Web-
Centric Tourist Applications [9]) for marketing touristic services. ISELTA enables
hotels and travel agencies to create individual search masks. These masks are
embedded in existing homepages of hotels as an interface between customers and the
system. Visitors of the website can then use these masks to select and book services,
e.g., hotel rooms or special offers. The system also provides other search mask to book
arrangements. This part of the system will be used within the case study. Arrangements
part of system consists of two parts: additional services and special offers. To set up an
additional service and special offer, the dedicated website as shown in Fig. 1 and Fig.
2, respectively, are used. Examples of ESG model for additional services and special
offer are given Fig. 3 and Fig. 4, respectively.

Fig. 1. Website to set up additional service Fig. 2. Website to set up special offer

Test cases were generated for each mutant using the algorithm Φ (as described in
Algorithm 1) for len = 2, that is, to cover all events and pairs of events by CES.
Equivalent mutants were not observed in the case study.

170 F. Belli et al.

Fig. 3. Example of ESG for additional service Fig. 4. Example of ESG for special offer

D0 : No Special D1 : in a Special INC_DT :Incomplete Data EDIT: Click Edit
CH_DT : Change Information E_DT : Enter Complete Data
SAVE : Click Save CAN :Click Cancel OK : Click OK ADD : Click ADD

4.2 Results and Discussion

Table 1, Table 2 and Table 3 summarize the results of mutation analysis. 50 of first-
order mutants, 108 of second-order mutants, and 83 of third-order mutants were
generated for analysis.

Table 1. Results of First-Order Mutation Analysis

Mutation Operator/ Mutant Type Killed Alive TGMS

All Mutation Op. 17 33 0,34
eO 0 16 0
aI 17 2 0,89
aO 0 15 0

To check the validity of the coupling effect, means of TGMS with respect to the

order of the mutants was compared by using One Way ANOVA test. It is a statistical
test to determine whether there are differences between different levels of an
independent variable or not. In this case study, order of mutants (first-, second-, and
third-order) is used as the independent variable.

Coupling Effect Hypothesis (Confidence level is 95%)

H0: Tests that find first-order mutants also find higher-order mutants
H1: Higher-order mutation is better in revealing the mutants.

 Model-Based Higher-Order Mutation Analysis 171

Table 2. Results of Second-Order Mutation Analysis

Mutation Operator / Mutant Type Killed Alive TGMS

All Mutation Op. 50 58 0,46
eO, eO 4 10 0,29
eO, aI 19 3 0,86
aO, aI 16 5 0,76
cdA 9 12 0,43
aI, aI 0 2 0
aO, aO 0 11 0
eO, eO 2 15 0,12

Table 3. Results of Third-Order Mutation Analysis

Mutation Operator / Mutant Type Killed Alive TGMS
All Mutation Op. 67 16 0,81
cdA, aO 12 2 0,86
cdA, aI 12 1 0,92
aO, aI, aI 14 4 0,78
cdA, eO 11 9 0,55
aI, aI, eO 4 0 1
aI, aI, eO 14 0 1

Table 4 shows the results of One Way ANOVA. According to Table 4, H0

hypothesis can not be accepted at 95% confidence level, since sig. value (0.03) is less
than 0.05. This states that there is significant difference between first-order mutation
analysis and higher-order mutation. In other words, coupling effect does not hold at
95% confidence for this case study.

Table 4. One Way ANOVA

 Sum of Squares Mean Square F Sig.
Between Groups 1,007 0,504 4,647 0,03
Within Groups 1,409 0,108
Total 2,416

 H0: Tests that find first-order mutants also find second-order mutants

H0: Tests that find first-order mutants also find third-order mutants
 H0: Tests that find second-order mutants also find third-order mutants

H1: There is significant difference between test adequacies.

Table 5. Multiple Comparison Test

(I) MO (J) (MO) Mean Difference (I-J) Std.
Error

Sig.

First-Order - Second Order
 - Third Order

-0,055
-0,555*

0,2272
0,233

0,813
0,033

 Second-Order -Third-Order -0,5002* 0,183 0,017

172 F. Belli et al.

If H0 hypothesis can not be accepted as a result of one way ANOVA, the question
arises “Which means of groups are significantly different from which other means of
groups”. To answer the question, Multiple Comparison Tests are used. These tests
compare all possible pairs of means of groups and produce which pairs significantly
different under selected confidence level. According to Table 5, significant difference
between first-order mutation analysis and third-order mutation analysis was found
since sig. value (0,033) is less than 0.05. Similarly, it can be said that there is signifi-
cant difference between second-order mutation analysis and third-order mutation
analysis with respect to TGMS (Sig = 0.017 <0.05). Lastly, to decide whether basic
mutation operators are sufficient for measuring test effectiveness of higher-order
mutation analysis or not, mean of TGMS values are compared with 1, since the test
set is said to be effective in detecting faults that that were injected into the mutants, if
its TGMS value is 1. To carry out the comparison, One-Sample T-Test that is a
statistical test technique used to compare the mean of a sample to a known value was
performed. Table 6 shows the results of the comparison. As a result of One-Sample
T-Test (Table 6), significant difference between TGMS value of higher-order
mutation analysis and 1 was not found.

Table 6. One Sample T-Test

 T Df Sig. (2-tailed) Mean Difference
TGMS -2,134 5 0,086 -0,1483

5 Conclusions, Future Research

This paper introduced higher-order ESG-based mutation analysis by using two basic
operators, insertion and omission, and checked the validity of coupling effect. Analy-
sis was carried out on a case study using the web portal ISELTA. Test sets for first-
order, second-order, and third-order mutants were generated and executed on SUT to
determine the number of killed and live mutants. Statistical “One Way ANOVA”
method enabled following:

• Means of TGMS values were compared to check validity of coupling effect.
• There are significant differences between means of first, second, and third-order
mutants were found at 95% confidence level.
• Coupling effect could not be confirmed for this case study. However, it cannot be
excluded that the results are affected by potential bias between the operators chosen.
The coupling effect may be confirmed when using other higher-order mutation
operators or all possible combinations of basic operators as higher-order operators.

In a second step, Multiple Comparison test (LSD) was performed to answer the
question “which means of groups (order of mutants) are significantly different from
which other means of groups”. Founding is:

• No significant difference between first-order and second-order mutation analysis.
• Significant difference between first/second-order and third order mutation analysis.

The additionally performed One-Sample T-Test concluded that higher-order mutation
analysis carried out by using combinations of basic mutation operators in this study are

 Model-Based Higher-Order Mutation Analysis 173

adequate in detecting the injected faults. Work planned is to combine and iterate basic
operators for creating more sophisticated mutants to be used in further empirical research.

References

[1] Belli, F., Budnik, C.J., White, L.: Event-based Modeling, Analysis and Testing of User
Interactions: Approach and Case Study. Journal of Software Testing, Verification and
Reliability 16(1), 3–32 (2006)

[2] Belli, F., Budnik, C.J., Wong, W.E.: Basic Operations for Generating Behavioral
Mutants. In: Proc. 2nd Workshop on Mutation Analysis (2006)

[3] Belli, F.: Finite-State Testing and Analysis of Graphical User Interfaces. In: Proc. 12th
IEEE International Symposium on Software Reliability Engineering, pp. 34–43 (2001)

[4] DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on Test Data Selection: Help for the
Practicing Programmer. Computer 11(4) (1978)

[5] Fabbri, S.C.P.F., Maldonado, J.C., Delamaro, M.E., Masiero, P.C.: Mutation Analysis
Testing for Finite-State Machines. In: Proc. 5th IEEE International Symposium on
Software Reliability Engineering, pp. 220–229 (1994)

[6] Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero, P.C.: Mutation Testing Applied
to Validate Specifications Based on Statecharts. In: Proc. 10th IEEE International
Symposium on Software Reliability Engineering, pp. 210–219 (1999)

[7] Hamlet, R.G.: Testing Programs with the Aid of a Compiler. IEEE Transactions on
Software Engineering 3(4) (1977)

[8] Harman, M., Jia, Y., Langdon, W.B.: A Manifesto for Higher Order Mutation Testing. In:
Proc. 5th International Workshop on Mutation Analysis (2010)

[9] ISELTA, http://www.iselta.de/
[10] Jia, Y., Harman, M.: Constructing Subtle Faults Using Higher Order Mutation Testing.

In: SCAM, pp. 249–258 (2009)
[11] Jia, Y., Harman, M.: Higher Order Mutation Testing. Journal of Information and software

Technology 51(10), 1379–1393 (2009)
[12] Mathur, A.P.: Performance, Effectiveness and Reliability Issues in Software Testing. In:

Proc. of 5th International Computer Software and Applications Conference, Tokyo,
Japan, pp. 604–605 (1991)

[13] Mresa, E.S., Bottaci, L.: Efficiency of Mutation Operators and Selective Mutation
Strategies: An Empirical Study. Software Testing, Verification and Reliability 9(4), 205–
232 (1999)

[14] Offutt, A.J., Rothermel, G., Zapf, C.: An Experimental Evaluation of Selective Mutation.
In: Proc. 15th International Conference on Software Engineering (ICSE 1993), pp. 100–
107. IEEE Computer Society Pres., Baltimore (1993)

[15] Offutt, A.J.: Investigations of the Software Testing Coupling Effect. ACM Transactions
on Software Engineering and Methodology 1(1), 5–20 (1992)

[16] Offutt, A.J.: The Coupling Effect: Fact or Fiction? In: Proc. 3rd Symposium on Software
Testing, Analysis and Verification, Key West, FL, pp. 131–140 (1989)

[17] Schuler, D., Dallmeier, V., Zeller, A.: Efficient Mutation Testing by Checking Invariant
Violations. In: Proc. 2009 International Symposium on Software Testing and Analysis,
Chicago, pp. 69–80 (2009)

[18] Wah, K.S.H.T.: An Analysis of the Coupling Effect I: Single Test Data. Science of
Computer Programming 48(2-3), 119–161 (2003)

[19] Wah, K.S.H.T.: A Theoretical Study of Fault Coupling. Software Testing, Verification &
Reliability 10(1), 3–45 (2000)

[20] Zhu, H., Hall, P.A.V., May, J.H.R.: Software Unit Test Coverage and Adequacy. ACM
Computing Surveys 29(4), 366–427 (1997)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 174–187, 2010.
© Springer-Verlag Berlin Heidelberg 2010

ISARE: An Integrated Software Architecture Reuse and
Evaluation Framework

Rizwan Ahmad1, Saif ur Rehman Khan2, Aamer Nadeem3, and Tai-hoon Kim4

1 Department of Computer Science
Shaheed Zulifqar Ali Bhutto Institute of Science and Technology, Islamabad

ch_rizwanahmad@yahoo.com
2 Department of Computer Science

Comsats Institute of Information Technology, Islamabad
saif_rehman@comsats.edu.pk

3 Center for Software Dependability
Mohammad Ali Jinnah University (MAJU), Islamabad

anadeem@jinnah.edu.pk
4 Dept. of Multimedia, Hannam University

133, Ojeong-dong, Daedeok-gu, Daejeon, Korea
taihoonn@hannam.ac.kr

Abstract. Quality is an important consideration in the development of today’s
large complex software systems. Software architecture and quality play a vital
role in the success or failure of any software system. Similarly to maintain the
qualities of a software system during development and to adapt the quality
attributes as the software requirements changes, software architecture is
necessary. This paper discusses software quality attributes and the support
provided by software architecture to achieve the desired quality. A novel
Software Architecture Reuse and Evaluation framework is proposed on the
basis of existing software architecture evaluation methods with respect to
quality requirements. A case study is used for experimental validation of the
ISARE. The results show that ISARE ensures the required level of quality
requirements in the software architecture and automatable.

Keywords: Software quality, software architecture, quality of service.

1 Introduction

Software Architecture (SA) being a core of the software system plays a vital role in
the success or failure of any software system as it deals with the base structure, sub-
systems and interactions among these sub-systems [1]. Software systems exhibit the
global properties derived from these architectural styles. Basically it serves as a
roadmap which guides the quality development of a software system.

SA provides the ground to foresee the end product’s quality. Since it falls in the
early phases of Software Development Life Cycle (SDLC) so if it is ensured that the
SA which to be implemented satisfies the desired quality attributes then the quality of
the end product would be high. More formal efforts are concentrated on ensuring that

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 175

the quality is addressed at the architectural level [2]. Different researchers have
discussed SA from different viewpoints. Bass et al. [3] discuss the importance of
quality attributes, how to specify required quality attributes and how these can be
applied to the design and evaluation of software architectures.

In this paper, we propose a novel framework called Integrated Software
Architecture Reuse & Evaluation (ISARE) Framework that ensures higher level of
Quality of Service (QoS) required by the stakeholders. This framework integrates the
strengths of some existing SA evaluation methods and quality models. In order to
evaluate the ISARE, we use the Shifa International Hospital Management System
(SIHMS) specification [26]. The results show that the proposed framework ensures
the required quality attributes in the SA and is automatable.

The rest of this paper is organized as follows: Section 2 presents a thorough related
literature review: section 3 discusses proposed ISARE framework: section 4 evaluates
the proposed framework using a SIHMS case study: while conclusion and future work
are presented in section 5.

2 Literature Review

This section discusses the basic terms, existing SA methods and their analysis.

2.1 Quality Attributes (QA)

Non-functional characteristics of a component or a system are called quality
attributes. Software quality is defined in IEEE 1061 as “the degree to which software
possesses a desired combination of attributes” [4]. It is very important to differentiate
between the Software Quality and Quality of SA. Quality of Software is derived from
the SA whereas the quality of SA is explicitly required to be measured. Piattini et al.
[5] conclude that most of the research has focused on Software Quality but there is
much research work needed on the quality of SA.

2.2 Software Architecture (SA)

All software systems have SA that describes the fundamental organization of the
system [4]. Designing SA to achieve required QA is one of the most demanding tasks
[7]. The SA captures early design decisions and reflects major quality concerns,
including functionality [10]. It recognizes functional requirements of a system [8] and
is an important aspect of producing high quality software systems [9].

Bass et al. [10] define SA of a system as “the structure or structures of the system,
which comprise software components, the externally visible properties of those
components, and the relationships among them”. SA must ensure the level of quality
to be delivered to the user, referred to as QoS [8]. Ladan et al. [14] propose quality-
driven software re-engineering process to support QoS.

2.3 Software Architecture with Respect to QoS

To construct software architectural structure for a system that fulfils the desired QA’s
is often a challenging task. In addition to functional requirements, QA’s also affect

176 R. Ahmad et al.

the selection of appropriate SA. An appropriate architecture is not only governed by
functional requirements but, to a large extent, by QA’s [15], [16], [17]. There are
usually more than one QA involved in a system and the knowledge of the pros and
cons of different architectural structures with respect to different QA’s is not mature
enough [15].

In [15] Svahnberg et al. propose a decision support method that provides aid in the
understanding of different architecture structures and to choose best-suited
architecture to meet the quality requirements of the software system from a set of
candidate SA structures. The proposed method enables a quantified understanding of
different architecture candidates for a software system. The set of candidate SA
structures and required QA’s are the main inputs of the process. The output of the
process is an appropriate SA structure that fulfils the required QA’s and uncertainty
indicator.

2.2 Overview of Analysis Methods

This section provides an overview of different existing SA methods.

Scenario-Based Architecture Analysis Method (SAAM). SAAM appeared in 1993
[19] with the trend for a better understanding of general architectural concepts, as a
foundation for proof that a software system meets more than just functional
requirements [11], [18]. The goal of this method is to verify basic architectural
assumptions and principles against the documents describing the desired properties of
an application [11]. The strength of this method is to concentrate on any QA in the
form of scenarios. The main inputs of SAAM are problem description, requirements
statement and architecture description(s).

SAAM Founded on Complex Scenarios (SAAMCS). SAAMCS is an extended
version of SAAM that is directed to the way of looking for the scenarios and, to
where their impact is evaluated. The important goal of SAAMCS is risk assessment. It
considers that the complexity of scenarios is the most important factor for risk
assessment [11], [20].

Extending SAAM by Integration in the Domain (ESAAMI). ESAAMI is a
combination of analytical and reuse concepts and is achieved by integrating the
SAAM in the domain-specific and reuse-based development process [11], [20]. The
SAAM is the evaluation technique; the quality attributes and SA description are same
in both SAAM and ESAAMI. However, ESAAMI adds the reuse of domain
knowledge defined by SA’s and analysis templates.

Software Architecture Analysis Method for Evolution and Reusability
(SAAMER). SAAMER is an extended version of SAAM that supports two particular
QAs. i.e., (i) evolution, and (ii) reusability [11], [22]. It provides a better support of
how a system could restrain each of the quality objectives or the risk levels for
evolution or how to reuse it [11]. It provides a framework of activities for architecture
analysis process. This framework consists of gathering information about
stakeholders, SA, quality, and scenarios, modeling usable artifacts, analysis, and
evaluation activities [11].

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 177

Architecture Trade-Off Analysis Method (ATAM). ATAM is used to for
architectural analysis of individual quality attributes. It was considered as a spiral
model of designs [23]. The goal of ATAM is to provide a principal way of
understanding SA capability with respect to multiple competing QA’s [24].

Scenario-Based Architecture Re-engineering (SBAR). SBAR not only supports
architecture design but also scenario-based evaluation of the software qualities of
detailed architecture of a system [11], [25]. The goal of SBAR is to estimate the
potential of the designed architecture to reach the software quality requirements [11].

Architecture Level Prediction of Software Maintenance (ALPSM). The ALPSM
analyzes maintainability of software system by looking at the impact of scenarios at
the SA level [11]. The inputs of the method are the requirements statement, the
description of the architecture, expertise from software engineers and possibly
historical maintenance data. It consists of six steps: (i) identification of categories of
maintenance tasks, (ii) synthesis scenarios, (iii) assignment of a weight to each
scenario, (iv) estimation of the size of all elements, (v) scripting the scenarios, and
(vi) calculation of the predicted maintenance effort.

A Software Architecture Evaluation Model (SAEM). The goal of SAEM is to
establish the basis for the SA quality evaluation and prediction of the final system
quality [11]. SA quality requirements evaluation process is rigorously formalized,
especially in relation to metrics in the model described in [12]. The elements required
for quality evaluation process of a software system requires, standard specification,
quality model, a method for evaluation, metrics, and the supporting tools.

Table 1 provides a comparison of existing SA methods. For analysis and
comparison purpose, we identify following analysis parameters: (i) Support for Reuse
of Existing Knowledge, (ii) Support for Scenarios, and (iii) Support for Multiple
Attributes. From the table, it is concluded that only ESAAMI and ATAM support all
of the identified analysis parameters.

Table 1. Existing Software Architecture Methods

Software
Architecture
Evaluation
Methods

Su
pp

or
t f

or

R
eu

se
 o

f
E

xi
st

in
g

K
no

w
le

dg
e

Su
pp

or
t f

or

S
ce

na
ri

os

Su
pp

or
t f

or

M
ul

tip
le

A

tt
ri

bu
te

s

SAAM No Yes Yes
SAAMCS No Yes Yes
ESAAMI Yes Yes Yes
SAAMER No Yes No
ATAM Yes Yes Yes
SBAR No Yes Yes
ALPSM No Yes No
SAEM No No Yes

178 R. Ahmad et al.

3 Proposed Framework

ISARE is a novel framework to ensure the higher level of QoS. It is a rationale
approach to integrate the quality aspects of software development into the SA
development phase in order to minimize the quality related risks involved throughout
the process. ISARE also provides a mechanism to utilize the benefits of existing
techniques developed to ensure the quality aspects in a very simple way with very
limited resources. Key features of ISARE are highlighted below:

• It determines the quality concerns of different stakeholders, right from the
beginning of the process and ensures proper mapping of those concerns in
the selected SA.

• It reuses the available architecture structures/styles for selection of the
candidate SA from its repository on the basis of QA requirements.

• It supports the decision making process for selection of better software
architecture with respect to the prioritized QA requirements.

• It provides a recursive SA improvement process (during the architecture
evaluation process) to ensure the right end product. It also provides an
integrated mechanism to reuse the main part of existing techniques available
for its sub- processes.

• It utilizes an ever-growing repository of reusable SA structures/styles,
descriptions, analysis results with respect to QA requirements and the
decisions made in the past.

• It also incorporates the quality attributes requirements at all phases of the
framework including SA development, evolution, selection and evaluation to
make sure that selected SA meets the quality goals.

Figure 1 shows a high-level architecture of ISARE. There are two main components
of ISARE Framework; (i) Reuser and (ii) Evaluator. Each component performs
different tasks to support overall framework objectives. The ISARE framework is
designed to support the higher level of QoS through SA design and evaluation.

Fig. 1. High Level Architecture of ISARE Framework

Figure 2 depicts a detailed architecture of each component including the sequence
of information flow in the form of a number followed by an alphabet (i.e., 2b means

SA
Repository

Evaluator Reuser

QA

Software
Requirements

Statements
Recommended

Software
Architecture

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 179

Fig. 2. Detailed Architecture of ISARE Framework

that control will be transferred here when all of its descendant activities; like 1a, 1b
etc, have been performed). Now in following subsection we will discuss the basic
ISARE components in detail:

3.1 ISARE Reuser

This component facilitates the complete process of SA from Requirements
Specification Document to SA Selection. It utilizes the SA repository to reuse the
available SA structures/styles, architecture descriptions, their analysis results with
respect to, previously obtained quality attributes for the selection of appropriate SA.
Basically, it provides a platform to fully utilize the available knowledge according to
the situation and provides a mechanism for software engineers and software architects
to incorporate brainstorming during the decision making process to analyze the
candidate architectures for final SA selection. Now we will discuss the elements of
this component in detail:

ISARE Reuser Human Element. Human element is an important aspect of this
framework. Roles of software engineer and software architect are described below:

(i) Software Architects: they are the authoritative decision makers for analyzing
candidate architectures against prioritized quality attributes, requirements and

180 R. Ahmad et al.

risks involved with those architectures. They are responsible for deciding which
candidate SA is appropriate and fulfills the maximum level of QoS requirements.

(ii) Software Engineers: they play a very critical role during candidate SA selection
process. These candidate SA’s are the base for whole process till the final SA
selection. They also analyze quality requirements from the given software
requirements specifications.

ISARE Reuser Processes. The backbone of the automation will be the “Software
Architecture Repository” which will contain all existing software architecture
styles/patterns and their corresponding support for quality attributes. This Repository
will contain Qualitative and Quantitative results of software architecture styles. The
first process of our ISARE Framework “Candidate Architectures Identification”
provides the results based on qualitative approaches and if we get multiple candidate
architectures, “Decision Making” process will be applied on these identified candidate
architectures which provides us with the list of prioritized candidate architectures
according to the ratio of their support to meet required level of quality based on
quantitative approaches as discussed in Decision Making Process. Since SA
Repository is the core of ISARE framework, so it needs to be developed very
carefully. Once SA Repository is developed, it can provide 100% automation for the
ISARE Reuse Component.

ISARE Reuser consists of three major processes as discussed below:

(i) Candidate Identification: This process is responsible for extracting the reusable
SA’s from the available SA’s available in the repository on the basis of available
quality requirements. It takes two inputs: (a) functional requirements and (b)
software quality attributes. This process then co-ordinates with the SA repository
for available candidate architecture according to the list of QA’s provided. The
output of the process is a set of candidate architectures extracted from SA
repository.

(ii) Decision Making Process: It analyzes the candidate architectures provided as an
input. It determines the suitability of those architectures on the basis of prioritized
QA’s. It takes two inputs: (a) candidate architectures and (b) prioritized quality
attributes. Finally, it suggests the suitable SA along with the uncertainty factor
involved in those candidate architectures with respect to prioritized QA’s. Since
there is a possibility to have multiple candidate architectures, so we need an exact
level of support provided by those candidate architectures against prioritized set
of QA’s. Steps performed in this process are taken from [15] to integrate the
strength of quantitative measurement of SA candidates. The main steps are to (a)
determine the uncertainty in the identified candidate architecture, and (b) identify
SA structure. Decision process then provides the suitable SA with the lowest
uncertainty factor in respect of QoS requirements and results will be stored in SA
Repository for future reuse purpose.

(iii) SA Improvement Process: reviews the un-recommended SA from the ISARE
Evaluator component. It provides a mechanism to enhance the SA in order to
fulfill the desired level of QoS requirements.

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 181

ISARE Reuser Software Architecture Repository. This is the core of ISARE
Reuser component which takes the benefit of available SA structures and provide ease
in selecting candidate architectures on the basis of quality requirements. Since quality
requirements are the basic drivers of the SA so it takes the quality requirements as an
input and provides available SA structures/styles accordingly. It also maintains the
descriptions of existing SA styles and their relevance with QA requirements.

3.2 ISARE Evaluator

The main task of ISARE Evaluator component is to facilitate the complete process of
SA selection and evaluation in accordance with the QoS requirements. It provides a
comprehensive mechanism to ensure that QA’s are properly documented, prioritized,
communicated and incorporated in selected SA. It provides a platform to thoroughly
analyze the selected architectures against stakeholder(s) quality needs and authorize
the evaluation team to reject the SA until all the scenarios are properly mapped on
selected architecture.

ISARE Evaluator does not need to evaluate the selected architecture with existing
methods because we have already included it in Decision Process, so now it just
depends upon the scenario brainstorming, prioritization, refinement and mapping
onto the selected architectures. It takes necessary input of the stakeholder(s) to define
scenarios for the evaluation of selected software architecture with respect to
prioritized QA’s. The following subsection discusses the main elements of this
component:

ISARE Evaluator Human Element. Human element plays a vital role in this
framework because scenarios are required to be developed on the basis of prioritized
set of QA’s. Stakeholders are helpful in generating those scenarios. Roles of
stakeholders and evaluation team are described below:

(i) Stakeholders: provide the quality requirements and help in assigning the priorities
to those quality requirements. Stakeholders also actively participate in scenario
brainstorming and prioritization with the close liaison with SA evaluation team to
ensure that their quality needs are properly incorporated.

(ii) Evaluation Team: has the most responsible and sensitive role. They need to
evaluate the selected SA against stakeholder’s quality needs and ensure that they
are fulfilled in selected architecture. Otherwise they can reject the architecture
until it is enhanced to meet the desired level of quality.

ISARE Evaluator Processes. Software Architecture Evaluation Process is based on
scenarios and scenarios are based on quality requirements which vary between
different systems. So it is not possible to provide 100% automation. But as we have
repository available, so we can also store basic quality scenarios which are generic in
nature and use those scenarios for evaluation process to some extent.

ISARE Evaluator consists of only one process as discussed below:

(i) Software Architecture Evaluation: is the only process in ISARE Evaluator which
ensures that selected SA should incorporate the quality requirements specified by
stakeholders according to the priority.

182 R. Ahmad et al.

Evaluation team is responsible for the desired level of quality in selected SA.
It takes three inputs: (a) selected SA, (b) prioritized QA’s and (c) list of related
risks. The output of the process is a decision about recommendation of selected
architecture or SA improvement to incorporate the required QoS requirements in
that architecture.

The scenario brainstorming is performed with the help of stakeholders to
identify the major scenarios of the system according to the prioritized quality
requirements. This activity provides a list of scenarios. After scenario development,
stakeholders prioritize these scenarios according to their requirements and then
refine those scenarios. Finally scenarios are mapped on selected SA to ensure the
higher level of QoS.

Fig. 3. ISARE Workflow

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 183

3.3 Working of ISARE

Main input of the ISARE framework is the software requirements document provided
by stakeholders. In addition, requirement statements provide the list of QA’s
according to the stakeholders needs. This document is the basis for selection of
appropriate candidate SA’s with respect to quality requirements from available SA
styles in the SA repository. On the basis of these candidate architectures, best suitable
SA is chosen according to prioritized QA’s by applying a decision process. The
prioritization of QA’s is performed with the help of stakeholders. Final selection of
SA for a given system also considers the existing reusable architectures.

After selection of SA, it is evaluated to ensure that required QA’s are properly
incorporated in the selected SA. If yes, then the selected architecture is recommended.
Otherwise, it is forward for enhancement till the desired level of quality is achieved.
Figure 3 depicts the workflow of ISARE framework.

4 Evaluating ISARE Framework

We have evaluated ISARE Framework using a case study. We used SIHMS with its
detailed Software Requirements Specifications (SRS) including functional and non-
functional requirements [26]. These requirements will be given as an input to ISARE
Framework and SA will be selected as an output. Below is the evaluation process
applied on SIHMS:

4.1 Brief Description of SIHMS

The aim of SIHMS is to automate all the functions of Shifa International Hospital
and to provide best facilities to its stakeholders. It will replace the current manual
methods followed for routine tasks i.e., data collection, compilation, storage and
reporting, etc.

4.2 User Classes and Characteristics

We have identified following four user classes:

(i) Directors: will be able to manage/monitor the hospital workings, facilities,
doctors and all staff. SIHMS will help the directors to make efficient decisions on
the basis of accurate results and reports.

(ii) Doctors: will be in the field practically for using the system. They will execute
their routine tasks for example patient treatment, history, diagnosis, medication,
and prescriptions, and update al this information into the system. This
information will be available to the all concerns on a single click.

(iii) Staff: of the Shifa International Hospital will use this system mostly. They will
work for payments, appointments, patient services, and inventory, etc.

(iv) Patients: will use this system to avail the facilities like online appointments, and
it will help the people a lot in saving their time.

184 R. Ahmad et al.

4.3 Quality Requirements

SIHMS incorporate the following system attributes:

• Availability
• Scalability
• Reliability
• Modifiability
• Reusability
• Security
• Testability
• Extendibility

4.4 ISARE Evaluation for SIHMS

The functional and non-functional requirements of SIHMS are provided as an input to
ISARE framework. Since the QA’s are the basic drivers of SA so ISARE Reuser and
ISARE Evaluator components will coordinate to provide the candidate SA according
to the information available in the SA Repository.

On the basis of available quality criteria, “Identify Candidate Architectures”
process of the ISARE Reuser component extracts the candidate architecture from SA
Repository according the information stored in SA Repository in the form of Table 2.
(Similarly, other architecture may be selected based on the QA’s prioritization as
suggested by the stakeholders.)

Table 2. SA Repository Information

Software
Architecture Style

Analysis
Parameters

T
es

ta
bi

li
ty

Sc
al

ab
ili

ty

R
el

ia
bi

lit
y

M
od

if
ia

bi
lit

y

Se
cu

ri
ty

Po
rt

ab
ili

ty

A
va

ila
bi

lit
y

R
eu

sa
bi

lit
y

Pe
rf

or
m

an
ce

Layers + - + + + + + + +

Client-Server - + - - + - - + +
Pipe and Filter + - - + - - - + -
Object Oriented - + - + - - - + +
Event Systems - - - + - - - + -
Blackboard - + - + - - - + -
Repository
Main Program and
Subroutine

- + - + - - - - +

Implicit
Invocation

- - - + + + + + -

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 185

Finally using quality requirements of SIHMS and available candidate architecture,
the SA Repository provide only one candidate architecture named “Layers”.

According to the working of ISARE, if there is only one candidate architecture
available on the given set of requirements, it does not forwarded for the decision
process for the quantitative evaluation. Instead it is considered as “Selected Software
Architecture” and forwarded for the ISARE Evaluator component for “Software
Architecture Evaluation” process as discussed in Section 3.2. As a result, ISARE
Reuser component will stop its processing on selection of “Layers” architecture style
and ISARE Evaluator will start to evaluate the selected SA style against the
prioritized set of quality attributes.

5 Conclusion and Future Work

We have presented a framework on the basis of a survey on quality attributes related
aspects of SA. We have also focused on the reuse of available, proven techniques in
efforts to maximize the results. The case study results show that ISARE ensures the
required level of quality requirements in the SA and is automatable.

The research should generally aim at extending and reusing the existing proven SA
evaluation techniques. Researchers should investigate and reuse the strengths of those
important areas which have great impact on overall software quality concerns.

Another research direction is to strengthen the SA repository and automate the
software architecture selection and evaluation methods for efficient and reliable
results. The main input to this repository is the set of architectural styles/artifacts and
their comprehensive analysis against the set of quality attributes. Utilizing existing
quantitative approaches for SA analysis could be the best possible option to move
further in the direction of reusing existing information.

Acknowledgement

This work was supported by the Security Engineering Research Center, granted by the
Korean Ministry of Knowledge Economy.

References

[1] Ionita, M.T., Hammer, D.K., Obbink, H.: Scenario-based Software Architecture
Evaluation Methods: An Overview. In: Workshop on Methods and Techniques for
Software Architecture Review and Assessment at the International Conference on
Software Engineering, ICSE (2002)

[2] Dobrica, L., Niemelä, E.: A Survey on Software Architecture. IEEE Transactions on
Software Engineering 28(7) (2002)

[3] Bass, L.: Principles for Designing Software Architecture to Achieve Quality Attribute
Requirements. In: Proceedings of the 4th International Conference on Software
Engineering Research, Management and Applications, SERA 2006 (2006)

[4] IEEE Standard 1061-1992, Standard for Software Quality Metrics Methodology, Institute
of Electrical and Electronics Engineers, New York (1992)

186 R. Ahmad et al.

[5] Piattini, M., Calero, C., Astudillo, H.: Classifying Software Architecture Quality
Research. In: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), pp. 195–196. IEEE Press, New York (2005)

[6] Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing Software Architectures to
Achieve Quality Attribute Requirements. In: IEEE Proceedings of Software, vol. 152(4).
IEEE Press, New York (2005)

[7] Bruin, H., Vliet, H.: Quality Driven Software Architecture Composition. Journal of
Systems and Software, Special Issue: Software Architecture-Engineering Quality
Attributes, 269–284 (2003)

[8] Rakic, M.M., Malek, S., Medvidovic, N.: Architecture Driven Software Mobility in
Support of QoS Requirements. In: Proceedings of the 1st International Workshop on
Software Architectures and Mobility (SAM 2008), Leipzig, Germany, pp. 195–196
(2008)

[9] Schougaard, K.R., Hansen, K.M., Christensen, H.B.: SA@Work - A Field Study of
Software Architecture and Software Quality at Work. In: Proceedings of the 15th Asia-
Pacific Software Engineering Conference (APSEC 2008), pp. 411–418 (2008)

[10] Kazman, R., Kruchten, P., Nord, R., Tomayko, J.E.: Integrating Software-Architecture
Centric Methods into the Rational Unified Process. Technical Report, CMU/SEI-2004-
TR-011 (2004), http://www.sei.cmu.edu/library/abstracts/
reports/04tr011.cfm

[11] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley Publishing Co., Reading (2003) ISBN-10: 0-321-68039-1

[12] Duenas, J.C., Oliveira, W.L., Puente, J.A.: A Software Architecture Evaluation Model.
In: van der Linden, F.J. (ed.) Development and Evolution of Software Architectures for
Product Families. LNCS, vol. 1429, pp. 148–157. Springer, Heidelberg (1998)

[13] Bengtsson, P.O., Bosch, J.: Architecture Level Prediction of Software Maintenance. In:
Proceedings of the 3rd European Conference on Software Maintenance and
Reengineering, pp. 139–147 (1999)

[14] Tehvidari, L., Kontogiannis, K., Mylopoulos, J.: Quality Driven Software Re-engineering.
The Journal of Systems and Software, 225–239 (2003)

[15] Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.: A Method for Understanding
Quality Attributes in Software Architecture Structures. In: Proceedings of the Software
Engineering and Knowledge Engineering (SEKE 2002), Ischia, Italy, pp. 819–826 (2002)

[16] Bosch, J.: Design & Use of Software Architecture– Adopting and Evolving a Product
Line Approach. Addison-Wesley, Harlow (2000) ISBN-10: 0201674947

[17] Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (2000)

[18] Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-Based Analysis of Software
Architecture. IEEE Software 13(6), 47–55 (1996)

[19] Kazman, R., Abowd, G., Bass, L., Webb, M.: Analyzing the Properties of User Interface
Software Architectures. Technical report, CMU-CS-93-201, Carnegie Mellon University,
School of Computer Science (1993)

[20] Lassing, N., Rijsenbrij, D., Vliet, H.: On Software Architecture Analysis of Flexibility,
Complexity of Changes: Size isn’t Everything. In: Proceedings of the 2nd Nordic
Software Architecture Workshop (NOSA 1999), pp. 1103–1581 (1999)

[21] Molter, G.: Integrating SAAM in Domain-Centric and Reuse-Based Development
Processes. In: Proceedings of the 2nd Nordic Workshop Software Architecture (NOSA
1999), pp. 1103–1581 (1999)

 ISARE: An Integrated Software Architecture Reuse and Evaluation Framework 187

[22] Lung, C., Bot, S., Kalaichelvan, K., Kazman, R.: An Approach to Software Architecture
Analysis for Evolution and Reusability. In: Proceedings of the Conference of the Centre
for Advanced Studies on Collaborative Research, Canada, pp. 1–11 (1997)

[23] Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., CarrieÁre, S.J.: The
Architecture Tradeoff Analysis Method. Technical report, CMU/SEI-98-TR-008, ESC-
TR-98-008 (1998), http://www.pst.ifi.lmu.de/lehre/WS0102/
architektur/VL9/ATAM.pdf

[24] Barbacci, M., Carriere, S., Feiler, P., Kazman, R., Klein, M., Lipson, H., Longstaff, T.,
Weinstock, C.: Steps in an Architecture Tradeoff Analysis Method: Quality Attribute
Models and Analysis. Technical report, CMU/SEI-97-TR-029 ESC-TR-97-029 (1998)

[25] Bengtsson, P.O., Bosch, J.: Scenario-Based Software Architecture Re-engineering. In:
Proceedings of the 5th International Conference on Software Reuse (ICSR 5), pp. 308–
317 (1998)

[26] http://www.shifa.com.pk

www.SoftGozar.Com

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 188–194, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Cognitive Informatics for New Classes of Economic
and Financial Information Systems

Lidia Ogiela1 and Marek R. Ogiela2

AGH University of Science and Technology
1 Faculty of Management
2 Institute of Automatics

al. Mickiewicza 30, PL-30-059 Krakow, Poland
{logiela,mogiela}@agh.edu.pl

Abstract. This publication discusses intelligent systems for cognitive data cate-
gorisation with a particular emphasis on image analysis systems used to analyse
economic data. This type of systems used to interpret, analyse and reason work
following the operating principles of cognitive information system. Cognitive
systems interpret complex data by extracting semantic levels from it, which
they use to determine the meaning of the data analysed, to cognitively under-
stand it, as well as to reason and forecast changes in the area of the phenomena
researched. Thus the course of human processes of learning about the described
phenomenon becomes the foundation for developing automatic cognitive sys-
tems which are called cognitive data analysis systems.

Keywords: Cognitive informatics, cognitive processes, cognitive information
systems, UBMSS systems (Understanding Based Managing Support Systems).

1 Introduction

Cognitive systems are currently developed very rapidly, and the operating algorithms
applied in such systems and illustrating their processes of data analysis and interpreta-
tion increasingly frequently use the semantic layers contained in data/information sets
as well as techniques of linguistic data description. Until recently, processes of this
type were based on classical cognitive analysis processes, but today they are being re-
placed by methods of the extended cognitive analysis, which not only unanimously
identifies the relationships between cognitive resonance and the data understanding
process, but also shows that the system is capable of learning based on the results of
the completed data analysis in order to optimise analysis processes. This situation is
presented in Figure 1.

In the cognitive data analysis process, the process whereby the system learns new
solutions which may impact the decision-making solution obtained is of key impor-
tance. So far, in the cognitive categorisation processes, the understanding of analysed
data was based on the classical cognitive analysis process, whereby connections were
indentified between pairs of consistent expectations of the system acquired from ex-
pert knowledge bases and characteristic features extracted from analysed datasets, and

 Cognitive Informatics for New Classes of Economic and Financial Information Systems 189

Fig. 1. Cognitive resonance in the process of data analysis and understanding enhanced with the
process of training the system in new solutions

this led to cognitive resonance during which the above connections were determined
as consistent or inconsistent. Only pairs that were completely consistent were selected
for further analysis and a group of solutions could be defined which included the
identified consistent pairs. This definition of the group made it possible not only to
recognise the analysed data by naming it correctly, but also made the understanding
of data complete, which lead to determining semantic features of the analysed data.

Research has shown that in this solution, pairs of characteristic features of the ana-
lysed data and expectations generated based on the expert knowledge base collected
in the system which were not consistent were omitted at further analysis stages. This
made it possible to envisage a situation in which the system encounters a solution it
does not know and which is not defined at all in its bases. The question is, is it possi-
ble to recognise this type of a situation? Yes, the solution proposed in this publication
shows that it is possible to introduce a stage at which the system is trained in solutions
new to the system. This process is possible only when the set of solutions obtained
(both optimum ones and those eliminated from further analysis) is used to create a set
of features of analysed data and a set of new expectations not defined in the original
bases of the system. The new features and expectations are input into the system base
in which data is re-analysed, this time using the much broader expert knowledge set
containing new patterns learned by the system. Such patterns constitute an extended
expert knowledge base which the system uses to generate a set of expectations, and
these are compared to the set of characteristic features of the analysed data. This
process thus becomes an enhanced process of cognitive analysis based on cognitive
resonance for learning systems. A system can be trained in any situation and this
training can be multiplied depending on the needs and the necessity of extending the
knowledge bases built into the system.

190 L. Ogiela and M.R. Ogiela

2 Cognitive Systems and Cognitive Informatics

Cognitive systems are those in which types of solutions modelled on data analysis
processes taking place in the human brain have been applied to analyse complex data
using layers of the semantic essence of data contained in every analysed set.

Processes of data analysis executed in cognitive systems based on cognitive reso-
nance are very often equated with processes which form the cornerstone of cognitive
informatics. However, we have to clearly distinguish between these two concepts as-
sociated with cognitive science and used in similar fields.

Cognitive informatics is a science dealing with the combination (one is tempted to
say) of the traditional hardware informatics and cognitive science, that is the sciences
concerned with learning, namely psychology, neurobiology, philosophy etc. Such
combinations are possible if common ground or overlapping fields joining different
scientific disciplines are found. Detailed solutions in the area of cognitive science,
and in particular cognitive machine science, to which cognitive informatics belongs,
make it necessary to look for specific applications. Such applications are created as
system solutions combining the use of IT and cognitive tools. It is those combinations
which lead to designing new classes of IT systems – cognitive systems.

This paper presents new solutions proposed for cognitive data analysis systems,
showing how learning systems can enhance the image analysis processes executed by
UBMSS (Understanding Based Managing Support Systems). UBMSS systems have
been described by the authors previously, and are detailed in the following publica-
tions [2], [3], [4], [6].

3 UBMSS as an Example of Class of Cognitive Systems

UBMSS systems, as cognitive data analysis systems, can be used not just to analyse
the economic figures of a company, but can also to supplement the analysis of infor-
mation from data in the health sector. These systems are thus beginning to support the
financial and strategic analysis of health-care providers (hospitals, clinics, medical
companies offering various health services). What is characteristic of UBMSS system
is that they conduct a financial analysis of a company using elements of cognitive
data analysis.

In this paper was presented an example UBMSS system illustrating cognitive data
interpretation methods for the efficient management of the investment process.
UBMSS systems can be used for the cognitive analysis of economic ratios, particu-
larly financial or macroeconomic ones. UBMSS systems can, for example, conduct
analyses using the following ratios:

1. Liquidity ratios:

• COGS (cost of goods sold),
• EBIT (earnings before deducting interest and taxes),
• NPV (net present value),
• CR (current ratio),
• QR (quick ratio),
• cash ratio,

 Cognitive Informatics for New Classes of Economic and Financial Information Systems 191

• inventory turnover,
• ACP (average collection period),

2. Profitability ratios:

• gross margin,
• profit margin,
• operating margin,
• net profitability ratio,
• gross profitability ratio,
• ROA (return on assets),
• ROE (return on equity),
• ROI (return on investment),
• ROIC (return on invested capital),
• ROS (return on sales),
• NPM (net profit margin),
• ROCE (return on capital employed),
• RONA (return on net assets),
• IRR (internal rate of return),
• WACC (weighted average cost of capital).

The analysis of economic ratios conducted in UBMSS systems allows the semantic
contents of the analysed data to be used to determine the nature of that data, its impact
on the current situation of the company and the extent of changes they cause to the
company and its environment taking into account the information currently possessed.
Such an analysis is possible due to semantic information contained in the analysed
data. Semantic information may relate to:

• The scale (value) of analysed economic ratios,
• The frequency of their changes,
• The manner of their changes,
• The regularity of repetition,
• The number of changes observed,
• The type of changes observed.

This publication is an attempt at defining a UBMSS system for the cognitive
analysis of investments on the basis of three key financial indicators, which include:
NPV – net present value (symbol: W1), r – discount rate (W2), IRR – internal rate of
return (W3).

For the proposed UBMSS systems, a sequence grammar of the following form has
been defined:

),,(, SPG TNINV ΣΣ=

where:

ΣN – the set of non-terminal symbols

ΣN = {INVESTMENT, W1, W2, W3, WEAK_ACCEPT, ACCEPT,
STRONG_ACCEPT, NO_ACCEPT, A, B, C, D, E}

192 L. Ogiela and M.R. Ogiela

ΣT – the set of terminal symbols

ΣT = {′a′, ′b′, ′c′, ′d′, ′e′}, and the particular elements were defined as follows:
a = {0%}, b ϵ (0%, 15%], c ϵ (15%, 45%), d ϵ [45%, 100%), e ϵ (-100%, 0%) (Fig. 2.)

Fig. 2. The set of terminal symbols

S – the start symbol, S ϵ ΣN, S = INVESTMENT

P – the set of productions shown below:

1. INVESTMENT WEAK_ACCEPT | ACCEPT | STRONG_ACCEPT |
NO_ACCEPT

2. WEAK_ACCEPT W1 W2 W3 //if (w1 & w2 & w3 = weak accept) fi-
nal_decision:= weak accept

3. ACCEPT W1 W2 W3 //if (w1 & w2 & w3 = accept) final_decision := accept
4. STRONG_ACCEPT W1 W2 W3 //if (w1 & w2 & w3 = strong accept) fi-

nal_decision := strong accept
5. NO_ACCEPT W1 W2 W3 //if (w1 & w2 & w3 =not akcept) final_decision := not

accept
6. W1 A | B | C | D | E // w1=decision
7. W2 A | B | C | D | E // w2=decision
8. W3 A | B | C | D | E // w3=decision
9. A → a // decision:= weak
10. B → b // decision:= weak
11. C → c // decision:= accept
12. D → d // decision:= strong
13. E → e // decision:= not accept

The example UBMSS system discussed here can conduct a cognitive analysis of
selected financial and economic ratios, which will make it possible to take the best
strategic decision for the selected (analysed) company. Figures 3-5 show example re-
sults of the operation of the UBMSS system proposed for meaning-based analyses
and interpretations stemming from understanding the analysed set of three financial
ratios: the net present value, the discount rate, the internal rate of return.

Fig. 3. Example UBMSS system for analysing and assessing the acceptability of an investment
based on selected economic ratios

Fig. 4. Example UBMSS system for analysing and assessing the acceptability of an investment

 Cognitive Informatics for New Classes of Economic and Financial Information Systems 193

Fig. 5. Example UBMSS systems

Figure 3 shows a situation in which the UBMSS system analyses the economic
data of an acceptable investment, in Figure 4 the investment is very good and deserv-
ing full acceptance, and in Figure 5 the system analysed ratios describing an unac-
ceptable investment.

All cases of analysed economic and financial ratios demonstrate that it is of utmost
importance to determine their impact on and their significance for the decision taken
by the system.

Based on the values of the selected economic/financial ratios, the UBMSS system
shows what strategic decision is best when it takes the said ratios into the analysis
process. This decision is taken by comparing the analysed values with the values, kept
by the system in particular knowledge bases, which have been defined based on opti-
mum ratio values assumed by experts.

The above semantic information associated with the analysed economic data pre-
sented in the form of financial ratios allows a detailed identification of the type of
situation (whether it is pathological or is a phenomenon expected and accepted by the
company management with regard to the considered investment) prevailing within the
company.

It must be borne in mind that changes taking place inside companies are brought
about by various types of situations, phenomena and determinants. These situations
may be either external or internal. This is why defining the right patterns applied to
UBMSS systems which will be taking strategic and business decisions is very diffi-
cult, as it requires analysing a whole range of various factors that can have a signifi-
cant impact on the decision-making process. It is because of this fact that the UBMSS
systems presented in this paper for supporting the right decision whether to make (or
forego) a given investment greatly help choose the best decision and determine
whether the investment under consideration is acceptable or not; and if the decision is
acceptable, then whether the acceptance is unconditional, or whether there is a certain
danger (risk) inherent in implementing it (this situation is illustrated by the minimum
permissible values of financial ratios selected for analysing).

UBMSS systems are of great help in understanding the analysed economic,
financial and strategic situation with regard to the analysed company, investment and
strategy. So they are systems which perform a very important type of analysis – a
cognitive, interpretational, reasoning and forecasting analysis based on mechanisms
of the linguistic and meaning-based description of data.

4 Conclusion

Cognitive analysis systems, also referred to as cognitive systems, are constantly de-
veloping. Increasingly frequently attempts at their improvement bring about succes-
sive improvements of the effectiveness of the analysis conducted and the increased
utility of these systems.

194 L. Ogiela and M.R. Ogiela

Cognitive systems have been extended to include new solutions aimed at improv-
ing not just the effectiveness of the analysis process, but mainly the reliability of the
semantic reasoning and forecasting processes. This last stage of analysis, aimed at
correctly forecasting changes in the analysed data, is significant in that during a failed
attempt to understand data this stage is omitted altogether. Implementing the capacity
of learning new solutions in the system leads to a successful determination during
subsequent attempts of the analysis undertaken, then to data understanding, and once
that is successful, it supports making further forecasts.

Learning systems are therefore becoming a new class of cognitive data analysis
systems and they now seem to have a bright future.

Acknowledgement. This work has been supported by the Ministry of Science and
Higher Education, Republic of Poland, under project number N N516 196537.

References

1. Meystel, A.M., Albus, J.S.: Intelligent Systems – Architecture, Design, and Control. John
Wiley & Sons, Inc., Chichester (2002)

2. Ogiela, L.: UBMSS (Understanding Based Managing Support Systems) as an Example of
the Application of Cognitive Analysis in Data Analysis. In: IEEE Proceedings 6th Interna-
tional Conference CISIM 2007 – Computer Information Systems and Industrial Manage-
ment Applications, CISIM 2007, Ełk, Poland, June 28-30, pp. 77–80 (2007)

3. Ogiela, L.: Modelling of Cognitive Processes for Computer Image Interpretation. In: Al-
Dabass, D., Nagar, A., Tawfik, H., Abraham, A., Zobel, R. (eds.) EMS 2008 European Mod-
elling Symposium, Second UKSIM European Symposium on Computer Modeling and
Simulation, Liverpool, United Kingdom, September 8-10, pp. 209–213 (2008)

4. Ogiela, L., Ogiela, M.R.: Cognitive Techniques in Visual Data Interpretation. Studies in
Computational Intelligence, vol. 228. Springer, Heidelberg (2009)

5. Ogiela, M.R., Tadeusiewicz, R.: Modern Computational Intelligence Methods for the Inter-
pretation of Medical Images. Springer, Heidelberg (2008)

6. Tadeusiewicz, R., Ogiela, L.: Selected Cognitive Categorization Systems. In: Rutkowski, L.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097,
pp. 1127–1136. Springer, Heidelberg (2008)

7. Tadeusiewicz, R., Ogiela, L., Ogiela, M.R.: The automatic understanding approach to sys-
tems analysis and design. International Journal of Information Management 28, 38–48
(2008)

8. Wang, Y.: The Theoretical Framework and Cognitive Process of Learning. In: Proc. 6th In-
ternational Conference on Cognitive Informatics (ICCI 2007), pp. 470–479. IEEE CS Press,
Lake Tahoe (2008)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 195–207, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Automated Approach to Testing Polymorphic
Features Using Object-Z

Mahreen Ahmad1, Aamer Nadeem1, and Tai-hoon Kim2

1 Center for Software Dependability,
Mohammad Ali Jinnah University (MAJU), Islamabad, Pakistan

mahreen.ahmad@gmail.com, anadeem@jinnah.edu.pk
2 Dept. of Multimedia, Hannam University

133, Ojeong-dong, Daedeok-gu, Daejeon, Korea
taihoonn@hannam.ac.kr

Abstract. Formal methods have proven their worth in different fields specially
software engineering. Although object-oriented design features like inheritance
and polymorphism improve the quality of design, these features may introduce
new types of faults. However, the current research on formal specification
based testing primarily focuses on unit level testing only. There is very little
work on formal specification based inheritance and polymorphic testing. This
paper describes a novel approach for testing of polymorphic relationships using
an Object-Z specification. The proposed approach is based on the idea of
coupling based testing. Tool support for the proposed technique has also been
provided and is empirically evaluated by a real life example.

Keywords: Polymorphism, Inheritance, Formal Specification, Specification
based testing, coupling based testing, Object-Z.

1 Introduction

Object-oriented (OO) design has an emphasis on defining abstractions to model the
concepts in a particular domain [12]. These abstractions appear in software as user-
defined types that have both state and behavior. Although these abstractions help in
achieving higher quality design but OO features such as inheritance and
polymorphism also complicate testing process and can potentially bring new types of
faults in OO software [9].

Formal methods have proven their worth in different fields specially software
engineering. The motivation for using formal methods in software engineering is that
time spent on specification and design is paid back in the form of a higher quality
product, and ultimately it reduces the cost of rework later on. This is because formal
methods eliminate ambiguities and avoid errors in the desired software product.

Specification based testing, also known as black-box testing, has major advantage
that the testing activity can be started at an earlier stage of software development life
cycle, i.e., at the time of Software Specification, because in specification based
testing, a test suite is produced on the basis of a specification [14].

196 M. Ahmad, A. Nadeem, and T.-h. Kim

Inheritance and polymorphism are commonly used in object-oriented software. But
whenever inheritance and polymorphism are used in any program, the code becomes
difficult to comprehend and is prone to errors and faults [9]. For example in
inheritance, the child class must be compatible with its parent class; it should not
violate the parent class invariant. Moreover, having inheritance relationship, any child
class can be substituted for its parent class, this substitution may cause inconsistent
type use error [6]. Dynamic binding, or knowing the type at runtime, is achieved
through polymorphism. When polymorphism is used, it becomes hard to understand
all possible bindings of an object and taking care of all possible interactions between
caller and callee is quite a challenging task. Besides this, overridden methods could be
faulty in the child class context or overriding methods might have different or
conflicting pre and post conditions as compared to overridden methods in parent
classes [6].

The scope of this paper is testing of inheritance and polymorphic features in
object-oriented design using formal specification. The proposed approach detects
certain polymorphic faults described in Offut et al.’s fault model [6]. Taking Object-Z
specification and Finite State Machine (FSM) of each class in the hierarchy as an
input, our approach flattens the Object-Z class hierarchy, and determines message call
sequences (MCS) from FSM. Using Object-Z specification and MCS, it identifies the
def-use of coupling variables and identifies coupling sequences to generate test cases.
The novel approach is a specification based testing technique which is based on the
idea of Alexander’s coupling based testing technique for code [7][4][5].

2 Relevant Work

Murray et al. have extended Test Template Framework (TTF) for inheritance, in
object-oriented programs using Object-Z specifications [13]. TTF is a formal and
abstract model used for testing of procedural programs. Using this framework a test
information hierarchy is build having valid input space and output space, but the TTF
cannot be used for execution of test cases directly. They have also suggested that
when test cases of parent class(s) should be reused for testing child class; in same the
way as object oriented design facilitates reusability. They have defined three options
for reusability of TTF information for child class i.e. when testing information can be
inherited without change, when it is inherited with modifications and when it must be
derived from scratch.

Liu and Miao have proposed a specification based approach of testing inheritance
and polymorphism using Object Z specification [3]. They have addressed the
combined effect of inheritance, polymorphism and aggregations covering intra-
method, intra-class and inter-class testing criteria. They have provided an algorithm
for intra-class testing and have suggested a coverage criterion for inter-class testing.
They have automated their approach and have empirically evaluated their approach
using a small example. They have empirically evaluated only four types of faults of
Offut et al. fault model, i.e., SDA, SDIH, SDI, and IC.

Nadeem and Lyu have proposed a technique for generation of test cases for
inheritance testing, using a VDM++ formal specification [1]. In this technique, the

 An Automated Approach to Testing Polymorphic Features Using Object-Z 197

idea of flattening is used in VDM++ specification class, and then operation sequences
are generated from the trace structure specified in the VDM++ specification. The
input space for each operation is partitioned, and a test model is constructed from the
operation sequences and the input partitions. Test paths are generated from the test
model, which cover the different operation sequences as well as the partitions.
Coverage criteria for test path generation have also been proposed in this paper.

Nadeem et al. have presented an approach to automate the generation of test cases
from a VDM++ specification [2]. They have combined partition testing approach with
testing of operation sequences to apply on testing of inheritance and polymorphic
faults at specification level. They are using Offut et al. fault model as basis for faults
but their approach does not cover all of the faults in the fault model, due to the higher
abstraction level of specifications. The faults that can be captured by their approach
are SDA, SDI, SVA and IC.

3 Specification Based Testing of Polymorphism and Inheritance

The proposed approach is based on the idea of Coupling Based Testing (CBT)
proposed by Alexander [4] [5] [7]. He has introduced a technique for testing
polymorphic features in Object-oriented programs [4]. This work is based on their
ongoing research on coupling based testing (CBT) [11]. The presented technique is
basically a data flow testing technique to identify testable coupling sequences among
different call sequences in a class hierarchy. They have extended their work and have
proposed new polymorphic coupling sequences as the testable paths for test cases.

The existing approach presented by Alexander is a code based testing technique,
while our proposed approach applies the idea of coupling based testing on a formal
specification. Coupling based testing states that the program be executed from
definitions of actual parameters through calls to uses of the formal parameters, as a
result different coupling paths are defined, and combination of these coupling paths
form coupling sequences [11]. There are four structural types of coupling sequences,
Type I, II, III and Type IV coupling sequences [7]. This paper covers only type I
coupling sequence, due to the limitation of Object Z specifications which does not
provide any information of sequence of statements execution [10].

Coupling based testing is a data flow based technique to discover and represent
state space interactions between pairs of method calls in case of polymorphic
relationships. Coupling sequences in CBT help in static and dynamic analysis of the
programs and highlights the areas to be tested, for methods under test. This will help
developers in analyzing and understanding the critical polymorphic interactions in the
system.

The novel approach does not cover all the aspects of CBT based on specifications,
due to the limitation of specifications itself. For example, every coupling sequence
has an associated set of coupling variables and coupling paths. The proposed
approach does not identify the coupling paths and identifies the coupling sequences
without finding coupling paths, as extracting coupling paths require the statements
execution sequence, and this information lacks in Object-Z specification [15].
Alternatively, due to the limitation of Object-Z specification, the proposed approach

198 M. Ahmad, A. Nadeem, and T.-h. Kim

keeps abstraction level higher and identifies the def-use methods rather than finding
coupling paths. And instead of defining absolute coupling paths, the approach defines
the abstract paths between pair of method calls, as message call sequences can be
extracted from the FSM(s) given as input to the system.

The fault model presented by Offutt et al. has 9 types of faults due to inheritance
and polymorphism [6]. Making this fault model as basis of polymorphic fault types,
the proposed approach can detect 6 faults, i.e., Inconsistent Type Use (ITU), State
Definition Anomaly (SDA), State Definition Inconsistency due to state variable
hiding (SDIH), State Defined Incorrectly (SDI), Indirect Inconsistent State Definition
(IISD), Incomplete Construction (IC) and State Visibility Anomaly (SVA). The faults
like ACB1 and ACB2 cannot be detected by the proposed approach, because these
two types of faults need interaction of more than one method, while the presented
approach can only detect those types of polymorphic faults that require calling client
method interacting with the polymorphic methods, they are called as intra-method
coupling sequences [7].

The focus of this paper is on testing polymorphic interactions resulting from pairs
of method invocations within the same method, i.e., intra-method coupling sequences.
There can be certain other interactions that may occur between methods and these
interactions are not the result of invocation from the same method, these types of
interactions represent inter-method coupling sequences or indirect coupling sequences
and are left as future work.

4 The Proposed Approach

The proposed approach uses Object-Z specification for the class hierarchy. Object-Z
is an extension of Z language which facilitates the formal specification of object-
oriented programs [10] [15]. Our approach flattens the Object-Z class hierarchy, and
takes FSM of each class in the hierarchy as input to find message call sequences
(MCS). Using Object-Z specification and MCS, it identifies the def-use of coupling
variables and identifies coupling sequences to generate test cases. Graphical
representation of the approach is shown in Fig 1. This section describes the approach
in detail.

4.1 Class Flattening

The input of the proposed approach is an error-free Object-Z specification having
complete class hierarchy. By error-free we mean that Object-Z specification should
not contain any syntax, semantic and design errors. The input class hierarchy is
flattened using class flattening technique. Flattening is the process of including all the
features of parent class into the child class without using inheritance feature [16]. In
the proposed approach, each derived class is flattened in such a way that the
predicates and variables of child class schemas (state & operation) are a conjunction
of predicates and variables of both derived and base class schemas [10][15].

After flattening, all the parent class methods are added in the child class except the
overridden methods, i.e., those methods that are redefined in the derived class.

 An Automated Approach to Testing Polymorphic Features Using Object-Z 199

Fig. 1. Architecture of the proposed approach

Operation schemas having common names in parent and child class will be conjoined
in the child class, until and unless common named operation is redefined in the child
class. Operation schemas can be redefined in two ways, by renaming the common
named operations and redefining them with new names, operations and variables both
can be renamed. But redefining using rename facility will not allow polymorphic
feature in the child class, to allow polymorphism the common named operation
schema should be refined in the child class using redef comma separated list. If
redefinition of operations is not required then common named operations will be
extended in the child class and will be conjunction of parent and child class operation
schemas. Consider following shape example in Fig 2 [10]. Polygon class inherits
shape class. Fig 3, 4 shows unflattened and flattened polygon class respectively.

200 M. Ahmad, A. Nadeem, and T.-h. Kim

Fig. 2. Object Z Specification of Shape

Fig. 3. OZ Specification of Polygon

Fig. 4. Flattened Polygon Class

4.2 Extracting Message Call Sequences (MCS)

Finite State Machine (FSM) for each flattened class in the hierarchy is given as input
to the system in the form of State transition table. FSM is used to find the sequence of
message calls; because object-Z specification does not provide any information about
the sequence of method calls neither does it provide any information about sequence
of statement execution. Using certain coverage criteria we need to make a tree e.g.
round trip tree to find the message call sequences. The coverage criteria for
generating MCS from FSM is also given as input to the system because weaker
coverage criteria reveals less MCS and stronger coverage criteria results in more

 An Automated Approach to Testing Polymorphic Features Using Object-Z 201

MCS. Different coverage criteria produce varying result. For this paper we have used
all transition coverage criteria. The algorithm for extracting message call sequences is
adapted by Round Trip Tree algorithm presented by Binder [8]. The algorithm states
that tree be started from alpha node and every node should have one incoming and
one outgoing transition. Each node should be split into child nodes equal to the
number of outgoing transitions, if there are more than one outgoing transitions on that
node, whenever an existing node appears as child of another node, make it a leaf
node, repeat the process until omega or final state is reached. Consider FSM of shape
example in Fig 5: -

Fig. 5. FSM for Shape Class

For Shape example we’ll make round trip tree to extract message call sequences
from FSM, after making round trip tree we need to set some coverage criteria for
finding maximum coverage of message calls, the round trip tree for Shape FSM is
shown in Fig 7. Now to extract message call sequences, we will select all unique
message sequences. All unique message call sequences of Shape class are shown in
fig 6. The format for message call sequence is as follows: -

[Message(parameterList) NextMessage(parameterList)]

Fig. 6. Message Call Sequences of Shape FSM

202 M. Ahmad, A. Nadeem, and T.-h. Kim

Fig. 7. Round Trip Tree for Shape FSM

4.3 Extracting Coupling Variables

As mentioned earlier, every coupling sequence has an associated set of class
variables. These class variables or state variables are called as coupling variables.
Coupling variables of each class in the hierarchy need to be extracted from Object-Z
specification. In Object-Z Specification the coupling variables are specified in the
state schema of class specification. After finding the coupling variables we need to
see that which of these coupling variables are defined and used in the Object-Z
specification. Considering shape example in Fig 2 the coupling variable of Shape
class is position, in Fig 3 coupling variable of Polygon class is edges, and in Fig 4
coupling variables of flattened Polygon class is position and edges.

To determine coupling variables of each class we will search/parse the declaration
part of state schema of each class, and will extract all the declared variables in this
part.

4.4 Identifying Def-Use Methods

Due to the lack of information about sequence of statement execution in Object-Z
specification, the proposed approach identifies def-use methods instead of finding
coupling paths to define more abstract paths between pair of method calls from
calling client method.

 An Automated Approach to Testing Polymorphic Features Using Object-Z 203

Finding def-use means that we need to extract only those coupling variables that
are defined i.e., assigned any value and then used in any method. We will be finding
definition and use of coupling variables from the object-Z specification and identify
those methods that are defining or using any coupling variable. In Object Z equal to
‘=’ symbol is not an assignment operator, rather it is a relational operator. Therefore it
is not obvious that the variable to the left of = symbol will be defined. For example,
statement (1) and (2) semantically mean same in Object Z specification: -

position’ = position + v? (1)

position + v? = position’
(2)

Hence, to find the definition of any coupling variable we need to check whether the
coupling variable is appearing in predicate part of operation schema with or without
prime. If coupling variable is primed then it is defined and If coupling variable is
unprimed then it is used, no matter where it appears before or after the = symbol. Or
we can also check the D-list in each operation schema of the class, if the coupling
variable is present in the D-list then it means that the coupling variable is defined
otherwise it is used if variable is present in the predicate part of operation schema and
not present in the D-list. Hence in this way we will identify def-use of coupling
variables along with the methods they are defined and used in. Considering shape
example in Fig 2, position is the coupling variable of shape class, variable position is
present in the D-list and predicate part of operation schema Move, which means that
variable position is defined and used in this method, because it appears both, with and
without prime. Moreover, variable position is not present in the D-list of Display
operation schema, but it is there in the predicate part of operation schema Display,
therefore variable position is used in this method. After finding the def-use of
coupling variables and identifying the def-use methods we need to find the coupling
sequences by using message call sequences.

4.5 Identifying Coupling Sequences

When the FSM and the coverage criteria is provided as input, we will extract all
unique message call sequences of all methods in each class. After getting all unique
MCS we need to select our desired coupling sequences, and the selected coupling
sequences will be the test paths for test cases. Now to find a coupling sequence it is
required to see that which coupling variable is defined in a method and then the same
coupling variable is used in another method. This means we will consider only that
sequence when two methods define and use the same coupling variable, and both
methods are called by a client method using same instance. We need to find def-use
pair among these message call sequences and we will select only those MCS that have
this def-use pair. The def-use pair should be definition clear with respect to the
coupling variable, in a message call sequence. A def-clear path with respect to
variable X is a path that does not contain any definition of X in between the path [11].

In proposed approach we will consider type I coupling sequence, which means that
the definition and the use of coupling variables will be in calling methods not the
client method.

204 M. Ahmad, A. Nadeem, and T.-h. Kim

While selecting call sequences to identify coupling sequences there can be different
scenarios that need to be handled. The cases are shown in Table 1.

Table 1. Def-Use pair Cases in Message Call sequences

Serial No. Invalid Cases Serial No. Valid Cases
I use – use V def – use
II def – def VI def – def – use
III use – def VII def – use – def
IV use – def – def VIII use – def – use

Out of these eight cases of def-use, case I, II, III and IV will be omitted completely

because they do not make a valid def-use pair, like the case V. For cases VI & VII
and VIII we need to consider def clear path with respect to a particular coupling
variable. So, in case VI and VIII we will consider later part and omit first def/use and
in case VII we will consider first part and omit last def.

Taking example of Shape class with its message call sequences in Fig 6 and having
the information of def-use methods and coupling variables, also keeping above
mentioned scenarios of def-use in mind, we need to extract coupling sequences. For
example class Shape specification in fig 2, the coupling variable is position, def and
use methods are Move and Display respectively. Please note that variable position is
both defined and used in method Move, while position is used only in Display
method. Now from the extracted MCS we will select only those MCS in which
position is defined in one method and then without redefinition it is used in another
method, e.g., consider MCS 1 in fig 6, i.e.,

Display(position) FillColor(color) FillColor(color)

In above mentioned call sequence we can see coupling variable position in the

parameter list of ‘Display’ method but it is not present in parameter list of ‘FillColor’
method, which means it, is neither defined nor used in ‘FillColor’. Also from
specifications in fig 2 we can see that position is used and not defined at all, so we
will not select this call sequence because it does not make a valid def-use pair.

Display(position) FillColor(color) Move(position) Move(position)

In above call sequence, coupling variable position is used in ‘Move’ method and

then defined as well. While ‘Display’ only uses coupling variable position. In this call
sequence valid def-use pair lies in the later part of the sequence, so we will select this
call sequence because this sequence resembles case VIII. So we will select MCS 3, 4,
5, 8 and MCS 9 from the listed MCS in Fig 7 as our coupling sequences or test paths.

In object oriented design when the instance of child class is created the call jumps
from constructor of child class and calls the parent class constructor and then child
class constructor is called after creation of parent class instance. This is why MCS
like the following one will be seen in the call sequences, which shows two Init in the
call sequence, the first Init shows parent class constructor and the second Init shows
child class constructor.

 An Automated Approach to Testing Polymorphic Features Using Object-Z 205

Acc::Init() SA::Init() SA::Credit(amount) Acc::Debit(amount)

As discussed earlier, the focus of this paper is on intra-method coupling sequences
therefore the faults that can be catered by the proposed approach are the ones that
occur due to the call from client method. Only the type of above call sequence can be
catered in the presented approach.

4.6 Generating Test Cases

After identifying and extracting coupling sequences we have those call sequences that
need to be tested i.e., the Test Paths. Now we need to provide test data to make test
cases. Test data will be provided manually and then these test cases will be executed
on the code for testing purpose. We also need to provide mapping of specification to
code since our test cases will be executed on code. Here we assume that the code uses
same naming convention for classes, operations and attributes as specified in the input
Object-Z specification of class hierarchy, to avoid the effort of specification to code
mapping. The general format for the test case will be as follows:

[{Test Paths}, {Test data list}] ==>
[{Message(parameterList) NextMessage(parameterList)}, {{Test data list}}]

The test case requires test path and the test data. The selected coupling sequences
are actually the test paths for test cases. We need to provide test data manually for the
following test path. In this case we need value for position which comprises of two
values i.e., x, y positions.

[{Display(position) FillColor(color) Move(position) Move(position)},
{(3,4), (-3,4)}]

5 Evaluation

The approach presented in this paper is automated by developing a prototype tool that
generates test paths from an Object-Z specification. The tool is developed using C#
on Microsoft .NET framework. The system takes Latex source files, for Object-Z
specification, as input and generates test paths whereas test data is manually provided
to the system.

We have also empirically evaluated our approach on a case study, and found it
more effective than existing specification based approaches presented in literature.
We have evaluated our approach by identifying certain evaluation parameters. The
most important of these criteria is the percentage of fault coverage. Majority of the
polymorphism faults are discussed in Offutt et al., fault model [6]. The existing
approaches like [2] and [3] can identify polymorphic faults up to 40% and 50%
respectively. While, keeping the higher abstraction level of specification in view, our
approach can identify up to 70% of the polymorphic faults. If the specification
language related limitations are omitted, our approach can be extended for the
remaining faults as well.

206 M. Ahmad, A. Nadeem, and T.-h. Kim

6 Conclusion and Future Work

This paper discusses specification based testing of polymorphic features in object-
oriented design using formal specification. The proposed approach is based on the
idea of Alexander’s coupling based testing for code. Using Object-Z specification as
input, the proposed approach detects certain polymorphic faults presented by Offut et
al., and generates test cases that can be executed on code. Due to which the faults can
be identified at an early stage of software development. We have developed the
prototype tool to verify the practicality of our approach.

The novel approach can detect faults that may occur due to intra-method calls in
polymorphic relationships, i.e. when pairs of methods are called by the calling client
method. This limitation is because of higher abstraction level of the specification
language, Object-Z. Inter-method coupling sequences are left as future work. To
avoid the limitation of the specification language we plan to use CSP-OZ in future for
handling type II, type III and type IV coupling sequences.

Acknowledgement

This work was supported by the Security Engineering Research Center, granted by the
Korean Ministry of Knowledge Economy.

References

[1] Nadeem, A., Lyu, M.R.: A Framework for Inheritance Testing from VDM++
Specifications. In: 12th Pacific Rim International Symposium on Dependable Computing,
PRDC, pp. 81–88 (December 2006)

[2] Nadeem, A., Malik, Z.I., Lyu, M.R.: An Automated Approach to Inheritance and
Polymorphic Testing using a VDM++ Specification. In: 10th IEEE International
Multitopic Conference (INMIC 2006), Islamabad, Pakistan (December 2006)

[3] Liu, L., Miao, H.: A Specification-Based Approach to Testing Polymorphic Attributes.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 306–
319. Springer, Heidelberg (2004)

[4] Alexander, R.T., Offutt, J.: Coupling-based Testing of O-O Programs. Journal of
Universal Computer Science (JUCS) 10(4) (April 2004)

[5] Alexander, R.T., Offutt, J., Bieman, J.M.: Fault detection capabilities of coupling-based
OO testing. In: Thirteenth International Symposium on Software Reliability Engineering
(ISSRE 2002). IEEE Computer Society, Annapolis (2002)

[6] Offutt, J., Alexander, R., Ye, W., Quansheng, X., Chuck, H.: A Fault Model for Subtype
Inheritance and Polymorphism. In: The Twelfth IEEE International Symposium on
Software Reliability Engineering (ISSRE 2001), Hong Kong, pp. 84–95 (November
2001)

[7] Alexander, R.T.: Testing the Polymorphic Relationships of Object-oriented Programs:
Phd. Dissertation, George Mason University (2001)

[8] Binder, R.V.: Testing Object Oriented Systems, Models, Patterns and Tools. The
Addison-Wesley Object Technology Series (2000) ISBN 0-201-80938-9

 An Automated Approach to Testing Polymorphic Features Using Object-Z 207

[9] Binder, R.V.: Testing object-oriented software: a survey. Journal of Software Testing,
Verification and Reliability, 125–252 (January 1999)

[10] Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers, USA
(1999)

[11] Jin, Z., Offutt, A.J.: Coupling-based Criteria for Integration Testing. The Journal of
Software Testing, Verification, and Reliability, 133–154 (1998)

[12] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs
(1997)

[13] Murray, L., Carrington, D., MacColl, I., Strooper, P.: Extending test templates with
inheritance. In: Software Engineering Conference, Australia, pp. 80–87 (October 1997)

[14] Ammann, P., Offutt, J.: Using Formal Methods To Derive Test Frames in Category-
Partition Testing. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.) COMPASS 1994.
LNCS, vol. 906, pp. 69–80. Springer, Heidelberg (1995)

[15] Smith, G.P.: An Object-Oriented Approach to Formal Specifications: Phd. Dissertation,
University of Queensland (1992)

[16] Meyer, B.: Lessons from the design of the Eiffel libraries, pp. 68–88. Interactive Software
Engineering Inc., Goleta (1990)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 208–217, 2010.
© Springer-Verlag Berlin Heidelberg 2010

IDMS: A System to Verify Component Interface
Completeness and Compatibility for Product Integration

Wantana Areeprayolkij1, Yachai Limpiyakorn1, and Duangrat Gansawat2

1 Department of Computer Engineering,
Chulalongkorn University, Bangkok 10330, Thailand

2 National Electronics and Computer Technology Center,
Pathumthani 12120, Thailand

Wantana.a@student.chula.ac.th, Yachai.L@chula.ac.th,
duangrat.gansawat@nectec.or.th

Abstract. The growing approach of Component-Based software Development
has had a great impact on today system architectural design. However, the de-
sign of subsystems that lacks interoperability and reusability can cause prob-
lems during product integration. At worst, this may result in project failure. In
literature, it is suggested that the verification of interface descriptions and man-
agement of interface changes are factors essential to the success of product in-
tegration process. This paper thus presents an automation approach to facilitate
reviewing component interfaces for completeness and compatibility. The Inter-
face Descriptions Management System (IDMS) has been implemented to ease
and fasten the interface review activities using UML component diagrams as
input. The method of verifying interface compatibility is accomplished by trav-
ersing the component dependency graph called Component Compatibility
Graph (CCG). CCG is the visualization of which each node represents a com-
ponent, and each edge represents communications between associated compo-
nents. Three case studies were studied to subjectively evaluate the correctness
and usefulness of IDMS.

Keywords: component interface compatibility, component dependency graph,
product integration, software process improvement.

1 Introduction

Nowadays, the extension of Object-Oriented scale brings to the Component-Based
approach. Component-Based software Development (CBD) is a discipline which has
emerged as a new approach to deliver software engineering from the in-house indus-
trial system into larger system for Information Technology [1]. It is recommended to
promote the quality dimensions of system components in terms of interoperability and
reusability during system architectural design.

However, one of today project delay problems often occurs in the component
integration process. Many software applications encounter similar difficulties to ef-
fectively integrate the implemented component subsystems. The integration failure

 IDMS: A System to Verify Component Interface Completeness and Compatibility 209

usually results from the flaw of the system architectural design that lacks effective
cooperation and communications among the constituent subsystems. Therefore, the
product integration plan for each subsystem should be well-established during system
architectural design [2].

The investigation of the essence of the product integration process in software de-
velopment was reported in the work of Larsson et al. [3]. The authors implemented
some case studies based on the best practices contained in worldwide well-known
reference models and standards for product integration process, such as ISO/IEC
12207, EIA-632, CMMI, EIA-731.1 and ISO/IEC 15288. The results suggested that
the verification of interface descriptions and management of interface changes are
important factors that impact on the successful implementation of the product integra-
tion process.

An approach of using interface descriptions as a set of important characteristics for
system analyses such as architectural analysis, risk analysis, and change management
analysis was discussed in [4]. The research work implemented a system called Inter-
face Descriptions for Enterprise Architecture (IDEA) to assist the management of
system architectural description within a large corporation. Furthermore, the work
also addressed the usefulness of using a dependency graph for determining the entire
dependency network required to complete all use cases for a single system.

Instead of developing the support tool for enterprise-level system, the focus of this
research is on developing the tool to support reviewing interface descriptions of a
system unit. The tool automatically extracts the input components’ interface descrip-
tions and their compatibility with associated components. The extracted interface
descriptions can then be used in the static review process. The approach in this work
required the detailed format of UML component diagram, i.e. white box view [5] so
as to provide sufficient information for the construction of the Component Compati-
bility Graph (CCG) proposed in this research. The automation of the verification of
component interface compatibility is then carried out by graph traversal.

2 Product Integration Best Practices

Referring to Capability Maturity Model® Integration (CMMI®) [6], the cluster of
activities of product integration is considered as one of the groups of activities that
affect project success. The recommended practices contained in Product Integration
(PI) process area, so called Specific Practice (SP) are shown in Table 1. According to
CMMI Glossary, a process area is a cluster of related practices in an area that, when
implemented collectively, satisfy a set of goals considered important for making im-
provement in that area [6]. From Table 1, the Product Integration process area con-
tains three goals so called Specific Goal (SG). In order to satisfy each SG, a set of
associated SPs needs to be implemented successfully based on an individual organiza-
tional culture. Once all three SGs have been satisfied, it implies that the organization
has a potential to assemble the product from the product components, ensuring that
the product as integrated, functions properly, and deliver the product.

In this paper, we focus on developing a tool to facilitate the implementation of
SP2.1 and partial of SP2.2. That is, SP2.1 requires the implementation of reviewing
the interface descriptions periodically to ensure that each interface description is

210 W. Areeprayolkij, Y. Limpiyakorn, and D. Gansawat

complete and fulfill the requirements by all stakeholders. Example evidence of suc-
cessful implementation of SP2.1 should exist the mapping of the interfaces to the
product component. Regarding SP2.2, the practice emphasizes on interface manage-
ment to ensure that they will be controlled to be compatible throughout the product
life cycle to reduce late discovery of mismatch. Example evidence of successful im-
plementation of SP2.2 would be the existence of a table of relationships among the
different product components.

Table 1. Specific Goals and Specific Practices of Product Integration Process Area [6]

SG 1 Prepare for Product Integration
 SP 1.1 Determine Integration Sequence
 SP 1.2 Establish the Product Integration Environment
 SP 1.3 Establish Product Integration Procedures and Criteria
SG 2 Ensure Interface Compatibility
 SP 2.1 Review Interface Descriptions for Completeness
 SP 2.2 Manage Interfaces
SG 3 Assemble Product Components and Deliver the Product
 SP 3.1 Confirm Readiness of Product Components for Integration
 SP 3.2 Assemble Product Components
 SP 3.3 Evaluate Assembled Product Components
 SP 3.4 Package and Deliver the Product or Product Component

3 Approach Methodology

The automation approach to verifying component interface compatibility in this paper
follows the methodology proposed in [7]. The method consists of three main steps
(Fig.1) which are described in the following sections.

Fig. 1. Approach methodology [7]

 IDMS: A System to Verify Component Interface Completeness and Compatibility 211

3.1 Extraction of Interface Descriptions

The first step is to extract all interface data from the source components illustrated in
UML Component diagrams [5], which can be converted into the Extensible Markup
Language (XML) Metadata Interchange format [8] for automatically generating the
interface descriptions as the output from this step.

The data extracted can be classified into two categories: 1) the data directly ex-
tracted from each component, e.g. component name, and 2) the interface data i.e.
“Required” and “Provided” of each component, class names which have realization
relation inside the component and the data extracted from class which are names of
class interfaces, the method of class that the realized instance is identified by parame-
ter types and variables from interface class. The generation of these component inter-
face descriptions could facilitate the implementation of SP2.1 of Product Integration
to review interface descriptions for completeness as it is easier compared to directly
review for interface descriptions completeness using design documents.

3.2 Construction of Component Dependency Graph

This paper has adapted the approach of Component Architecture Graph (CAG) pre-
sented in the work of Kanjilal et al. [9] combining with dependency tree [10] to gen-
erate the component dependency graph so called Component Compatibility Graph
(CCG) in this work. Each node of CCG represents a component and it contains inter-
face information to support interface compatibility verification. For example, names
of methods, returned values of method, the number of names and parameter types.
CCG is useful since it visualizes the cluster of associated components by addressing
the dependency relationships among components through component’s edges.

3.3 Verification of Interface Compatibility of Components

The graph visualization of components could help clustering the components for or-
dering the sequences of integration plan. The traversal on CCG through each edge
automatically inspects the interface compatibility of the associated components. The
report will be generated at the end of this step.

4 Interface Descriptions Management System

In this work, Interface Descriptions Management System (IDMS) is implemented to
automate parts of product integration process. That is, the system facilitates reviewing
component interfaces for completeness and compatibility. Details are described as
follows.

4.1 Design

The functionalities of IDMS are illustrated by UML Use-case diagram as depicted in
Fig. 2. Further design of the system at the component level complying with UML 2.0
[5] is shown in Fig. 3.

212 W. Areeprayolkij, Y. Limpiyakorn, and D. Gansawat

Fig. 2. Use-case diagram showing functionalities of IDMS

Fig. 3. Component diagram of IDMS

The component diagram (Fig.3) illustrates the component architecture in “black
box” view. It is composed of component, its interfaces and dependency relationships
with other components. A component is represented by the rectangle symbol. The
behavior of a component can be defined in terms of required interfaces and provided
interfaces. The provided interfaces are depicted using “lollipop” notation, while the
required interfaces use “socket” notation. A lollipop and a socket are represented by a
circle and a semicircle respectively. Note that these interface notations indicate the
dependency relationships between components by revealing the communication be-
tween components through their interfaces.

According to Fig. 3, IDMS consists of seven components namely Compati-
bilityVerification, ComponentDependencyGraph, InterfaceDescriptionsExtraction,

 IDMS: A System to Verify Component Interface Completeness and Compatibility 213

MainSystemProcess, MainSystemUI, ReportExporter, and XMLUtilities. Each com-
ponent is defined the dependency relationships through its interfaces in terms of
provided and required. For example, the CompatibilityVerification component com-
municates with ReportExporter component via the provided CompatibilityResult
interface, while interacts with ComponentDependencyGraph component via the re-
quired ComponentDependencyGraph interfaces.

Additional interface properties of each component are required as input to the
IDMS. For example, interfaces require expanding its data members and operations as
illustrated in Fig. 4.

Fig. 4. Part of refined component diagram as input into IDMS

4.2 Implementation

IDMS is implemented in Java. The first build to extract all components’ interface data
from the input component diagram calls the library named DOMParser [11] to stream
of XML text. Example screen demonstrating the feature of XML preview of the

Fig. 5. Example screen of the feature of XML preview of the component diagram

www.SoftGozar.Com

214 W. Areeprayolkij, Y. Limpiyakorn, and D. Gansawat

component diagram is depicted in Fig. 5, which contains the XML Preview tab at the
right panel of Component Dependency Graph System. Once the user has imported a
component diagram in XML file format, the system read this file as input, and then
XML tags and values are contained in the DOM tree table window. The source of the
XML file is shown in the XML Text Editor window.

Fig.6 displays an example of the interface descriptions extracted from the input
component diagram (Fig.3), which has been converted into XML format.

Fig. 6. Example screen of the extracted interface descriptions

Fig. 7. Example screen of Component Compatibility Graph

 IDMS: A System to Verify Component Interface Completeness and Compatibility 215

The construction of component dependency graph called CCG is implemented by
calling the library named Grappa [12]. Example of CCG related to the component
diagram (Fig.3) is shown in Fig.7. CCG helps verifying interface compatibility by
inspecting the interface information contained in each node representing a component.

Example result of verifying component interface compatibility is reported in Fig.8.

Fig. 8. Example screen as a result of verifying component interface compatibility

4.3 Preliminary Results

The evaluation of the IDMS implemented in this work is assessed in terms of the
correctness and the usefulness. For the correctness, the system was inspected whether
all features function properly. For example, the system can extract interface descrip-
tions from the input component diagram correctly, construct the component depend-
ency properly, and traverse the graph to generate valid results. We carried out the
experiments on three case studies: IDMS itself, simple ordering product system, and
Computed Tomography (CT) scan image visualization system. The preliminary re-
sults were satisfactory to the architectural designer by examining the outputs of the
system. Regarding the aspect of usefulness, IDMS can be considered as the evidence
of the implementation of practices recommended in the area of product integration in
CMMI process improvement model. In particular, referring to the Process Implemen-
tation Indicator Descriptions (PIID) [13], the interface descriptions generated from
IDMS can be considered as the Direct Artifact resulting from performing interface
descriptions review for completeness (SP2.1). Regarding SP2.2, the Component
Compatibility Graph can be considered as the mechanism to discover the interface
mismatch among different product components, providing an evidence of partial im-
plementation of interface management.

216 W. Areeprayolkij, Y. Limpiyakorn, and D. Gansawat

5 Conclusion

The belief of process management premise has encouraged the focus on improving
the quality of process that will influence and result in the quality of product. Referring
to many well-known process models and standards, the best practices of product inte-
gration recommend activities to ensure interface compatibility, for example, review-
ing interface descriptions for completeness and managing interface throughout the
product life cycle to reduce late discovery of mismatch [6]. Therefore, this research
has implemented the Interface Descriptions Management System, or IDMS, to gener-
ate the interface descriptions of all components existing in the input UML component
diagrams. Compared to reviewing the completeness of component interfaces using
design documents, the use of the generated interface descriptions could accelerate and
ease the task. In addition, IDMS is capable of inspecting interface compatibility and
reporting the mismatches discovered. The Component Compatibility Graph, which is
a kind of component dependency graph, is invented to support reviewing interface
compatibility between associated product components. The correctness and useful-
ness of IDMS were subjectively evaluated on three case studies. The results were
satisfactory.

Acknowledgments. This research has been funded by Thailand Graduate Institute of
Science and Technology (grant number TG-01-51-084), National Science and Tech-
nology Development Agency (NSTDA) and National Electronics and Computer
Technology Center (NECTEC).

References

1. Lau, K.-K.: Component-Based Software Development: Case Studies. World Scientific
Publishing, Singapore (2004)

2. Stavridou, V.: Integration in software intensive systems. Journal of Systems and Soft-
ware 48, 91–104 (1999)

3. Larsson, S., Myllyperkiö, P., Ekdahl, F., Crnkovic, I.: Software product integration: A case
study-based synthesis of reference models. Information and Software Technology 51,
1066–1080 (2009)

4. Garg, A., Kazman, R., Chen, H.-M.: Interface descriptions for enterprise architecture. Sci-
ence of Computer Programming 61, 4–15 (2006)

5. Object Management group: Unified Modeling Language: Superstructure version 2.0 (2005),
http://www.omg.org

6. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI® Second Edition Guidelines for Process In-
tegration and Product Improvement. Addison-Wesley, Boston (2007)

7. Areeprayolkij, W., Limpiyakorn, Y., Gansawat, D.: An Approach to Verifying Interface
Compatibility of Components with Component Dependency Graph. In: 2nd International
Conference on Systems Engineering and Modeling (ICSEM), Bangkok, pp. 509–513
(2010)

8. Object Management group: MOF 2.0/XMI Mapping version 2.1.1 (2007),
http://www.omg.org

 IDMS: A System to Verify Component Interface Completeness and Compatibility 217

9. Kanjilal, A., Sengupta, S., Bhattacharya, S.: CAG: A Component Architecture Graph. In:
2008 Technical Conference of IEEE Region 10 (TENCON 2008), Hyderabad, pp. 1–6
(2008)

10. Binder, V.R.: Testing Object-Oriented Systems: Models, Patterns, and Tools. World Addi-
son-Wesley, Reading (2003)

11. The Apache Xerces Project, http://xerces.apache.org/
12. Grappa - A Java Graph Package,

http://www2.research.att.com/~john/Grappa/
13. Ahern, D.M., Armstrong, J., Clouse, A., Ferguson, J.R., Hayes, W., Nidiffer, K.E.:

CMMI® SCAMPI Distilled Appraisals for Process Improvement. Addison-Wesley, USA
(2005)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 218–227, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Software Framework for Flexible User Defined
Metaheuristic Hybridization

Suraya Masrom1, Siti Zaleha Zainal Abidin1,
Puteri Norhashimah Megat Abdul Rahman1, and Abdullah Sani Abd. Rahman2

1 Faculty of Computing and Mathematical Sciences
Universiti Teknologi MARA, Malaysia

{suray078,phashi655}@perak.uitm.edu.my
sitizaleha533@salam.uitm.edu.my

2 Computer and Information Science Department
Universiti Teknologi PETRONAS, Malaysia
sanirahman@petronas.com.my

Abstract. Metaheuristic algorithms have been widely used for solving Combi-
natorial Optimization Problem (COP) since the last decade. The algorithms can
produce amazing results in solving complex real life problems such as schedul-
ing, time tabling, routing and tasks allocation. We believe that many researchers
will find COP methods useful to solve problems in many different domains.
However, there are some technical hurdles such as the steep learning curve, the
abundance and complexity of the algorithms, programming skill requirement
and the lack of user friendly platform to be used for algorithm development. As
new algorithms are being developed, there are also those that come in the form
of hybridization of multiple existing algorithms. We reckon that there is also a
need for an easy, flexible and effective development platform for user defined
metaheuristic hybridization. In this article, a comparative study has been per-
formed on several metaheuristics software frameworks. The result shows that
available software frameworks are not adequately designed to enable users to
easily develop hybridization algorithms. At the end of the article, we propose a
framework design that will help bridge the gap. We foresee the potential of
scripting language as an important element that will help improve existing
software framework with regards to the ease of use, rapid algorithm design and
development. Thus, our efforts are now directed towards the study and devel-
opment of a new scripting language suitable for enhancing the capabilities of
existing metaheuristic software framework.

Keywords: optimization;metaheuristic;hybridization;scripting language; software
framework.

1 Introduction

Starting from the last decade, researchers have been seriously looking into meta-
heuristic based techniques to solve COP based problems such as scheduling and
time tabling[1]. They have been able to achieve remarkable results using the tech-
niques. Some examples of metaheuristic algorithms are Genetic Algorithm

 Software Framework for Flexible User Defined Metaheuristic Hybridization 219

(GA)[2], Ant Colony Optimization (ACO)[3], Particle Swarm Optimization
(PSO)[4], Tabu search[5] and Simulated Annealing[6].

Since COP relating to real life applications is categorized as a non deterministic
polynomial time hard(NP-hard) problem, the process of finding the optimal solution is
considered as exponential to the problem size. This translates into significant cost (time)
to the performance of the algorithm. Depending on a single metaheuristic method can be
very restrictive especially when applied to a real life and high complexity problems.
This is the reason why hybridization has been investigated [7]. Some successful works
have been achieved in metaheuristic and its variant hybridization[8-12].

This research is initiated with the focus on various aspects of the design and im-
plementation of metaheuristics hybridization. The potential of using scripting lan-
guage based application for its simple, flexible and efficient development will be
explored in the hybridization design and implementation.

The remaining of the paper is organized as follows. Section 2 introduces general
concepts on metaheuristic and its hybridization. Several software frameworks for the
metaheuristic algorithm development is explained in section 3 followed by a compara-
tive study on the software framework features in section 4. Before concluding, the
proposed scripting language software framework designed is presented in section 5.

2 Metaheuristic Hybridization

Prior to metaheuristic, an exact heuristic method has been used in solving COP. How-
ever, as the problem size becomes larger and complex for real world cases, the
method has been very time consuming and decrease in practicality[13]. So, metaheu-
ristic has been introduced as an extension framework from the exact heuristic and
local search methods.

In line with the goal, metaheuristic hybridization for algorithm improvement is be-
coming popular among the research community especially when dealing with real world
and multi objectives Combinatorial Optimization Problem (COP). The metaheuristic
research community has agreed that good metaheuristic should satisfy two equally im-
portant criteria; diversity and intensity[1, 14-16]. Diversity is associated with explora-
tion while intensity is related to exploitation competence. It should be noted that one
single metaheuristic is originally designed to act upon on one criterion only.

There are many works that have been successfully carried out regarding to meta-
heuristic hybridization. For example, ant colony optimization with tabu Search is
introduced for solving the Open Vehicle Routing Problem [9]. Similarly, the tabu list
concept in tabu search has been applied in particle swarm optimization search strategy
[17]. There is also hybridization between genetic algorithm and particle swarm opti-
mization [15, 18-20] for producing remarkable results compared to the performance
of single particle swarm algorithm. In contrast, the hybridization that involves ant
colony, simulated annealing and tabu search with exact heuristic techniques, often
significantly more effective in terms of running time and solution quality [12].

3 Software Frameworks for Metaheuristic

Developing programming code for COP and its metaheuristic algorithm from scratch
has been considered as complex [21, 22]. The process will have to go through huge

220 S. Masrom et al.

works especially to those with no fundamental knowledge on computer programming
concept and languages such as C, C++, C# and JAVA. Some of them are developed
in object oriented programming paradigm, thus requiring additional knowledge on
abstract and intricate programming concepts.

Recently, several metaheuristics software frameworks have been developed with
the concern to reduce development complexity and phase cycle. Some of the available
software frameworks are iOPT, HotFrame, EasyLocal++, ParadisEO, HeuristicLab and
JCLEC.

3.1 iOPT

The iOPT [23] software framework has been developed in JAVA. The software pro-
vides generic framework for developing scheduling applications and has a logic struc-
ture for heuristic search algorithms. The current supported metaheuristics are based
on local search paradigm like simulated annealing, tabu search and Guided Local
Search as well as evolutionary optimization.

The component GUI provided in iOPT allows easy and rapid application develop-
ment. However, the component based interface is not originally designed for flexible
user defined hybridization. As a result, the creation and addition of new metaheuristic
and hybridization would involve very complicated task and process.

3.2 HotFrame

HotFrame[24] or Heuristic Optimization Framework is a software framework developed
in C++ that provides both component and template based paradigm. It incorporates
with several local search algorithms such as steepest descent, simulated annealing and
tabu search. Generality and expendability are the major characteristics for the software
design. These will allow general classes to be adaptable for new instantiation of meta-
heuristic and hybridization specific to users’ need.

Unfortunately, HotFrame is not sufficient enough to create useful representations
for many types of metaheuristic algorithms[25]. The generality of metaheuristic class
is merely tailored to local search type metaheuristic. Moreover, amendment and inclu-
sion of new metaheuristic and hybridization can be done in a complicated way that
requires programming knowledge in editing the code skeleton provided.

3.3 EasyLocal++

EasyLocal++ provides a variety of hybrid local search techniques in a relatively “neat
conceptual scheme” [26]. The design and analysis of local search algorithms use ob-
ject oriented based software framework to accommodate the reusability aspect. The
EasyLocal++’s algorithm is flexible in solving numerous scheduling problems, how-
ever, it has very complicated and difficult to follow constructions and descriptions.
The metaheuristic libraries are only limited to local search strategies, which consist of
hill climbing, tabu search and simulated annealing. Extensibility and hybridization in
EasyLocal++ are also restricted to the above search strategies only.

 Software Framework for Flexible User Defined Metaheuristic Hybridization 221

3.4 ParadisEO

ParadisEO [27] is a white-box object oriented framework which provides a broad
range of features including evolutionary algorithms, local search, hybridization, paral-
lel and distribution models. The specific setting for metaheuristic and application can
be easily configured from the component based interface. Code templates in the form
of text editor will be generated regarding to the users setting which is free for further
editing and customization. Working with ParadisEO requires users to have funda-
mental knowledge and understanding of the object oriented programming concept.

3.5 HeuristicLab

HeuristicLab[28] sofware design describes a very generic and extensible framework,
flexible for new metaheuristic and problem definition. Fig.1 shows the general class
abstraction in HeuristicLab.

Fig. 1. Interaction between HeuristicLab classes [28]

The component based GUI facilitates users for new algorithm and problem de-
scription. Based on the setting, automated codes generation and compilation will be
implemented at the back end.

HeuristicLab has also introduced new plug-in concept in the framework. Although
users are given flexibility in choosing variety of plug-ins, they will find difficulties to
combine (hybridize) different plug-ins from the internal structure. In actuality, the
users need to create new plug-in for the hybridization purposes before execute it inde-
pendently. Finally, the users would have to install it to the framework as a new plug-in.

3.6 JCLEC

JCLEC software framework has two main concerns; maximum reusability and mini-
mum programming efforts[29]. The architecture has been divided into three; system
core, experiment runner, and GenLab. The system core is where all the systems and
algorithms definition are built in. The experiment runner facilitates Evolutionary

User

Problem
Front End

Algorithm
Front end

 GUI

Problem

Solutions

Framework

Result

Algorithm manipulates

 manipulates

creates and
evaluates

manipulates and
control

 manipulates

 informs

 retrieves Generates and store

222 S. Masrom et al.

Algorithms (EAs) execution configuration. GenLab is the GUI for general user win-
dows setting as well as results visualizations. The experiment runner can be seen as a
simple EA scripting environment.

With respect to hybridization, JCLEC only allows combination of different EA al-
gorithms which consist of genetic algorithm, genetic computing, evolutionary algo-
rithm and evolutionary computing.

4 Limitations of the Available Software Frameworks

Most of the available software frameworks provide a variety of software library collec-
tions for some metaheuristics. However, they either have none or very limited hybridi-
zation capabilities. Some of them focus on either local search or evolutionary algorithms
only. As a result, hybridization is restricted within the limited metaheuristics.

In most of the software frameworks, amendment or creation of new hybridization
would require the programmer to write new code either from scratch or by customiz-
ing the provided template. In any case, it is imperative that the programmer have deep
understanding of the class libraries. On the other hand, component based interface
applied by most software framework provide a convenient way for users to define
their problem and algorithm using the GUI. None of currently available frameworks
provide user defined metaheuristics hybridization capability. This is due to the restric-
tion in the component based GUI in giving detail representation of classes, functions
flow and data exchange among metaheuristic classes [30]. Table 1 summarizes all the
software framework features with their strengths and limitations.

Table 1. Features comparison among software frameworks

Name Paradigm Usability Extendibility Dynamic
configuration

User defined
Hybridization

iOPT[23] Component General Low Static Not provided

Hotframe[24] Template Expert Moderate Static Low

EasyLocal++[26] Template Expert Moderate Static Low

ParadisEO [27] Template Expert Moderate Static Low

HeuristicLab[28]

Component
or
Template

General
or
Expert

High

Static Low

JCLEC[29]

Scripting
language
or
component

General Low Dynamic

Not provided

 Software Framework for Flexible User Defined Metaheuristic Hybridization 223

Most software frameworks use similar programming paradigm that is either com-
ponent based, template based, scripting language or command line. This paradigm
refers to the method used in the programming interface including program setting and
configuration. Component based paradigm offers Graphical User Interface (GUI) and
drag and drop mechanisms. The template based paradigm require users to include
and customize existing code skeleton according to their need.

The usability feature is the ease of use level for the software framework without
user prior training. The levels are categorized as either Expert or General user. The
Expert refers to someone who is having a high programming competency, while the
General can include users from non-related information technology (IT) fields.

One important feature of software framework is extendibility. It refers to the possi-
bility of having users to add non standard metaheuristic algorithms to the existing
software libraries. The platform is deemed highly extendable if the users are not re-
quired to have extensive knowledge in computer programming and they are able to
contribute to the software framework. In contrast, moderate level is associated with
template based paradigm which requires some basic knowledge of computer pro-
gramming for doing code modifications. Extending software framework by develop-
ing new program would be considered as low extendibility.

The software framework is considered as dynamically configured if a user is only
asked to write a single configuration file to describe any particular problem. He/she
will be able to test several algorithms at the same time using the same existing con-
figuration file.

User defined hybridization is defined by the possibility of merging two or more
metaheuristic algorithms together to create a new one. Each package is assessed by
how easy it is for the user to create new hybrid algorithms without prior formal train-
ing on the software framework.

5 Scripting Language Paradigm

Scripting language is an alternative programming method for easy, effective and rapid
system development. It has became popular because of the simple language structure
and strong functionality[31]. Moreover, scripting language can be designed to have
the capabilities for creating dynamic memory management, powerful data type and
data structure comparable to other programming languages [32].

Scripting language has been effectively deployed in some successful applications
[33-37]. In these applications, the language operates as an interface paradigm for C++
and JAVA libraries as well as Visual Basic and Cobra components. The scripting
language is also effectiveness in defining the integration rules among agents in dis-
tributed systems [35].

5.1 Scripting Language for Metaheuristic

Among the available software frameworks for metaheuristic, JCLEC[29] is the only
one that implements scripting language paradigm. Its design however, is merely di-
rected towards EAs algorithms and dynamic configurations capability only. We pro-
pose a framework, equipped with a compiled scripting language capability along with

224 S. Masrom et al.

two other capabilities. First, our framework will provide metaheuristic generalization
capability which will make it highly extensible with respect to problems and algo-
rithms. Second, the scripting language will be designed so that metaheuristics
hybridization will become easy to users. We were inspired by the design of the Heu-
risticLab[28] with respect to the generic and extensible framework. However, we
reckon that two extensions are necessary to make hybridization possible; hybridiza-
tion class abstraction for enabling easy user defined hybridization and operator class
abstraction for general operation definition. Fig. 2 shows the class interaction in the
proposed framework.

Fig. 2. The classes interaction in the proposed software framework

There are six general abstraction classes defined in the software frameworks as Al-
gorithm, Problem, Solution, Hybridize, Operator and Result.
Scripting language command can be used by users at the front end to inherit, manipulate
and control the particular classes. Inherit process permits users to instantiate new class
of algorithm, problem and hybridization process. Selection of metaheuristic for hy-
bridization can be manipulated from the Hybridize class that communicates with
Algorithm. There are many common metaheuristics that have been pre inherited
from the Algorithm class such as particle swarm, ant colony, tabu search, simulated
annealing and genetic algorithm. The implementation of the scripting language con-
structs will be embedded into the JACIE(Java Authoring for Collaborative Interaction
Environment) [37, 38] software environment.

6 Conclusion

Over the last decade, metaheuristics have become a substantial part of the optimiza-
tion software frameworks. Ready to use programs from software framework or class
libraries related to metaheuristics are being developed increasingly. Until recently
however, most of them are meant for expert users with advance knowledge in
programming language. Component based GUI has been introduced to reduce diffi-
culties but it still does not produce easy and flexible user defined hybridization capa-
bilities. Single metaheuristic can sometimes be quite limited in providing good and

User

Algorithm
instruction

Problem
instruction

Hybridize
instruction

Sripting Language
Platform

Hybridize

Result

Solution

Software framework

Algorithm

Result
instruction

Problem manipulates

manipulates
and controls

creates and
evaluate

 manipulates

manipulates
and controls

 deliver

 manipulates Delegates
solutions

Operator

generates

 Software Framework for Flexible User Defined Metaheuristic Hybridization 225

fast solution for real case of COP. It is therefore very important to have a flexible
metaheuristics hybridization development environment. Scripting language, defined
as a simplified computer programming language, has the potential in providing the
desired environments for metaheuristics development. It can offer the possibility for
novice users to define metaheuristics hybridization themselves. The implementation
process is easier than the template based method. Moreover, with the scripting lan-
guage, dynamic application configuration for several metaheuristics can all be writ-
ten in a single file. This will help create a more effective development platform for
metaheuristics hybridization.

Acknowledgement

The authors would like to thank Universiti Teknologi MARA for its financial support
to this project.

References

1. Affenzeller, M., Beham, A., Kofler, M., Kronberger, G., Wagner, S.A., Winkler2, S.:
Metaheuristic Optimization. In: Buchberger, B., Affenzeller, M., Ferscha, A., Haller, M.,
Jebelean, T., Klement, E.P., Paule, P., Pomberger, G., Schreiner, W., Stubenrauch, R.,
Wagner, R., Weiß, G., Windsteiger, W. (eds.) Hagenberg Research, pp. 103–155. Springer,
Heidelberg (2009)

2. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic Pro-
gramming - Modern Concepts and Practical Applications. CRC Press, Boca Raton (2009)

3. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press Ltd., Cambridge (2004)
4. Clerc, M.: Particle Swarm Optimization. In: ISTE (2006)
5. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1998)
6. Laarhoven, P.J.M.V., Aarts, E.H.L.: Simulated Annealing: Theory and Applications

(Mathematics and Its Applications). Kluwer Academic Publishers Group, Dordrecht
(1988)

7. Blum, C., Roli, A.: Hybrid Metaheuristics: An Introduction. In: Blum, C., Aguilera,
M.J.e.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, vol. 114, pp. 1–30. Springer,
Heidelberg (2008)

8. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid algorithm
for university course timetabling. Journal of Scheduling 9(5), 403–432 (2006)

9. Li, X.-Y., Tian, P., Leung, S.: An ant colony optimizationmetaheuristic hybridized with
tabu search for open vehicle routing problems. Journal of the Operational Research Soci-
ety 60, 1012–1025 (2009)

10. Martens, A., Ardagna, D., Koziolek, H., Mirandola, R., Reussner, R.: A Hybrid Approach
for Multi-attribute QoS Optimisation in Component Based Software Systems. In: Heine-
man, G.T., Kofron, J., Plasil, F. (eds.) Research into Practice – Reality and Gaps. LNCS,
vol. 6093, pp. 84–101. Springer, Heidelberg (2010)

11. Adewumi, A.O., Sawyerr, B.A., Ali, M.M.: A heuristic solution to the university time-
tabling problem. Engineering Computations 26(7-8), 972–984 (2009)

12. Raidl, G.u.R., Puchinger2, J.: Combining (Integer) Linear Programming Techniques and
Metaheuristics for Combinatorial Optimization. In: Blum, C., Aguilera, M.J.e.B., Roli, A.,
Sampels, M. (eds.) Hybrid Metaheuristics, vol. 114, pp. 31–62. Springer, Heidelberg
(2008)

226 S. Masrom et al.

13. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)
14. Wei-min, Z., Shao-jun, L., Feng, Q.: θ -PSO: a new strategy of particle swarm optimiza-

tion. Journal of Zhejiang University - Science A 9(6), 786–790 (2008)
15. Tiew-On, T., Rao, M.V.C., Loo, C.K., Sze-San, N.: A new class of operators to accelerate

particle swarm optimization. In: The 2003 Congress on Evolutionary Computation, CEC
2003, vol. 2404, pp. 2406–2410 (2003)

16. Shuang, B., Chen, J., Li, Z.: Study on hybrid PS-ACO algorithm. Applied Intelligence
(2009)

17. Wen, W., Liu, G.: Swarm Double-Tabu Search. In: Wang, L., Chen, K., S. Ong, Y. (eds.)
ICNC 2005. LNCS, vol. 3612, pp. 1231–1234. Springer, Heidelberg (2005)

18. Stacey, A., Jancic, M., Grundy, I.: Particle swarm optimization with mutation. In: The
2003 Congress on Evolutionary Computation, CEC 2003, vol. 1422, pp. 1425–1430
(2003)

19. Wei, X., Xingsheng, G.: A hybrid particle swarm optimization approach with prior cross-
over differential evolution. In: Proceedings of the First ACM/SIGEVO Summit on Genetic
and Evolutionary Computation. ACM, New York (2009)

20. Matthew, S., Terence, S.: Breeding swarms: a GA/PSO hybrid. In: Proceedings of the
2005 Conference on Genetic and Evolutionary Computation. ACM, New York (2005)

21. Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Beham, A., Braune, R., Affenzeller,
M.: Benefits of Plugin-Based Heuristic Optimization Software Systems. In: Moreno Díaz,
R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS, vol. 4739, pp.
747–754. Springer, Heidelberg (2007)

22. Jos Garc, N.a., Enrique, A., Francisco, C.: Using metaheuristic algorithms remotely via
ROS. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Compu-
tation. ACM, New York

23. Voudouris, C., Dorne, R., Lesaint, D., Liret, A.: iOpt: A Software Toolkit for Heuristic
Search Methods. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 716–729. Springer,
Heidelberg (2001)

24. Fink, A., Voß, S.: Hotframe: A Heuristic Optimization Framework. In: Optimization Soft-
ware Class Libraries. Operations Research/Computer Science Interfaces Series, vol. 18,
pp. 81–154. Springer, US (2002)

25. Ciarleglio, M.I.: Modular Abstract Self-Learning Tabu Search (MASTS) Metaheuristic
Search Theory and Practice. PhD, University of Texas, Austin (2009)

26. Gaspero, L.D., Schaerf, A.: EASYLOCAL++: an object-oriented framework for flexible
design of local search algorithms. Software-Practice and Experience, 1–34 (2003)

27. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design of par-
allel and distributed metaheuristics. Journal of Heuristics - Special Issue on New Advances
on Parallel Meta-Heuristics for Complex Problems 10, 357–380 (2004)

28. Wagner, S., Affenzeller, M.: HeuristicLab: A Generic and Extensible Optimization Envi-
ronment. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.)
Adaptive and Natural Computing Algorithms, pp. 538–541. Springer, Vienna (2005)

29. Ventura, S., Romero, C., Zafra, A., Delgado, J.A., Hervás, C.: JCLEC: a Java framework
for evolutionary computation. In: Soft Computing - A Fusion of Foundations, Methodolo-
gies and Applications, Engineering, vol. 12. Springer, Heidelberg (2008)

30. Kramer, J., Magee, J.: Dynamic Configuration for Distributed Systems. IEEE Transactions
on Software Engineering SE-11(4), 424–436 (1985)

31. Abidin, S.Z.Z.: Interaction and Interest Management in a Scripting Language. In: Com-
puter Science, University of Wales, Swansea (2006)

32. Spinellis, D.: Java makes scripting languages irrelevant? Software 22(3), 70–71 (2005)

 Software Framework for Flexible User Defined Metaheuristic Hybridization 227

33. Robert, M.S., Denis, D., Kenneth, G.F., Amol, J.: Extending a scripting language for vis-
ual basic forms. SIGPLAN Not. 40(11), 37–40 (2005)

34. Tongming, W., Ruisheng, Z., Xianrong, S., Shilin, C., Lian, L.: GaussianScriptEditor: An
Editor for Gaussian Scripting Language for Grid Environment. In: Eighth International
Conference on Grid and Cooperative Computing, GCC 2009, pp. 39–44 (2009)

35. Hua, X., Qingshan, L., Yingqiang, W., Chenguang, Z., Shaojie, M., Guilin, Z.: A Scripting
Language Used for Defining the Integration Rule in Agent System. In: IEEE International
Conference on e-Business Engineering, ICEBE 2008, pp. 649–654 (2008)

36. Winroth, H.: A scripting language interface to C++ libraries. In: Technology of Object-
Oriented Languages and Systems, TOOLS 23, Proceedings, pp. 247–259 (1997)

37. Abidin, S.Z.Z., Chen, M., Grant, P.W.: Managing interaction for multimedia collaboration
- through the keyholde of noughts and crosses games. In: IEEE International Symposium
on Multimedia Software Engineering, pp. 132–135

38. Haji-Ismail, A.S., Min, C., Grant, P.W., Kiddell, M.: JACIE-an authoring language for
rapid prototyping net-centric, multimedia and collaborative applications. Multimedia
Software Engineering, 385–392 (2000)

Program Visualization for Debugging Deadlocks

in Multithreaded Programs�

Byung-Chul Kim and Yong-Kee Jun��

Gyeongsang National University, Jinju, 660-701, South Korea

{bckim,jun}@gnu.ac.kr

Abstract. Debugging deadlocks in multithreaded programs is a notori-

ously difficult task. A key reason for this is to understand the high

behavioral complexity resulting from the inherent nondeterminism of

multithreaded programs. We present a novel visualization technique which

abstracts the nested patterns of locks and represents the happens-before

relation of the patterns. We implement the technique in a prototype tool

for Java, and demonstrate its power using a number of multithreaded Java

programs. The experimental result shows that this graph provides a sim-

ple yet powerful representation to reason about deadlocks in an execution

instance.

Keywords: Multithreaded programs, deadlock debugging, visualization.

1 Introduction

In multithreaded programs with nested locks, a deadlock blocks a set of threads
forever when a thread in the set is trying to acquire a lock already held by an-
other thread in the set. Unfortunately, debugging deadlocks in multithreaded
programs is a notoriously difficult task due to non-repeatability and high behav-
ioral complexity of multithreaded programs. To address such non-repeatability
problem, a number of efficient techniques [1,2,3] have been developed to detect
various conditions which can leads to deadlocks in multithreaded programs. De-
spite advances on the non-repeatability problem, the other problem remains – a
trace of an execution with bugs can be complicated and large.

Visualization [4,5] has played a critical role in helping to develop intuition
about non-deterministic constructs and programming errors in multithreaded
programs. Many approaches use traces to visualize a partial-order relation [6]
of events for representing the behavior of multithreaded programs. Previous
visualization, however, is hard to understand the nested patterns in which locks

� This research was supported in part by the MKE (The Ministry of Knowledge Econ-

omy), Korea, under the ITRC (Information Technology Research Center) support

program supervised by the NIPA (National IT Industry Promotion Agency), NIPA-

2010-(C1090-1031-0007).
�� Corresponding author: In Gyeongsang National University, he is also involved in the

Research Institute of Computer and Information Communication (RICIC).

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 228–236, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Program Visualization for Debugging Deadlocks in Multithreaded Programs 229

are acquired and released by each thread because they represent only a partial-
order relation of locking operations.

We present a novel visualization technique which represents the nested pat-
terns of locks on a causality graph, called Lock-Pattern Causality Graph (LPCG).
Nodes in the graph represent the nested patterns of locks and each edge in the
graph represents the happens-before relation between patterns. A nested pattern
of locks is graphically represented by a set of rectangles with a layered structure,
where each rectangle represents a lock in the pattern. Edges are depicted by a line
with an arrow. We implement the technique in a prototype tool, and demonstrate
its power using a number of multithreaded Java programs. The demonstration
shows that this graph provides a simple yet powerful representation to reason
about deadlocks in an execution instance.

This paper is organized as follows. Section 2 describes an execution model of
multithreaded programs. Section 3 presents the LPCG presented by this paper.
Section 4 demonstrates our visualization on some benchmark programs. Section
5 describes the related works. Finally, conclusion and future works on this paper
are given in Section 5.

2 An Execution of Multithreaded Programs

An execution of a multithreaded program is represented by a trace σ which is
a finite sequence e1, e2, ..., en of events. An event e ∈ σ is a tuple (t, action, s),
where t is the identity of the thread generating this event, s is the line number
where this event is generated, and action is one of fork(u), join(u), lock(l), and
unlock(l). The action fork(u) creates a new thread with identifier u. The action
join(u) blocks until the thread with identifier u terminates. The actions lock(l)
and unlock(l) respectively acquire and release a lock with identifier l.

The events in a multithreaded execution can be ordered by happens-before
relationship. If an event ei happens before an event ej , then ei must occur before
ej in all feasible executions of the execution. Given a trace σ = e1, e2, ..., en, the
happens-before relation ei → ej for σ is the smallest transitively-closed relation
satisfying the following conditions:

– Thread(ei) = Thread(ej) and i < j.
– ei has action fork(Thread(ej)).
– ej has action join(Thread(ei)).

The nested-by relation of locks is defined as an order in which locks are ac-
quired and released by threads. If a lock m is nested within a lock l, denoted
〈l〈m〉〉, a thread acquires lock l before acquiring lock m and releases lock m
before releasing lock l. A root lock is a lock which is not nested by a lock, and
a leaf lock does not have a lock within it. A lock pattern is a pattern in which
a thread acquires and releases a root lock and locks nested within the root lock.
Given a lock pattern P , the nested level of a lock l ∈ P , denoted by Level(l, P), is

230 B.-C. Kim and Y.-K. Jun

Fig. 1. A trace collected from a execution of a multithreaded program which consists

of four threads

the number of locks which nest lock l, and the breadth of a lock l ∈ P , denoted
by Breadth(l, P) is the number of leaf rocks in lock l. The nested depth of P ,
denoted by Depth(P), is the maximum number of Level(l, P), where l ∈ P .

Figure 1 shows a trace collected from an execution of a multithreaded program
with four threads and four locks. Thread main has two lock patterns such that
are 〈l2〈l3〉〈l4〉〉, and 〈l3〈l2〉〉. Before obtaining the first lock pattern, main thread
creates t1 thread and before obtaining the second lock pattern, main thread
creates t2 and joins t1. Thread t1, created by main thread, has one lock pattern
〈l1〈l2〈l3〉〉〉 after creating t3 thread and before joining t3 thread. After having
a lock pattern 〈l1〈l3〈l2〉〉〉, t2 thread has another lock pattern 〈l1〈l4〉〉. While
having the lock pattern 〈l2〈l3〉〈l4〉〉 obtained by main thread has the nested
depth of one, the nested pattern 〈l1〈l2〈l3〉〉〉 by t1 thread has the nested depth
of two.

3 Program Visualization

In this section, we describe the lock-pattern causality graph presented by this
paper and explain the usefulness of the graph for debugging deadlocks in multi-
threaded program.

3.1 Lock-Pattern Causality Graph (LPCG)

We represent the behavior of multithreaded programs on a causality graph, called
Lock-Pattern Causality Graph (LPCG). A LPCG G is a pair (V, R) where V is
a set of nodes and E ⊆ {(u, v)|u, v ∈ V ∧ u �= v} is a set of directed edges. Each
node in V encodes a tuple (t, P, ϕ), where t is a thread, P is a lock pattern,
and ϕ is one of the following types: a) terminal : a node starting and terminat-
ing the execution of a thread, b) fork : a node generating a child thread, c) join: a

Program Visualization for Debugging Deadlocks in Multithreaded Programs 231

Fig. 2. A layered icicle diagram representing lock pattern 〈l1〈l2〉〈l3〈l4〉〈l5〉〉〉

node waiting for a thread to terminate, and d) lock pattern: a node representing
a lock pattern. Each edge in E has a tuple (s, d, λ), where s is a source node,
d is a destination node, and λ is one of the following types: a) synchronization:
s.t �= d.t, and b) continuation: s.t = d.t.

The lock pattern of a lock node is shown in the form of a layered icicle dia-
gram. The diagram represents a lock with nested level i as a box labeled by the
identifier of the lock in a layer with depth i. The depth of a layer is equal to the
nested level of a lock in the layer. The nested relation of locks in a lock pattern
is represented by the overlapped relation of boxes. If there two locks l and m
in a lock pattern such that l is nested by m, then the box corresponding lock
l is overlapped by the box corresponding lock m. For example, Figure 2 shows
the layered icicle diagram which represents lock pattern 〈l1〈l2〉〈l3〈l4〉〈l5〉〉〉. Lock
l1 which is the root lock in the pattern is located on the top layer 0, locks l2
and l3, whose nested level is 1, are located on layer 1 , and locks l4 and l5,
whose nested level is 2, are placed on layer 2. Lock l2 and l3 are nested by lock
l1, but since lock l4 and l5 are overlapped by only lock l3, they are nested by
lock l3.

Nodes other than lock nodes are depicted as rounded rectangles, each labeled
with the identifier of a thread. Each terminal node is labeled with the identifier of
a thread of which starts and terminates the execution. Each fork node is labeled
with the identifier of a thread which is created and each join node is labeled with
the identifier of a thread which is joined back. Edges are represented by an arrow
heading to its destination node from its source node. While each continuation
edge is depicted by a solid line, each synchronization edge is depicted by a dotted
line.

Figure 3 shows the LPCG that represents the execution trace of the Figure 1
program. Through the graph, we can capture the nested relation of locks as well
as the happens-before relation of events in the execution. For example, lock l2
is nested by locks l1 on nodes C and F and l3 on nodes E and F, and nests locks
l3 on nodes B, C, and D and l4 on node D. The LPCG shows the happens-before
relation between lock patterns by imposing a partial order on nodes. Given a
LPCG G = (V, E) and two nodes ni, nj ∈ V corresponding to lock patterns Pi

and Pj , respectively, there exists a path from ni to nj on the graph, if and only
if Pi → Pj . In Figure 3, node A happens before node E but does not node F.

232 B.-C. Kim and Y.-K. Jun

Fig. 3. A lock-pattern causality graph representing the execution in Figure 1

3.2 Debugging Deadlocks

Some practical detection techniques [7,3] detect a deadlock in the execution of
Figure 1 when threads t2 and t3 try to acquire lock l2 at 203 and lock l3 at
302, respectively. They report the detected deadlock with information including
threads (t2, t3), locks (l2, l3), and line numbers (203, 302) of source code. With
the deadlock information, it is severely hard to correct the deadlock. One may
change the nested relation of locks in thread t2 from 〈l3〈l2〉〉 to 〈l2〈l3〉〉 for cor-
recting the deadlock. The correction, however, causes a new deadlock because
main thread acquires and releases the locks in reverse order, 〈l3〈l2〉〉. Similarly,
changing the nested relation of locks in thread t3 produces a new deadlock.

The LPCG helps to understand how locks are utilized in a multithreaded
program and, therefore, to help to correct deadlocks. In Figure 3, l2 and l3 form
two nested patterns. One pattern is 〈l2〈l3〉〉 in nodes A, C, and D of t3, t1, and
main threads respectively, and the other pattern is 〈l3〈l2〉〉 in node E in main
thread and node F in t2 thread. Node E does not involve a deadlock because
the node happens before nodes A, C, and D. since node F happens before node
D, the nodes can not involve a deadlock. In addition, since node F and node C
have the same lock l1 before acquiring locks l2 and l3, node F cannot form a
deadlock with node C. Therefore, it is two nodes A and F that are involved in
a deadlock, because there are no a path between two nodes nor a lock nesting
the locks. There are several ways for correcting the deadlocks. However, the fact
that can know from the graph is that the threads in the graph acquire lock l1
before acquiring other locks. The fact implies that lock l1 is used as a gate lock
for preventing a deadlock. Therefore, the simple and best way to correct the
deadlock is to add and force lock l1 to nest the locks involved in the deadlock.

Program Visualization for Debugging Deadlocks in Multithreaded Programs 233

4 Demonstrations

The technique presented in this paper is implemented in a prototype tool for
multithreaded Java programs. The tool consists of three modules: a instrumen-
tation module, detection module, and a visualization module. The instrumen-
tation module instruments the bytecode class files of a compiled Java program
by inserting callback functions before or after fork, join, lock, and unlock opera-
tions. When executed, the callback functions generate events, which are traced in
thread-local files. The detection module applies existing Goodlock algorithm [8,1]
to the generated events. The algorithm uses the events to construct a lock graph
and then find the existence of a cycle on the graph by traversing. If a cycle
is detected on the graph, the detection module reports that locks in the cy-
cle are involved in a deadlock. The visualization module provides a deadlock
view containing information of detected deadlocks and a graph view depicting
the lock-pattern causality graph constructed from the traced events. The graph
view highlights a deadlock, which is designated in deadlock view, on the graph.
When constructing the graph, we filter out lock-patterns with nested depth of 0
because the patterns consists of only a single lock with no nested lock. The simple
filtering policy causes the number of nodes in the graph to decrease significantly.

We have demonstrated the technique on Java Collections Frameworks. We
have performed our experiments on Intel Core2 Duo 2.5Ghz with 2GB of RAM.
Figure 4 shows the LPCGs constructed from the executions of programs using
List and Map package in Java Collection Frame. We have found a single deadlock
in each program. From the graph depicting the program using List package, we
can see that while thread 164 has a locking pattern 〈156〈159〉〉, thread 165 has a
locking pattern 〈159〈156〉〉. The graph depicting the program using Map package
describes that while thread 468 has a locking pattern 〈452〈455〉〉, thread 469 has
a locking pattern 〈455〈452〉〉. The graphs delineates that the locks involved in the
deadlock are not utilized by other threads as well as the threads involved in the
deadlock dose not have nested locks any more. Therefore, in order to correct
the deadlock, we can focus on the locks and threads involved in the deadlock.

5 Related Work

Many approaches have employed visualization to understand the alternate fea-
sible executions of multithreaded programs for debugging deadlocks in such
programs.

Some of these approaches use the UML (Unified Modeling Language) paradigm
which is the standard for visual modeling of object-oriented systems. Javis [9] is
a visualizing and debugging tool for multithreaded Java programs. Javis visual-
izes only the actual deadlocks detected from traces on two diagrams, which are
the sequence diagram and the collaboration diagram. Javis supports abstraction,
showing only the objects directly involved in the deadlock. Jacot [10] is also a
dynamic visualization tool for multithreaded Java programs. The tool has the
UML sequence diagram and the thread state diagram to depict the interaction
between objects and the interleaving of threads over the flow of time.

234 B.-C. Kim and Y.-K. Jun

(a) A LPCG for a program using List package

(b) A LPCG for a program using Map package

Fig. 4. LPCGs which are constructed from the executions of programs using List and

Map packages in Java Collection Frame

The standard sequential diagram of UML is insufficient for representing the
happens-before relation between events in multithreaded programs [11]. An ex-
tension technique [11] of the sequential diagram is presented in order to address
shortcomings of the diagram. The technique adds some notations for threads as
executable tasks and the happens-before relation between events.

MutexView [12] has two size-varying circles to represent the relationship be-
tween threads and locks of the POSIX thread programming library on the KSR
system. A thread is indicated with a small circle distinguished by color and the
locks are represented with big circles. When a thread is trying to acquire the
lock, the small circle of the thread appears somewhere around the circle corre-
sponding to the lock. When a thread gets the lock, it moves into the circle and
remains there until it releases the lock. Then it leaves the circle and disappears.
MutexView animates such situations and represents the only deadlocks which
actually occur at runtime.

The History Graph Window [13] shows the execution history of all threads.
This tool shows each thread with a history bar running left to right. Each history
bar has a color coded with green, blue, or red for running, joining or blocked by

Program Visualization for Debugging Deadlocks in Multithreaded Programs 235

a synchronization primitive, respectively. The History Graph Window has several
tags, each of which is related to a monitor, to visualize the behavior of locking
operations on-the-fly.

The lock-causality graph [14] represents alternate orders over locking oper-
ations for helping to identify and debug potential deadlocks in multithreaded
programs. The graph uses three types of symbols, which are 	,
 and ∨ to de-
pict lock acquire, lock release, and lock wait and notify, respectively. And the
graph uses three kinds of arrow symbols, which are solid, dashed, and dotted
arrows to depict the threading operations. The graph, however, does not provide
the lock pattern abstraction of this paper.

6 Conclusion and Future Works

Debugging multithreaded programs continues to be an area of great interest
as multithreaded runtime environments become more powerful, complex, and
unpredictable. The work presented in this paper provides a powerful method
of understanding the behavior of multithreaded program with nested locks and
helping to debug deadlocks in the programs. A causality graph, called Lock-
Pattern Causality Graph (LPCG), is graphically represented to understand the
happens-before relation and nested patterns of locks. The demonstration shows
that this graph provides a simple yet powerful representation to reason about
deadlocks in an execution instance.

This paper has some limitations. First, this paper attempts only to depict the
executions caused by different schedules, not different inputs to the program.
This limit is intrinsic to pure dynamic analysis, which look only at executions
and not at the program itself. Second, since this paper considers only some
explicit synchronization caused by thread fork/join and lock/unlock, alternate
behaviors caused by implicit synchronization through accesses to shared memory
and conditional synchronization like wait/notify in Java, are not represented.

We have some future works related to this work. The first is to extend the
graph to represent various synchronization primitives such like semaphores. The
second is to improve the graph for different concurrency bugs such as data races
and atomicity violation.

References

1. Bensalem, S., Havelund, K.: Dynamic deadlock analysis of multi-threaded pro-

grams. In: Ur, S., Bin, E., Wolfsthal, Y. (eds.) HVC 2005. LNCS, vol. 3875, pp.

208–223. Springer, Heidelberg (2006)

2. Naik, M., Park, C.S., Sen, K., Gay, D.: Effective static deadlock detection. In: Pro-

ceedings of the 2009 IEEE 31st International Conference on Software Engineering

(ICSE), pp. 386–396. IEEE Computer Society, Los Alamitos (May 2009)

3. Joshi, P., Park, C.S., Sen, K., Naik, M.: A randomized dynamic program analysis

technique for detecting real deadlocks. In: Proceedings of the 2009 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI 2009),

pp. 110–120. ACM, New York (June 2009)

236 B.-C. Kim and Y.-K. Jun

4. Kraemer, E.: Visualizing concurrent programs. In: Software Visualization: Pro-

gramming as a Multimedia Experience, pp. 237–258 (January 1998)

5. Diehl, S.: Software Visualization: Visualizing the Structure, Behavior, and Evolve

of Software. Springer, Heidelberg (May 2007)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM 21(7), 558–565 (1978)

7. Bensalem, S., Fernandez, J.C., Havelund, K., Mounier, L.: Confirmation of dead-

lock potentials detected by runtime analysis. In: Proceedings of the 2006 Workshop

on Parallel and Distributed Systems: Testing and Debugging (PADTAD 2006), pp.

41–50. ACM, New York (2006)

8. Havelund, K.: Using runtime analysis to guide model checking of java programs.

In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.

245–264. Springer, Heidelberg (2000)

9. Mehner, K.: Javis: A uml-based visualization and debugging environment for con-

current java programs. In: Diehl, S. (ed.) Dagstuhl Seminar 2001. LNCS, vol. 2269,

pp. 163–175. Springer, Heidelberg (2002)

10. Leroux, H., Réquilé-Romanczuk, A., Mingins, C.: Jacot: a tool to dynamically

visualise the execution of concurrent java programs. In: Proceedings of the 2nd

International Conference on Principles and Practice of Programming in Java (PPPJ

2003), pp. 201–206. Computer Science Press, Inc., Rockville (2003)

11. Artho, C., Havelund, K., Honiden, S.: Visualization of concurrent program exe-

cutions. In: Proceedings of the 31st Annual International Computer Software and

Applications Conference (COMPSAC 2007), pp. 541–546. IEEE Computer Society,

Los Alamitos (July 2007)

12. Zhao, Q.A., Stasko, J.T.: Visualizing the execution of threads-based parallel pro-

grams. Technical Report GIT-GVU-95-01, College of Computing, George Institute

of Technology (January 1995)

13. Carr, S., Mayo, J., Shene, C.K.: Threadmentor: a pedagogical tool for multi-

threaded programming. J. Educ. Resour. Comput. 3(1), 1 (2003)

14. Kim, B.C., Jun, S.W., Hwang, D.J., Jun, Y.K.: Visualizing potential deadlocks in

multithreaded programs. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp.

321–330. Springer, Heidelberg (2009)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 237–241, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Fast PDE Algorithm Using Adaptive Scan and Search
for Video Coding

Jong-Nam Kim

Dept. of IT Convergence and Application Engineering
Pukyong National University, Busan, 608-737 Korea

jongnam@pknu.ac.kr

Abstract. In this paper, we propose an algorithm that reduces unnecessary
computations, while keeping the same prediction quality as that of the full
search algorithm. In the proposed algorithm, we can reduce unnecessary com-
putations efficiently by calculating initial matching error point from first 1/N
partial errors. We can increase the probability that hits minimum error point as
soon as possible. Our algorithm decreases the computational amount by about
20% of the conventional PDE algorithm without any degradation of prediction
quality. Our algorithm would be useful in real-time video coding applications
using MPEG-2/4 AVC standards.

1 Introduction

In video compression, full search (FS) algorithm based on block matching algorithm
(BMA) finds them optimal motion vectors which minimize the matching difference
between reference block and candidate block. It has been widely used in video coding
applications because of its simple and easy hardware implementation. However,
heavy computational load of the full search with very large search range can be a
significant problem in real-time video coding application. Many fast motion estima-
tion algorithms to reduce the computational load of the full search have been studied
in the last decades.

We classify these fast motion estimation methods into two main groups. One is
lossy motion estimation algorithm with degradation of predicted images and the other
is lossless one without any degradation of predicted images compared with the con-
ventional FS algorithm. The former includes following subgroups : unimodal error
surface assumption (UESA) techniques, multi-resolution techniques, variable search
range techniques with spatial/temporal correlation of the motion vectors, half-stop
techniques using threshold of matching distortion, integral projection technique of
matching block, low bit resolution techniques, sub-sampling techniques of matching
block, and so on [1]. The latter as fast full search technique contains following several
algorithms: successive elimination algorithm (SEA) using sum of reference block and
candidate block and its modified algorithms, partial distortion elimination (PDE)
method and its modified algorithms, and so on [2].

In lossless motion estimation algorithms, PDE is very efficient algorithm to reduce
unnecessary computation for matching error calculation. To further reduce unnecessary

238 J.-N. Kim

computation in calculating matching error, J.N. Kim and et al [3]. proposed fast PDE
algorithms based on adaptive matching scan, which requires additional computation to
get matching scan order. But the additional computation for the matching scan order
can be burden when cascading other fast motion estimation algorithm such as SEA.

In this paper, we propose a fast motion estimation algorithm to reduce computa-
tional amount of the PDE algorithm without any degradation of predicted images
compared with the conventional PDE algorithm for motion estimation. We reduced
only unnecessary computations which doesn’t affect predicted images from the mo-
tion vector. To do that, we do block matching by 1/N partial SAD (sum of absolute
difference). Unlike previous approaches, we try to find a good candidate with mini-
mum error from initial partial errors. By doing that, we can find minimum error point
faster than the conventional spiral search pattern. Our algorithm can easily control the
trade-off between prediction quality and computational reduction for motion estima-
tion with proper error criterion. Our algorithm reduces by about 20% of computations
for block matching error compared with the conventional PDE algorithm without any
degradation of prediction quality.

2 Proposed Algorithm

In fast lossless motion estimation, partial distortion elimination (PDE) algorithm re-
duces efficiently only unnecessary computation by stopping remaining calculation in
a matching block. In PDE algorithm, if an intermediate sum of matching error is
larger than the minimum value of matching error at that time, the remaining computa-
tion for matching error of the block is abandoned.
ܦܣܵܲܣ ൌ ∑ ∑ | ௧݂ሺ݅, ݆ሻ െ ௧݂ିଵሺ݅ ,ݔ ݆ ሻ|ேୀଵୀଵ ݕ (1) where ݇ ൌ 1, 2, , ڮ ܰ
ܦܣܵܲܣ SAD୫୧୬ (2) where ݇ ൌ 1, 2, , ڮ ܰ

Eq. (1) and (2) show the partial sum of absolute difference (SAD) matching criterion
of each row in the conventional PDE. Eq. (1), ft(i,j) denotes the pixel value for
matching block at position (i,j) at time t, ft-1(i+x, j+y) denotes the pixel value of
matching block at position (i+x, j+y) at time t-1.

As described previously, conventional fast PDE algorithms focused on getting large
matching error in a matching block via adaptive matching. In this paper, we try to get
minimum candidate with some clues. Unlike conventional PDE methods, we get ini-
tial 1/N block matching error, and then find a minimum error and its position from
initial matching errors. Here, N is the size of a matching block. When we get initial
1/N matching error, we use not a sub-block, but sub-sampling pattern to get more
even error distribution. After that, we calculate a SAD for the minimum error point of
the previous step. According to the SAD, we eliminate impossible candidate of re-
maining initial checking points. Then, we apply PDE algorithm to remaining candi-
dates. We can summarize our algorithm as shown in Fig. 1.

 A Fast PDE Algori

Fig.

3 Experimental Res

To compare the performan
rithms, we use 95 frames o
video sequences. Matching
and ± 7 pixels. Image form
prediction is used. The expe
tion rate with average check
ratio (PSNR). We compare
algorithm, conventional PD
compare the results of com
be cascaded to ours.

Fig. 2 shows the reduced
“Bus” sequences. The horiz
axis represents reduced com
er computations than the
PSNR measure in “Bus” se
of dB. As you can see, the p
than the conventional PDE
NPDE algorithm has small
rithm, it has poorer predicti

ithm Using Adaptive Scan and Search for Video Coding

1. Procedure of the proposed algorithm

sults

nce of the proposed algorithm with the conventional al
f “bus”, ”bally”, ”bicycle”, “flower garden” and “footb
block size is 16x16 pixels and the search window is ±

mat is SD(720*480) for each sequence and only forw
erimental results are shown in terms of computation red
king rows and prediction quality with peak-signal-to-no
d the proposed algorithm with the conventional full sea
DE [4], and Normalized PDE algorithm [5]. We did

mplexity based PDE algorithm [3] with ours because it

d average computation computed for various algorithm
zontal axis represents the number of frames and the vert
mputation. As you can see, the proposed method has sm
conventional PDE. Fig. 3 shows prediction quality w
equences. The vertical axis represents PSNR with the u
proposed method has the same prediction quality as tha
E and full search algorithms. Even though conventio
ler computational amount than that of the proposed al
ion quality than ours for all frames.

239

lgo-
all”

± 15
ward
duc-
oise
arch
dn’t
can

ms in
tical

mall-
with
unit

at of
onal
lgo-

240 J.-N. Kim

Fig. 2. Computation reduction for each frame of “Bus” sequences

Fig. 3. Prediction quality for each frame of “Bus” sequences

Table 1 and Table 2 summarize the average computations and prediction qualities
computed for various algorithms in all sequences. From Table 1, we can see that
computational amount of the proposed algorithm is smaller than that of PDE and FS
algorithm. Despite of reduced computation, Table 2 shows that the prediction quality
of the proposed algorithm is almost same compared with full search algorithm.

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91

A
vg

. C
h

ec
ki

n
g

 R
o

w
s

Frame Number

Computaional Reduction

PDE

Proposed

NPDE

18

19

20

21

22

23

24

25

26

1 11 21 31 41 51 61 71 81 91

P
S

N
R

Frame Number

Prediction Quality

PDE

Proposed

NPDE

www.SoftGozar.Com

 A Fast PDE Algorithm Using Adaptive Scan and Search for Video Coding 241

Table 1. Average number of rows computed for all sequences of 30Hz

Algorithms bally bus bicycle
flower
garden

foot-
ball

FS 16 16 16 16 16

PDE[4] 7.5 9.9 9.5 6.6 7.5
NPDE[5] 1.7 2.5 2.3 1.6 1.8
Propposed 7.4 8.9 9.4 5.5 7.3

Table 2. PSNR for all sequences of 30Hz

Algorithms
bally bus bicyclel Flower

garden
football

FS 30.57 21.45 22.59 26.86 23.29

PDE[4] 30.57 21.45 22.59 26.86 23.29
NPDE[5] 29.99 20.82 21.90 26.25 22.56
Propposed 30.57 21.44 22.59 26.86 23.29

4 Conclusions

In this paper, we propose an algorithm that reduces unnecessary computations and
finds likely candidates as soon as possible, while keeping the same prediction quality
as that of the full search. In the proposed algorithm, we set initial matching error with
the result of first 1/16 partial error in the search range. By checking initial SAD from
first 1/16 partial error, we can increase the probability of finding minimum error
points. We can decrease computational amount for motion estimation without any
degradation of prediction quality. Our algorithm will be useful in real-time video
coding applications using MPEG-2/4 AVC standards.

Acknowledgement

This work was supported from LEADER by RIS Project by KOTEF.

References

[1] Dufaus, F., Moscheni, F.: Motion estimation techniques for digital TV: A review and a
new contribution. Proceedings of IEEE 83, 858–876 (1995)

[2] Kim, J.N.: A study on fast block matching algorithm of motion estimation for video com-
pression, Ph.D. Thesis of GIST (2001)

[3] Kim, J.N., Byun, S.C., Kim, Y.H., Ahn, B.H.: Fast full search motion estimation algorithm
using early detection of impossible candidate vectors. IEEE Trans. Signal Processing 50,
2355–2365 (2002)

[4] http://iphome.hhi.de/suehring/tml/download/old_jm/
[5] Cheung, C.K., Po, L.M.: Normalized partial distortion search algorithm for block motion

estimation. IEEE Trans. Circuits Syst. Video Technol. 10, 417–422 (2000)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 242–253, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evolvability Characterization in the Context of SOA

Jose L. Arciniegas H. and Juan C. Dueñas L.

1 Universidad del Cauca, Calle 5 # 4-70 Popayán, Colombia
jlarci@unicauca.edu.co

2 Universidad Politécnica de Madrid, Ciudad Universitaria (s/n), CP: 28040, Madrid, Spain
jcduenas@dit.upm.es

Abstract. Service-Oriented Architecture (SOA) is an architectural style which
promotes reuse of self-contained services. These self-contained services allow a
better consideration of software quality characteristics as they can be indepen-
dently analyzed. In our work, the evolvability quality characteristic has been
considered, due to its impact in the stages of Maintenance and Evolution
(M&E) for the software enterprises. Three goals are underlined in this paper:
first, the relationship between SOA and quality characteristics focusing on
a precise definition of evolvability of a software product from the SOA perspec-
tive, second a M&E model for SOA, and finally, some experiences are
presented in order to assess evolvability in real software products. Two case
studies have been executed: the first one analyzing the evolvability of the OSGi
framework. And in the second case, the model is used in local Small and Me-
dium Enterprises (SMEs), where an improvement process has been executed1.

Keywords: Service-Oriented architecture, evolvability, software lifecycle,
quality characteristics, maintenance and evolution.

1 Introduction

There is a clear tendency among software development organizations aiming at the
evolution of formerly monolithic software architectures to convert them into servic-
es. A service is a self-contained well-defined function which does not depend on the
context or state of other services. Then the usage of services to describe a software
architecture (Services Oriented Architecture-SOA) compose a domain-specific
architectural style, whose goal is to achieve loose coupling between providers and
consumers of services, thus offering the possibility for adaptation and changes in a
short time. This is especially attractive for quality attributes because quality charac-
teristics can be improved in just one or some few services, almost without affecting
other parts of the system. In this paper, the evolvability characteristic has been con-
sidered, for its large incidence during Maintenance and Evolution (M&E) phase of

1 The authors wish to thank the Spanish company Telvent and Parquesoft-Popayán in Colombia

for their support in this work. The work has been partially granted by the ITEA OSAMI-
Commons project and the Spanish Ministerio de Industria, Turismo y Comercio and the REVVIS
project of CYTED.

 Evolvability Characterization in the Context of SOA 243

the system, as it means a continuous process improving the system, adapting it to
new requirements and enhancing the quality of services.

2 Relationship between SOA and Quality Characteristics

Services have a close relationship with qualities; a service usually improves certain
quality in a product. The ISO 25010 standard [1] defines the most representative quality
requirements. However, certain quality characteristics are more important than others
depending on the context; for SOA the most critical qualities were presented in [2].

Each system has special conditions of quality, for example a real-time system re-
quires high conditions of performance and maybe low conditions of reusability or
portability. Quality characteristics can have more or less incidence depending on
whether they are considered as lifecycle characteristics, execution characteristics or
quality in use. Figure 1 identifies three axes, taking into account the previous classifi-
cation. The key problem appears when more than one quality characteristic in
different axes are essential for the system. In the Information and Communication
Technologies (ICT) domain it is a quite common situation: an improvement in one of
them affects the others. For example when security is improved it affects usability,
reusability and others. Finding the balance between them is of paramount importance
for the success of the final solution.

Consequently, the qualities with incidence on the three dimensions are more criti-
cal for the systems (functional suitability, reliability, operability and evolvability). In
this paper Evolvabilty is the point of attention, meaning that systems must be flexible
to be adapted, changed or improved to new requirements or environments.

Fig. 1. Quality characteristic dimensions

Evolvability plays an important role during maintenance phases in two senses: re-
duction of the total cost during maintenance and extension of useful lifetime of soft-
ware. However, evolvability has no clear definition because it affects several quality
and functional characteristics, i.e. improvements in evolvability means improvement
in other qualities. In this paper we try to clarify the evolvability attributes, specifically
finding the relationship between them in the context of SOA.

244 J.L. Arciniegas H. and J.C. Dueñas L.

Evolvability is a quality very close to maintainability but with some differences:
some authors consider that maintainability is for fine-grained changes while evolva-
bility is for coarse-grained (structural changes). In [3] considers also evolvability as a
more general quality than maintainability. In addition, some metrics for measurement
of evolvability are presented. In this sense evolvability is more important for the
people who changes software while maintainability is more relevant for the ones who
use it. On the other hand, evolvability is also related with other characteristics such
as: adaptability, modifiability, replaceability, portability, flexibility, integrability,
reusability, extensibility, traceability, variability and tailorability. Figure 2 represents
the influence of evolvability based on the classification of Figure 1.

Lifecycle characteristics

Quality in use characteristics

Execution
characteristics

Replaceability, reusability

Variability, tailorability

Portability, integrability

Adaptability, extensibility

Modifiability
Balance point

Less evolvability

Major evolvability

Fig. 2. Evolvability effects on other qualities

Figures 1 and 2 show that evolvability has a direct effect in overall axes, but their
major effect is over the lifecycle characteristics. After an empirical analysis about the
evolution of several systems, we conclude that, when evolvability is increased, the
lifecycle characteristics are also increased but other qualities are decremented (quality
in use and execution). In Figure 2, a hypothetical line and some points are
represented; the line shows the inverse relation among quality attributes. In conse-
quence, the lifecycle characteristics concerning with evolvability, where replaceabili-
ty and reusability have less incidence, and variability and tailorability are considered
as the major incidence over the system evolvability. Figure 2 shows that extreme
conditions are not good to the overall system, so a balance between evolvability and
the others is required. In an ideal situation the balance point could be located where
the values of each axe are equal. Taking into account the balance point, we have de-
fined evolvability in a most specific way:

Evolvability can be described as the ability to anticipate the locations of transfor-

mations in a system and its capacity to be adapted or modified to get up a balance
among cost and resources, restrictions and local or global effects.

 Evolvability Characterization in the Context of SOA 245

On the other hand, the evolvabiliy of the systems is directly associated to Software
Architecture (SA). The SA discipline allows filling the gap during the evolution,
because the architecture eases the transformation of the system avoiding tedious
processes. Figure 3 shows the relationship between evolvability and architectural
development paradigms, where service-oriented development presents the best
attributes for the evolvability quality. However, in opposition to Figure 2 where evol-
vability raises while some other qualities are decreased, then service-oriented devel-
opment loses quality in use and execution qualities [4].

Fig. 3. Relationship between evolvability and software architecture

3 Maintenance and Evolution (M&E) Model for SOA

Several authors have studied this topic since more than 30 years ago. For example,
Manny Lehman [5] states that the product line approach solves part of this problem
using common concepts, common assets and locating variation points [6]; the vari-
ability can be handled by using a large number of strategies, ranging from controlling
the system configuration, to the support of dynamic updating procedures. However,
the solutions provided by the product line engineering are not enough, since they
solve the “variability in space”, but not the “variability in time” problem (evolution).
So, the available methods, techniques and tools must be adapted in order to support
the extended system lifecycle that includes software evolution.

M&E conceptual model
The proposed conceptual model bases on Dart’s model [7]. The core of the M&E
conceptual model relies on transformations (see Figure 4). In this model any trans-
formation of the system is considered as part of the M&E process. The proposed con-
ceptual model has the following considerations: the architecture as the structure of the
system (static and dynamic views), architectural assets and services as the concept of
components as well as the team concept is extended to stakeholders in order to in-
clude all staff involved during software development (not only developers). However,
the major difference is configuration process; as Darts considers three basic configu-
ration processes (Auditing, Accounting and Controlling) by mixing configuration and
change management activities.

246 J.L. Arciniegas H. and J.C. Dueñas L.

The stakeholders decide the changes driven by a particular focus, for example after
an architectural assessment or an architectural recovery process. This decision is usu-
ally taken by some of them (project manager, engineers, testers, quality manager or
customer), and these decisions are always influenced by the user needs and market
strategies. The objective and focus are quality-driven, i.e. the stakeholders define one
quality to improve, then define the objectives and focus accordingly. The objectives
and focus have been usually identified as a result of the architectural assessment proc-
ess, when limitations, gaps or errors have been found. In this case the focus is the
evolvability in SOAs.

Fig. 4. M&E conceptual model

The M&E workflow manages system versions and changes throughout its lifecy-
cle. In [8] the workflow controls how, when and where transformations (changes) are
made. The methods and techniques comprise a set of strategies for transformation,
such as: refactoring, composition, replacing, updating, etc. The methods and tech-
niques are applied to assets, services or to the full system. In some cases these
transformations affect the original system architecture, although it is not a desirable
situation. When the system architecture has been changed, we consider that the sys-
tem has evolved to another system.

M&E transformations
Transformations have different sources, such as for example changes in the hardware,
business, organization or software. Transformations can be classified from the classi-
cal concepts of maintenance as: “ForwardTransformation” and “BackwardTransfor-
mation”. Transformations are associated with a register where the information of
configuration and changes is stored. Auditing, Accounting and Documentation are
part of the register. Auditing keeps an audit trail of the system and its processes. Ac-
counting gathers statistics about the system and its processes. Documentation syn-
chronizes the information of the systems with respect to the changes.

 Evolvability Characterization in the Context of SOA 247

The ForwardTranformation controls the transformation in order to improve some
functional or non-functional characteristics; we consider:

- FineEvolution, set of changes that could be made to asset code: bugs, moves,
additions, deletions, modifications, comments and cleaning.

- MergerEvolution, is a type of transformation when a system becomes part of
another. In this type of transformation, the system can be considered as an
asset/service (black box) where their interfaces and data interchanges should
be well defined. Before the merge, the system interfaces or (input and out-
put) data formats can be modified. In addition, other neighbor assets/services
can be affected, so they could also be modified.

- ConfigurationEvolution is related to configuration changes, not software
modifications, such as changes in parameters, values, defect conditions and
connections are included.

- ForkEvolution occurs when the original system is divided into two or more
derived systems. In some cases derived systems become in services.

Not all ForwardTransformations are successful; in fact, conflicts, limitations, de-
pendencies and other problems are very common during the evolution. We consider
the next types of BackwardTransformations:

- SteppingBack, in some cases, the changed introduces into new versions are
catastrophic, in these cases the best option is to come back to a previous sta-
ble version.

- AssetRecovery extracts operative assets from implemented systems (the best
case occurs when service are recovered). However, the extracted asset should
be often adapted in order to be reused [8].

- ConfigurationRecovery is the reverse transformation of ConfigurationEvolu-
tion. In some cases, the setting information should be recovered from previ-
ous versions.

M&E workflow
The workflow manages the configuration and evolution of a system. It uses some
methods and techniques in order to control the transformations (forward and back-
ward). However, workflow does not have an explicit sequence to be performed; for
example FineEvolution or SteppingBack can be executed after a detection of errors,
and ConfigurationEvolution or ConfigurationRecovery can occur when something in
the context has changed. These transformations are unpredictable and should be car-
ried out as soon as possible. Some other transformation could be planned (looking
ahead changes) for example MergerEvolution, ForkEvolution or AssetRecovery. The
last three activities should be executed periodically.

Some special activities for configuration during M&E were identified: customiza-
tion, configuration, versioning and composing frameworks (capacity of an asset to
join with one or several assets and create a new product, application or service).

M&E methods and techniques
The following techniques are considered as the most relevant for ForwardTransfor-
mations:

248 J.L. Arciniegas H. and J.C. Dueñas L.

- Refactoring: is a technique for restructuring an existing body of code. Refac-
toring is the process of rebuilding from previous versions by adding, correct-
ing, deleting, cleaning or improving some parts of the systems [10].

- Factoring: is a technique that builds new assets or services by adaptation or
improvement of the functional or non-functional characteristics from the
original version. In any case, no code of the original asset/service is reused.

- Rearchitecting: is a technique of rebuild from previous versions by adding,
correcting, deleting, cleaning, changing the architecture configuration, com-
posing or improving some architecture assets or services (high level of ab-
straction).

On the other hand, BackwardTranformations techniques are very common in systems
under test, because certain changes have been introduced but their effects are still
unknown. Most of errors, conflicts or limitations are discovered in this phase.

- SteppingBack, is a “big undo” when an unsuccessful ForwardTransforma-
tions has occurred. Others complementary techniques for support of the
SteppingBack are proposed in [10], such as: Changeset support, line-wise
history, release tagging, collaboration style, branching and merging.

- For ConfigurationRecovery, the configuration information depends to large
extent on the application (user profiles, some setting environment variables,
context, etc), for this reason it is usually passed to the application or operat-
ing system responsibility.

- An AssetRecovery, it is a part of reverse engineering where only assets or
services are recovered from implemented systems. A complete list of tech-
niques is presented in [9].

4 Experiences

The evolution of the OSGi specification (Open Services Gateway initiative) [11]
represents a good academic study to evaluate evolability of a SOA framework. OSGi
is an excellent framework that supports a great variety of service-oriented applications
(embedded systems, soft real-time, consumer electronics, mobile, etc). OSGi was
also designed to be used in a large number of devices and requires little memory for
operation.

In the case study, the evolution from OSGi R3 to OSGi R4 [11] was studied. This
evolution was analyzed with respect to lifecycle characteristics. OSGi R4 performs a
big effort in organization of the OSGi framework. Some new ideas are introduced and
some concepts clarified about the work of the framework. The transformation from
OSGi R3 to OSGi R4 is a good example of rearchitecting, which is evident in its
logical structure. OSGi R3 is a simple model organized into layers where the frame-
work is supported on a specific execution environment (Java virtual machine) and
both are supported on an operating system and hardware. The applications or bundles
can interact with the framework or directly with the other layers. OSGi R4 preserves
the same structure in layers but it divides the framework in additional functional lay-
ers: services, service register life cycle and modules. In addition, a transversal layer is
added for security. These elements are not new in OSGi R4, some of them were found
in OSGi R3. For example, security appears spread along all the OSGi R3 specification

 Evolvability Characterization in the Context of SOA 249

and some recommendations were done. In OSGi R4 it is specifically defined the secu-
rity as a transversal layer. The separation of functionalities affects OSGi M&E aspects
as adaptability, maintainability, modifiability, replaceability or others. In the OSGi
evolution, new assets (services or utilities) have been included, others have been re-
tired and some changes of the original configuration have been carried out. The essen-
tial structure was conserved in order to guarantee compatibility between versions.

The main change is inside the core framework, because it is enriched with some
services and utilities that in previous versions were an external part of the framework.
In addition, the service and utilities roles are defined into several layers: security,
module life cycle and services. Big and small transformations were made from OSGi
R3 to R4 (FineEvolution and MergerEvolution). Perhaps, OSGi R4 will be a transi-
tion version because the old services and utilities conceptually moved to the frame-
work core, such as: packageadmin, starlevel, url and others, should be physically
(in the same folder) moved as part of the framework core. In addition, possibly more
services will be integrated. Other important transformation from OSGi R3 to R4 is the
conception of each asset (service, utility or layer) as an independent part; conse-
quently, they could also evolve into independent directions.

In addition, evolvability has a direct relation with other intrinsic properties of
OSGi; for example composability, encapsulability, managementability, security and
deploymentability are properties of special interest in OSGi domain. However, other
criteria from OSGi are in close relation with the evolution [12] (flexibility, testability,
integrability, etc), the table 1 shows the relation among evolvability attributes and
criteria, weakness or advantages of these criteria allow the prediction of system trans-
formations.

Table 1. Relation of evolvability attributes with respect to some criteria of OSGi specification

 Evolvability
 Attributes

Criteria

R
ep

la
ce

ab
ili

ty

M
od

if
ia

bi
lit

y

A
da

pt
ab

ili
ty

M
ai

nt
ai

na
bi

lit
y

Composability + + +
Encapsulability + + +
Managementability + +
Security +
Deploymentability + +
Flexibility + + + +
Testability +
Integrability + + + +
Reusability + + +
Extensibility + + +
Portability + + +
Variability + +
Tailorability + +
Monitorability +
Traceability +

250 J.L. Arciniegas H. and J.C. Dueñas L.

An inquiry was used to obtain the perception and experience in the usage of the
OSGi framework. The enquirers were a group of developers and architects from Uni-
versity (Universidad Politécnica de Madrid) and Industry (Telvent and Telefonica
I+D companies from Spain). The inquiry contained questions about the usability of
each asset (element, service or utility) defined in the specification. In addition, non-
used elements were detected. These results can be used to make estimations in the
architecture evolution. For example, it is expected the consolidation of some services
(Log and Http). For the other assets it is expected a soon evolution in order to increase
their utilization and better use.

Table 2. Evolvability of OSGi R3 assets

 Evolvability levels

OSGi
Assets

R
eu

sa
bi

lit
y

R
ep

la
ce

ab
ili

ty

M
od

if
ia

bi
lit

y

A
da

pt
ab

ili
ty

E

xt
en

si
bi

lit
y

 P
or

ta
bi

lit
y

In
te

gr
ab

ili
ty

V
ar

ia
bi

lit
y

T
ai

lo
ra

bi
lit

y

Framework API, Log Service and Http Service M
StartLevel service, Permission Admin service and

Configuration Admin service
H M

URL H M M
Device Access, User Admin service, IO Connector,

Preferences Service, Wire Admin service, Metatype,
UPnP API, Provisioning Service, XML Parser service,
Service Tracker, Package admin, Measurement,
Position, and Jini.

H H M M

Table 3. Evolvability of OSGi R4 assets

 Evolvability levels

OSGi
Assets

R
eu

sa
bi

lit
y

R
ep

la
ce

ab
ili

ty

M
od

if
ia

bi
lit

y

A
da

pt
ab

ili
ty

E

xt
en

si
bi

lit
y

 P
or

ta
bi

lit
y

In
te

gr
ab

ili
ty

V
ar

ia
bi

lit
y

T
ai

lo
ra

bi
lit

y

Framework API, Log Service, Http Service, Life
cycle layer, Service layer and Service registry layer

H

StartLevel service, Permission Admin service,
Configuration Admin service and Modules layer

H H

Admin service, URL Stream and Content Handlers
API, and Security layer

H H M

Conditional Permission Admin, Device Access, User
Admin service, IO Connector, Preferences Service, Wire
Admin service, Metatype, Service Component, UPnP
API, Provisioning Service, Event Admin, XML Parser
service, Package admin, Service Tracker, Measurement
and Position

H H H M

 Evolvability Characterization in the Context of SOA 251

Table 2 and 3 summarize the qualitative evaluation obtained from the inquiry in
OSGi R3 and R4 respectively, The assets from R3 and R4 have been organized by its
incidence in evolvability characteristics. A simple scale was used by each assets, so H
means High, M means medium and L means low compliance with one characteristic.
For example, Security layer in OSGi R4 is considered as an asset that its reusability,
replaceability and modifiability is high, but its adaptability and extensibility could be
improved. The results indicate that the evolvability of OSGi R4 is increased compared
with OSGi R3, for the following reason: reusability and replaceability level is in-
creased because new layers were introduced (Life cycle, service and service register).
Modifiability level is also increased because the Modules layer is added. Adaptability
and extensibility are increased because the admin service is added and security layer
is restructured. Finally, portability and integrability are increased because several
assets were introduced (conditional permission, service component, event admin),
others have been improved (metatype, upnp, provisioning and service tracker).

In addition, the model has been used in commercial systems. Industrial studies
have been carried out in Parquesoft-Popayán (Colombia), which is an software devel-
opment industrial incubator for short and medium size organizations. Parquesoft is
distributed in six Colombian cities being Popayán one of them. The model was ap-
plied in order to improve the quality of the products in more than 10 small organiza-
tions (less than 10 people involved). However, the first problem was the poor knowl-
edge about the architecture and quality characteristics; obviously the same situation
was identified about SOA knowledge. In consequence, the first evolution in these
organizations was not the improvement of evolvability in their products, but the mi-
gration from previous paradigms (see Figure 3) to SOA. The Figure 6 illustrates the
current situation of selected organizations, most of them use object-oriented develop-
ment; however, they are in change process being SOA the target paradigm. The cur-
rent assets developed by Parquesoft-Popayán have some evolvablity characteristics;
however there are several considerations that should be improved.

Fig. 6. Location of Parquesoft-Popayán organizations

252 J.L. Arciniegas H. and J.C. Dueñas L.

5 Conclusions

M&E underlines the role of the architecture as the cornerstone for maintenance and
evolution of the software. The transformations (changes and configuration variations)
during maintenance and evolution can be controlled and applied to the architecture in
order to extend the lifecycle of the software. The effort in transformation is reduced
when SOA is used. In addition, quality improvements are the most frequent changes
during maintenance and evolution time. The main contribution of this paper is the
quality-driven methodological support for maintenance and evolution; specially, the
conceptual model for M&E focused on the transformation (forward and backward). In
addition, some extra activities carried out during this period are illustrated, such as:
customization, configuration, versioning and composing frameworks as well as me-
thods and techniques that support forward and backward transformations.

The academic case study presents criteria to measure and discover tendencies of
usage of the OSGi framework to support services. An inquiry was performed in order
to obtain experiences from other groups (continuous learning) that have used
the OSGi specification as a framework for their applications. The results of the in-
quiry show that several aspects can be improved in future versions, such as: the do-
cumentations of some assets; support for the correction of gaps or errors, security,
management, etc. In addition, some prediction and tendencies could be established,
for example, the most used assets represent a measure of the maturity of the frame-
work, while less used elements means potential limitations or possible problems that
should be corrected.

The industrial case studies also contribute to the continuous process of refinement
of the model. Some important results have been found, the main contribution for the
current Parquesoft-Popayán organization is the start of the improvement process to
increase the quality of their products.

References

[1] ISO/IEC 25010-CD – JTC1/SC7. Software Engineering - Software product Quality Re-
quirements and Evaluation (SQuaRE). Internal ISO/IEC JTC1/SC7 Document, Currently
at Commission Draft Stage, International Standardization Organization (2007)

[2] O’Brien, L., Bass, L., Merson, P.: Quality Attributes and Service-Oriented Architectures.
The Software Engineering Institute and Carnegie Mellon University (September 2005)

[3] Cook, S., He, J., Harrison, R.: Dynamic and static views of software evolution. In: Pro-
ceedings of IEEE International Conference on Software Maintenance, November 7-9, pp.
592–601 (2001)

[4] Brown, A., Johnston, S., Kelly, K.: Using service-oriented architecture and component-
based development to build Web service applications. A Rational Software White Paper
(2002)

[5] Lehman, M.: Programs, Life Cycles and Laws of Software Evolution. Proceeding of the
IEEE, Special Issue on Software Engineering 68(9), 1060–1076 (1980)

[6] van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation. In: Nord, R. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 110–129. Sprin-
ger, Heidelberg (2004)

 Evolvability Characterization in the Context of SOA 253

[7] Dart, S.: Concepts in Configuration Management Systems. In: Proceeding of the Third
Int’l Software Configuration Management Workshop, pp. 1–18 (June 1991)

[8] Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis. University of Illi-
nois at Urbana Champaign (1992)

[9] Knodel, J., John, I., Ganesan, D., Pinzger, M., Usero, F., Arciniegas, J., Riva, C.: Asset
Recovery and Incorporation into Product Lines. In: The 12th Working Conference on Re-
verse Engineering, WCRE 2005, Pittsburgh, Pennsylvania, USA (Carnegie Mellon), No-
vember 8-11 (2005)

[10] Robles, G., Amor, J., Gonzalez-Barahona, J., Herraiz, I.: Evolution and growth in large
libre software projects. In: Eighth International Workshop on Principles of Software Evo-
lution, September 5-6, pp. 165–174 (2005)

[11] OSGi. Open Services Gateway Initiative. OSGI Service Platform, Specifications,
http://www.osgi.org/Specifications/HomePage
(last visited date at, 14/09/10)

[12] Matinlassi, M., Niemelä, E.: The impact of maintainability on component-based software
systems. In: Proceedings of 29th Euromicro Conference, September 1-6, pp. 25–32
(2003)

Design and Implementation of an Enterprise

Internet of Things

Jing Sun1, Huiqun Zhao1, Ka Wang1, Houyong Zhang1, and Gongzhu Hu2

1 Department of Computer Science
North China University of Technology

Beijing, 100144, China
zhaohq6625@sina.com

2 Department of Computer Science
Central Michigan University

Mount Pleasant, Michigan, 48859, USA
hu1g@cmich.edu

Abstract. Since the notion of “Internet of Things” (IoT) introduced
about 10 years ago, most IoT research has focused on higher level
issues, such as strategies, architectures, standardization, and enabling
technologies, but studies of real cases of IoT are still lacking. In this
paper, a real case of Internet of Things called ZB IoT is introduced.
It combines the Service Oriented Architecture (SOA) with EPC global
standards in the system design, and focuses on the security and
extensibility of IoT in its implementation.

1 Introduction

The term Internet of Things (IoT) was first introduced in the EPC Global
standards in 1999 [1]. It is intended to extend the Internet from a network of
computers to a network of things (or objects). The primary technologies to make
Internet of Things possible include Electronic Product Code [2], Radio Frequency
Identification [3], and EPC networks [4].

As a global coding standard, Electronic Product Code (EPC) is similar to
barcode for identification of manufacturers and products, but it has an advantage
over barcode by including coding digits segment for individual item of products
(rather than just product categories) so the item can be identified and tracked
during its life cycle. Successful use of EPC depends on the Radio Frequency
Identification (RFID) and EPC Networks. RFID is an automatic identification
technology that can store and process information, modulate and demodulate
radio-frequency signal, and transmit and receive signals. A RFID tag, that is
an EPC imprinted with a tiny RFID chip, can transmit the EPC information
to be read by RFID readers. An EPC network consists of EPC Information
Services (EPCIS) that are individual companies’ services, Object Naming Service
(ONS) [5] that is a directory of EPCIS, and EPC Discovery Services that are
registry services interacting with the EPCIS. With these technologies, goods
and products with RFID tags can be “linked” through EPC networks to enable

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 254–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Design and Implementation of an Enterprise Internet of Things 255

businesses and their trading partners to automatically track individual product
items throughout the supply chain. This scenario illustrates what would make
the Internet of Things possible.

EPC Global has published a series of standards [1], [4], [5] to streamline
and regulate the developments of IoT. However, there are only few real IoT
cases available [6]. The academic community has made great efforts conducting
research to overcome some of these obstacles towards making IoT but few
examples applicable to real world enterprises have ever been presented. We
believe that an example of a typical case would be very helpful and provide
a scientific research platform for IoT experiments. In this paper we present a
case study of the design and implementation of IoT for a real world enterprise
called Zhong Bai Mall (ZB).

2 A Prototype System and Design of IoT

In this section, we first briefly describe the business model of Zhong Bai Mall,
and then give a design of ZB IoT.

2.1 A Brief Introduction of ZB Mall

Zhong Bai Mall is large company in China doing business in retail and wholesale.
It has many manufacturing and trading partners. Its business is mainly composed
of two parts: purchasing and retail. The company has experienced a significant
increase in trading quantity and scope in recent years. The management of the
company realized that the original Management Information System (MIS) is no
longer adequate to satisfy the increasing trading requirements. They are facing
a new challenge to meet the demands of processing huge volumes of data on
a timely manner. To overcome this problem, they have adjusted their business
model to allow direct sales by some of the manufacturing partners, and keep
the accounting operations within ZB. The new business model has not only
benefited ZB but also simplified and accelerated the trading cycle. Under the
new model, however, the manufacturers do not have direct access to the sales
data and have difficulties keeping track of the sales quantity, simply because the
MIS only delivers sales data to the partners on a monthly basis. To solve this
problem, ZB and its partner decided to built an Internet of Things for their
community and we are charged to collaborate with ZB to develop a prototype
of its IoT.

2.2 Design of ZB IoT

The approach we took is to design a logical structure of the ZB IoT based on
the standards of EPC global and the Service Oriented Architecture (SOA) with
a new framework of Web Service. Fig. 1 shows a logical structure of ZB IoT that
combine SOA into the original EPCIS architecture [4].

256 J. Sun et al.

Zhang Bai

EPC Repository

EPC Query Interface
Control & Callback

EPCIS Accessing Application

EPCIS Accessing
Application Interface

Finding &
Publishing Service Local ONS

Finding &
Publishing Interface ONS Interface

Push and Pull

Public UDDI Server ONS Boot

Query Query

EPC global subscriber

EPCIS Application

Push and Pull

Fig. 1. A logical chart of IoT

We add a JUDDI, an open source Java implementation of the Universal
Description, Discovery, and Integration (UDDI) specification for Web Services,
as the registration space of the public service. The partner’s EPCIS subscribes
the service through the interface of local ONS. For this IoT case, we designed
a new security strategy using a simplified Public Key Infrastructure (SPKI) [7].
The encoding and decoding methods for security used in our implementation are
based on the original ONS IP encoding and decoding.

Fig. 2 is the detailed logical structure of ZB IoT. The upper portion of the
chart directly reflects the business process. The middle portion of the chart is
composed of three components: a subsystem of the IoT called Intranet and two
databases. One of the databases stores the product data and the other stores
sales data obtained from the EPC collection process. The lower portion of the
chart illustrates the EPC data collection process where EPC readers receive
information directly from EPC/barcodes or from EPC/barcode applications
through filtering and store the data in the EPC repositories. The last component
is called EPCIS Capturing Application that is responsible for the operations of
the EPC elements.

Design and Implementation of an Enterprise Internet of Things 257

EPC/Barcode
Accessing

Application
Query with Push and Pull

UDDI Server Local ONS Sell Strategy Price Notes
EPC/Barcode

Accessing
Application

Finding/Publishing
Product

Information
Contacting Warehousing Pricing Price Record

EPC/Barcode

Product
Repository Intranet EPC Repository

EPC/Barcode EPC/Barcode
reader

Filtering and
Collection

Capture
Application

EPC Cache
EPC

Collection
Repository

Product Service

Contact Item

Product Information Partner IP

P
ro

d
u
ct

In
fo

rm
a
ti
o
n

In
v
en

to
ry

b
y

H
a
n
d

Inventory by Internet

In
v
en

to
ry

In
v
en

to
ry

w
it
h

P
ri
ce

EPC

Stock Information

S
to

ck
In

fo
rm

a
ti
o
n

S
el

l
In

fo
rm

a
ti
o
n

P
ro

d
u
ct

It
em

P
u
sh

a
n
d

P
u
ll

S
u
b
sc

ri
b
er

Subscriber

Product Item

C
o
ll
ec

te
d

E
P
C

Filtered and Collected EPC

Queued EPC

Fig. 2. Logical structure of ZB’s IoT

3 Implementation of ZB’s IoT

We shall describe a few of the key modules in the implementation of the ZB IoT
in this section. We focus on the implementation of the security property of IoT
and the subscription to the EPC service. We also explore the implementation
strategy for the IoT’s extensibility.

3.1 Security

We adopt Public Key Infrastructure (PKI) [8] in our implementation of the ZB
IoT with some simplification. Our new PKI is called Simplified PKI (SPKI).
In SPKI, the EPC tag and the EPCIS are the same as in the original EPC
network, but the ONS encoding and decoding processes are replaced by our new
algorithms.

We follow the general IoT architecture for the ZB IoT using Object Naming
Services. The EPC tag, EPCglobal, and EPCIS are the same as specified in the

258 J. Sun et al.

standards, but the ONS encoding and decoding processes are quite different with
original ONS strategies.

In the new ONS architecture the ONS encoding and the decoding components
can use any strategies. The particular strategy we use in our Simplified PKI aims
at reducing the system cost and improve the system performance. The algorithms
used in the strategy are given below. Algorithm 1 is the new encoding algorithm
with SPKI encryption.

Algorithm 1. Simplified Encoding Algorithm

Input: An EAN.UCC GTIN-14 consisting of digits d1d2 . . . d14 and the
length L of the company prefix portion of the GTIN.

Input: A Serial Number S where S < 225.
Input: A Filter Value F where F < 8.
Output: The encoding of the GTIN code.
Extract the EAN.UCC Company Prefix d2d3 · · ·dL+1 by doing a reverse1

lookup of Company Number in the Company Prefix Translation Table to
obtain the corresponding Company Number Index, C. If the Company
Prefix was not found in the Company Prefix Translation Table, stop: this
GTIN cannot be encoded in the SGTIN-64 encoding schema.
Constructs and encrypts a digital d1dL+2dL+3 . . . d13 as the Item2

Reference and considering the result to be a decimal integer, I. If I > 220,
stop: this GTIN cannot be encoded.
Construct the final encoding by concatenating the following bit fields,3

from most significant to least significant: Header 10 (2 bits), Filter Value
F (3 bits), Company Prefix Index C from Step 1 (14 bits), Item Reference
from Step 2 (20 bits), Serial Number S (25 bits).

Algorithm 2 outlines the new decoding algorithm with SPKI decryption.

3.2 Extensibility of ZB’s IoT

As mentioned before that EPC has not been widely used due to costs and other
reasons, barcode is still the primary product coding approach. Due to the fact
that the EPC is an extension of barcode, we decided to use barcode in the ZB
IoT implementation for now that can be extended to EPC at a later time without
much difficulty. To use barcode with EPC networks according to the EPCglobal
standards, we proposed a new General Identification Number (GIN) [9] where the
information in the barcode can be represented, and use the mapping strategy
between GIN and the Universal Resource Format (URF) that is required by
the EPC network. The mapping strategy is represented as the cryptographic
encoding and decoding processes given in Algorithms 1 and 2.

GIN is similar to the General Identification (GID), an EPC encoding standard.
The purpose of defining the new coding scheme GIN is to design a general
structure for presenting independent identification of any concrete specification
of EPC or barcode.

Design and Implementation of an Enterprise Internet of Things 259

Algorithm 2. Simplified Decoding Algorithm

Input: An SGTIN-64 as a 64-bit bit string 10b61b60 · · · b0 (where the first
two bits 10 are the header).

Input: A Serial Number.
Output: EAN.UCC GTIN-14.
Bits 10b61b60b59, considered as an unsigned integer, are the Filter Value.1

Extracts the Company Prefix Index C by considering b58b57 . . . b45 as an2

unsigned integer. Look up the Company Prefix Index C in the Company
Prefix Translation Table to obtain the Company Number p1p2 · · · pL

consisting of L decimal digits (the value of L is also obtained from the
table).
Considers b44b43 . . . b25 as an unsigned integer. If this integer is greater3

than or equal to 1013−L, stop: the input bit string is not a legal
SGTIN-64 encoding. Otherwise, convert this integer to a (13 − L)-digit
decimal number j1j2 · · · j13−L, adding leading zeros as necessary to make
13 − L digits.
Decrypt j1j2 · · · j13−L as i1i2 · · · i13−L.4

Constructs a 13 digit number d1d2 · · · d13 where d1 = i1 from Step 4,5

d2d3 · · · dL+1 = p1p2 · · · pL = C from Step 2, and
dL+2dL+3 · · · d13 = i2i3 · · · i13−L from Step 4.
Calculate the check sum.6

The EAN.UCC GTIN-14 is the concatenation of digits from Steps 5 and7

6: d1d2 · · · d14. Bits b24b23 · · · b0, considered as an unsigned integer, are the
Serial Number.

GIN is composed of four fields: Header, General Company Number, Object
Class and Serial Number. The Header field is a classified type that is a 8-bit
binary value.

The General Company Number identifies an organizational entity that is
responsible for maintaining the numbers in subsequent fields – Object Class and
Serial Number. The designer must ensure that each General Company Number
is a unique decimal number. The Object Class is used by its entity to identify
a category or “type” of things. These object class numbers, of course, must
be unique within each General Company Number domain. It is also a decimal
number. Finally, the Serial Number Code, or serial number, is a unique decimal
number within the object class. In other words, the management of the company
is responsible for assigning a unique serial number to every instance within the
object class.

In order to connect Internet, we propose a parsing algorithm, given in
Algorithm 3, that takes advantage of the ONS strategy of EPCglobal [5].

4 System Test

We conducted two different kinds of experiments. One is for demonstrating the
efficiency of the encoding and decoding algorithms that use the Simplified PKI,
and another is for the extensibility of barcode.

260 J. Sun et al.

Algorithm 3. Parsing IP address

Input: A GIN code.
Output: An IP address involved in the GIN.
Map GIN code to URF using Algorithm 1.1

Remove the serial number field.2

Invert the order of the remaining fields.3

Append ’.onsepc.com’.4

Do the client application’s DNS resolver query for DNS Type Code 35 2955

(NAPTR) records [10].

4.1 Experiment of the Simplified Encrypt and Decrypt Algorithms

Several experiments were conducted to test the performance and security
of Algorithms 1 and 2. Only the field Item Reference is encrypted in the
algorithms. We sampled the SGTIN-64 Item Reference as a 13-digit plain code
(1467359243048) and use the commonly used RSA cryptography algorithm [11]
as the encryption strategy. We ran the algorithms on 1000 EPCs with three
different lengths for private keys (512 bits, 1024 bits, and 2048 bits) to compare
the run-time performance of the algorithms. The results of the experiment is
shown in Table 1(a). Table 1(b) shows the results of applying the RSA algorithm
for 1000 EPCs with a 16-digit plain text code 14CB2FECA24A3B8A.

Table 1. Results of RSA

(a) 13-digit Item Reference for plain text code 1467359243048

Public key 128 128 128
Private key 512 1024 2048
EPCs 1000 1000 1000
Encrypt time (ms) 235 245 253
Decrypt time (ms) 259 469 953
EPC encode/decode time (ms) 29/62 29/62 29/62

(b) 16-digit Item Reference for plain text code 14CB2FECA24A3B8A

Public key 128 128 128
Private key 512 1024 2048
EPCs 1000 1000 1000
Encrypt time (ms) 258 284 297
Decrypt time (ms) 984 1796 3313
EPC encode/decode time (ms) 29/62 29/62 29/62

The results show that the encryption time increases only slightly as the private
key length increases from the 1024 to 2048. It indicates that the 2048-bit private
key is appropriate for our experimental environment. Comparing to the time
cost between the different lengths of the plain text, it is not only that 13-digit

Design and Implementation of an Enterprise Internet of Things 261

plain text needs less time than 16-digit text but also its increase rate become
higher. Therefore, the SPKI’s performance and encrypting cost is better than
PKI.

4.2 Test Case of Parsing IP from Barcode

The EAN.UCC Global Trade Identifier (GTIN) has a small family, including
GTIN-14, GTIN-13, GTIN-12 and GTIN-8. We use GTIN-13 in our study.

The GTIN-13 is a 13-digit number composed of an Company Prefix, an Item
reference, and a Check Digit. The Company Prefix is a unique variable-length
number assigned to a company by EAN.UCC. Item Reference is a variable-length
number assigned by the holder of the Company Prefix to uniquely identify the
class or type of item. Check Digit a calculated one-digit number used to ensure
data integrity.

An example of this input is 1234567890123where if the company prefix length
were specified as 6, then the company prefix would be the first 6 digits 123456,
the item reference would be the next 6 digits 789012 and the check digit would
be the final digit 3. According to Algorithm 2, the input code 1234567890123
has its URF format as: id:GTIN-13.123456.789012.3. Carry out Algorithm 2
to parse the IP address as following steps:

1. id:gtin:6901.789012.3
2. 789012.6901.id:gtin
3. 789012.6901.id:gtin.onsbarcode.com
4. http://epc-is.example.com/

epc-wsdl.xml

Meanwhile, the number 6901 is the index of company in the translation table.
The barcode.com is a server of inquiring the IP address for each company.

5 Related Work

EPC and RFID technologies have been around for some time, and are getting
more and more attention in the last decade as the needs for using EPC networks
increases in the business world towards the developments of Internet of Things.
A comprehensive report about RFID-based IoT was presented in [12].

Adelmann et al. developed a toolkit [13] for bar code recognition. Leong et
al. [14] provided an overall concept of EPC networks and explored the data flow
and item tracking applications within the EPC network. Harrison [10] gave an
overview of the Java web service prototypes of EPC Information System (EPCIS)
and the EPCIS Discovery Service at the MIT Auto-ID Lab. Rieback et al. [15]
explored the concept of malware for RFID systems, including RFID exploits,
worms, and viruses; and presented RFID malware design principles. The paper
[16] proposed a secure web services framework in an environment designed to
integrate RFID system into the EPC global Network. Fabian et al [17] analyzed
the privacy and security implications of ONS deployment, and also proposed

262 J. Sun et al.

a distributed hash tables (DHT) to enhance the performance and robustness
of the domain name systems (DNS). They investigated the effectiveness of a
decentralized alternative to ONS based on DHT [18].

A research team at the University of Washington developed a RFID ecosystem
as an IoT example. The ecosystem is an infrastructure that creates a microcosm
for the IoT, along with a suite of Web-based, user-level tools and applications
for the IoT [19].

6 Conclusion

In this paper, we presented a real case of Internet of Things. In this case we focus
on the design of an IoT using SOA and EPC Global standards, and enhance the
security of the IoT by SPKI. We provide a method and technology for using
the barcode as the identification coding in the IoT, that is very helpful for
transferring barcode-based information system into IoT for a business.

In order to demonstrate the feasibility of our design and implementation, we
used a series of test cases for the ZB IoT according to the ZB trading data. All
the outputs of ZB IoT were consistence with the real trading data. We hope that
can help readers understand how a business can develop an IoT and how an IoT
can play a new role in its information system. Although the preliminary results
are promising, we are currently conducting more experiments and performing
comparisons of ZB IoT and other existing IoTs.

Acknowlegement

The work presented in this paper was partly supported by the China National
Science Foundation grant #61070030.

References

1. EPCglobal: Architecture framework final version (2005),
http://www.epcglobalinc.org/standards/architecture/architecture_1_

0-framework-20050701.pdf

2. Brock, D.L.: The Electronic Product Code (EPC) - a naming scheme for physical
object. White paper, Auto-ID Labs, Massachusetts Institute of Technology (2001)

3. Landt, J.: Shrouds of time: The history of RFID. An AIM publication, AIM Inc.
(2001)

4. EPCglobal: EPC information services (EPCIS) version 1.0.1 specification (2007),
http://www.epcglobalinc.org/standards/epcis/epcis_1_0_

1-standard-20070921.pdf

5. EPCglobal: EPCglobal object name service (ONS) 1.0.1. Ratified standard
specification, EPCglobal Inc. (2008)

6. Sun Microsystems: The Sun EPC network architecture, a technical white paper
(2004)

Design and Implementation of an Enterprise Internet of Things 263

7. Sun, J., Zhao, H., Xiao, H., Hu, G.: Lightweight Public Key Infrastructure and
service relation model for designing a trustworthy ONS. In: Proceedings of 8th
IEEE/ACIS International Conference on Computer and Information Science, pp.
295–300. IEEE Computer Society, Los Alamitos (2009)

8. Weise, J.: Public Key Infrastructure overview. Blueprints, Sun Microsystems, Inc.
(2001)

9. Sun, J., Zhao, H., Hu, G.: Study of the key techniques for implementing
barcode network. In: Computer and Information Science. Studies in Computational
Intelligence, vol. 317, pp. 47–57. Springer, Heidelberg (2010)

10. Harrison, M.: EPC information service (EPCIS). In: Auto-ID Labs Research
Workshop (2004)

11. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

12. Buckley, J.: From RFID to the Internet of Things: Pervasive networked systems.
In: Report on the Conference Organized by DG Information Society and Media,
Networks and Communication Technologies Directorate, Brussels (2006)

13. Adelmann, R., Langheinrich, M., Flörkemeier, C.: Toolkit for bar code recognition
and resolving on camera phones c jump starting the Internet of Things. In:
Informatik 2006 Workshop on Mobile and Embedded Interactive Systems (2006)

14. Leong, K.S., Ng, M.L., Engels, D.W.: EPC network architecture. In: Auto-ID Labs
Research Workshop (2004)

15. Riebacka, M.R., Simpsona, P.N., Crispoa, B., Tanenbauma, A.S.: RFID malware:
Design principles and examples. Pervasive and Mobile Computing 2, 405–426
(2006)

16. Shih, D.H., Sun, P.L., Lin, B.: Securing industry-wide EPCglobal network with
WS-security. Industrial Management & Data Systems 105, 972–996 (2005)

17. Fabian, B., Günther, O., Spiekermann, S.: Security analysis of the object name
service. In: 1st International Workshop on Security, Privacy and Trust in Pervasive
and Ubiquitous Computing, pp. 525–529. IEEE Computer Society, Los Alamitos
(2005)

18. Fabian, B., Günther, O.: Distributed ONS and its impact on privacy. In: IEEE
International Conference on Communications, pp. 1223–1228. IEEE Computer
Society, Los Alamitos (2007)

19. Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska,
M., Borriello, G.: Building the Internet of Things using RFID: The RFID ecosystem
experience. IEEE Internet Computing 13, 48–56 (2009)

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 264–282, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Aggregating Expert-Driven Causal Maps for Web Effort
Estimation

Simon Baker and Emilia Mendes

Computer Science Department, The University of Auckland,
Private Bag 92019, Auckland, New Zealand

sbak030@aucklanduni.ac.nz, emilia@cs.auckland.ac.nz

Abstract. Reliable Web effort estimation is one of the cornerstones of good
Web project management. Hence the need to fully understand which factors af-
fect a project’s outcome and their causal relationships. The aim of this paper is
to provide a wider understanding towards the fundamental factors affecting
Web effort estimation and their causal relationships via combining six different
Web effort estimation causal maps from six independent local Web companies,
representing the knowledge elicited from several domain experts. The metho-
dology used to combine these maps extended previous work by adding a map-
ping scheme to handle complex domains (e.g. effort estimation), and the use of
an aggregation process that preserves all the causal relations in the original
maps. The resultant map contains 67 factors, and also commonalities amongst
Web companies relating to factors and causal relations, thus providing the
means to better understand which factors have a causal effect upon Web effort
estimation.

Keywords: Web effort estimation, causal maps, Web effort prediction, map
aggregation.

1 Introduction

A cornerstone of Web project management is effort estimation, the process by which
effort is forecasted and used as basis to predict project costs and allocate resources
effectively, so enabling projects to be delivered on time and within budget [1]. Effort
estimation is a very complex domain where the relationship between factors is non-
deterministic and has an inherently uncertain nature.

There have been numerous previous attempts to model effort estimation of Web
projects, but none yielded a complete causal model incorporating all the necessary
component parts. Mendes and Counsell [3] were the first to investigate this field by
building a model using machine-learning techniques with data from student-based
Web projects, and size measures harvested late in the project’s life cycle. Mendes and
collaborators also carried out a series of consecutive studies (e.g. [4]-[20]) where
models were built using multivariate regression and machine-learning techniques and
used data on industrial Web projects. Later they proposed and validated size measures
harvested early in a project’s life cycle, therefore better suited to effort estimation [1],

when compared to other Web effort predictors previously proposed [21]. Reifer [22]

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 265

proposed an extension of an existing software engineering resource model, and a
single size measure harvested late in the project’s life cycle. None were validated
empirically. This size measure was later used by Ruhe et al. [23], who further ex-
tended a software engineering hybrid estimation technique to Web projects, using a
small data set of industrial projects, with this technique mixing expert judgement and
multivariate regression. Baresi et al. [24][25] and Mangia et al. [26] investigated ef-
fort estimation models and size measures for Web projects based on a specific Web
development method. More recently there have been a number of studies describing
causal maps for Web effort estimation [27]-[30], where their causal relationships were
identified by a domain expert, using only the set of factors that are part of the Tukutu-
ku database [32]. Other more recent studies compared Web effort prediction
techniques, based on existing datasets [33]-[36].

There are issues with all previous studies in that none, when identifying important fac-
tors for Web effort estimation, focused solely on factors that presented a cause & effect
relationship with effort, i.e., they included any factors correlated with effort. In addition,
when surveying companies to identify suitable effort predictors, those studies did not
assess how good these companies were at estimating effort for their Web projects.

As part of a NZ government-funded research, Mendes elicited several company-
specific expert-driven Web effort estimation causal maps from NZ Web companies
[26]. The elicitation process employed is detailed in [26]. Each map was part of a
larger model, named a Bayesian Network model (detailed in Section 2), and provided
a representation of the Web effort estimation domain from the perspective of the sin-
gle Web company from which that model had been elicited. All participating
companies were consulting companies that developed different types of Web applica-
tions (e.g. static application, applications that used a content management system,
database-driven Web applications).

Experience from eliciting such maps showed that companies found it much easier
and more effective to use an initial set of factors as basis to elicit their causal maps,
rather than to build one from scratch [29][30]. In addition, anecdotal evidence ob-
tained throughout the elicitation process with these companies revealed that the use of
an aggregated causal map representing the expert knowledge of different Web com-
panies with regard to factors and relationships relevant for Web effort estimation
would be extremely useful to help with the elicitation of company-specific causal
maps. Some Web companies would like to use such large causal map at the start of
the elicitation process; others believed that such maps would be extremely useful to
provide them with a sort of “checklist” against which to compare their own, once it
had been elicited.

In addition, we believe that such an aggregated map is important for practitioners
for the following reasons:

• It depicts a blueprint of the most common factors and causal relationships impor-
tant for companies that develop and manage Web projects as part of their core
businesses. Such knowledge can be very useful to Web projects managers to help
them revisit the factors they currently take into account during an effort estimation
process.

• Provides companies with a starting point to building a single-company causal
map, which can later be used to create a single-company Bayesian Network
model. Anecdotal evidence shows that when eliciting factors, causal relationships

266 S. Baker and E. Mendes

and even probabilities using as its basis tacit knowledge, companies find it much
easier and more effective to customise an existing causal map to their needs, rather
than to build one from scratch. This is also an approach suggested in [29][30].

• It can be used as a benchmark model (i.e. 'measuring stick') to compare different
single-company Web effort estimation causal maps.

The contribution of this paper is therefore to provide a wider understanding on the
fundamental factors affecting Web effort estimation and their causal relationships via
combining six different Web effort estimation causal maps, elicited from six
independent local Web companies, representing the knowledge elicited from several
domain experts.

The remainder of this paper is structured as follows: an introduction to Bayesian
Networks is given in Section 2, for those unfamiliar with this model, followed by a
discussion relating to the aggregation of different causal maps (Section 3), and a
summary of prior work (Section 4). Then we detail our proposed solution (Section 5)
and methodology (Section 6) for aggregating causal maps, followed by a discussion
of our results in Section 7. Finally the threats to the validity of our approach and our
conclusions are given in Sections 8 and 9, respectively.

2 Bayesian Networks

A Bayesian Network (BN) is a probabilistic model that allows for reasoning under
uncertainty. A BN is composed of two components [1]. The first is a graphical causal
map, depicted by a Directed Acyclic Graph (DAG) (see Figure 1). The DAG’s nodes
represent the relevant variables (factors) in the domain being modelled, which can be
of different types (e.g. observable or latent, categorical). The DAG’s arcs represent
the causal relationships between variables, where relationships are quantified prob-
abilistically. These graphs may be simple (as in the example in Figure 1), or very
complex in terms of nodes and relations.

Fig. 1. A small Bayesian Network model and its CPTs

The second component of a BN is the quantitative part: a Conditional Probability
Table (CPT) associated to each node in the network. A parent node’s CPT describes
the relative probability of each state (value); a child node’s CPT describes the relative
probability of each state conditional on every combination of states of its parents.
Each row in a CPT represents a conditional probability distribution and therefore its
values sum up to one [1]. A detailed description of the process employed to build
BNs is detailed in [38]. The work presented herein is only concerned with the first
component of a Bayesian Network, i.e. the causal map graph.

www.SoftGozar.Com

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 267

3 Problems Relating to the Aggregation of Causal Maps

It is often recommended that such causal maps be constructed through elicitation from
different domain experts in order to derive a comprehensive and accurate causal map
[39][40][41][45]. However, it is difficult to combine the beliefs of different experts in
a coherent and impartial manner.

In order to arrive at a comprehensive causal map we would need to consult domain
experts, many of whom working for different and perhaps competing companies, and
thus likely to have a different prospective about the Web development domain. There-
fore, the difficulty in combining expert-based causal maps increases for the following
reasons:

• Identifying Common Variables: Different experts might represent semantically
equivalent concepts in their causal maps using different variable names (e.g.
'Number of Developers' vs. 'Project Human Resources'). Furthermore, experts
might use a different number of variables to represent the same concept.

• Conflicting Causal Relations: Variables might have contradictory causal relations
according to different experts. Two kinds of causal relation conflicts can occur:
the first when there is a causal influence between two variables according to an
expert’s belief, which is strictly prohibited by another expert’s belief. The other
type of conflict is the occurrence of cycles (which is ruled out within the context
of this work in order to keep the resulting aggregated causal map consistent with
all the six individual maps being used as input, which were all Directed Acyclic
Graphs (DAGs).

• Collaboration Constraints: One feasible way to construct a generic causal map for
Web effort estimation is to elicit a single map from a group of domain experts
from a representative sample of Web development companies. This would need to
be done in stages, and such approach might work well with small groups of do-
main experts but will likely to be impractical when additional models are included
in the unified model. However, within the context of this research, any form of
collaboration between domain experts is not feasible because all of the participat-
ing companies compete in the same market. This means that, by collaborating with
other experts, they would be forced to share sensitive business information that
they are not willing to disclose.

Therefore, it is vital to apply a methodology for combining different expert-elicited
causal maps that solves the difficulties abovementioned. In this paper we propose a
method, detailed in Sections 5 and 6, which solves many of the affiliated challenges
in combining expert-elicited BNs that have not been sufficiently addressed in prior
work.

Note that although all the causal maps that are used as input to our aggregated
causal map are part of larger models - BNs, i.e., all represent the qualitative parts of
single-company BNs that have been previously built for Web effort estimation, it is
not our aim herein to build a cross-company Bayesian Network model for Web effort
estimation, but rather to focus solely on the merging of causal maps.

268 S. Baker and E. Mendes

4 Related Work

There are well established techniques that attempt to find consensus between expert
opinions such as the Delphi method [37] and many others [41]. However, these meth-
ods generally require collaboration and information sharing, and are time consuming.
As detailed in Section 3, such requirements are not suitable within the context of this
work.

Sagrado and Moral [42] have proposed a qualitative method that combines sepa-
rate BN Structures as either a union or intersection of DAGs. They consider the initial
BN Structures to be I-Maps; I-Maps can be defined as BNs that contain probability
parameters consistent with all Markov assumptions implied by its causal structure
[43] . The Markov assumption states that a given node is independent of any non-
descendent nodes in the network given its parent nodes. Figure 2 shows an example of
the Markov assumption at node X. The highlighted nodes, (D, C, and G) are not influ-
enced by X (and likewise, cannot influence X) given the probabilities of its parent
nodes A and B. An I-Map is a BN possessing probability parameters that are
consistent with the Markov assumption at every node.

Fig. 2. Markov Assumption at node X

Sagrado and Moral based their approach on a proposition established by Castillo,
Gutiérrez, and Hadi [44] , which states: Given two I-Maps defined over the same set
of variables, if there is a common ancestral ordering in both I-maps, then the DAG
obtained from their intersection is a directed minimal I-Map. In other words, it is
possible to derive an intersection structure of two independent causal maps that share
the same variables if there is at least one common prior node. If so, then the resultant
intersection structure will be a minimal I-Map, which is an I-Map that cannot be sim-
plified any further. As a consequence, the intersection structure will conserve all
independencies that exist in the original causal structures.

The main constraint in the proposition by Castillo et al. is that both structures must
share exactly the same variables. Sagrado et al.’s approach bypasses this limitation by
extending the notion of intersection to "extended intersection", which is essentially a
union of the two causal maps in reference to the starting prior node; i.e. all nodes
reachable from the starting prior node in both causal structures. This solution suits our
situation because of the automation it provides, but more importantly, it is non-
intrusive and allows us to combine causal maps without the need to ask unwilling
domain experts to disclose business process information to other domain experts.
Nevertheless, this approach has never been empirically verified, and the authors

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 269

present only a theoretical account of this method without any real world example. In
terms of our research, the drawbacks to this method are as follows:

It assumes that individual models will share at least one prior node in order to
perform the union/intersection operation. Although this might seem very probable for
our case, given that all the participating companies share the same problem domain, in
reality this is not the case. All the company models have defined variables that are
very specific to their business process; even though there exist similar nodes shared
between the models, their exact definition and context makes them different.

Sagrado and Moral's approach does not preserve, unlike the original proposal
by Castillo et al. [44], independence relationships; in fact, it can result in the contra-
diction of the topological rules of BN causal structures, such as the introduction of
cycles. However, they show that whenever there are no head-to-head (converging)
edges, the resultant causal map is a minimal I-Map.

We believe that aggregating structures provides one with much more relevant in-
formation than to a simple union or intersection of structures, as we can distinguish
between more common factors and causal relations in the domain, whereas a simple
union or intersection looses this information in the process [45].

5 Proposed Solution

We propose a qualitative methodology that pragmatically addresses the shortcomings
of Sagrado et al.’s approach by:

1. Introducing a mapping scheme, i.e., a way to identify similar existing variables in
the participating companies’ BN models.

2. Instead of using a simple union/intersection, which can only include a common
node or edge exactly once, we attempt to aggregate the causal structures. By ag-
gregation, we imply that all edges and nodes in the original map are preserved. As
more causal maps are aggregated, the most common variables and causal links
emerge, thereby simulating in our view a form of consensus between the different
companies’ maps.

We termed the resultant aggregated graph as a Causal Structure Aggregation Model
(CSAM). Strictly speaking, it is not a unified causal map, but it is a tool for discover-
ing a consensual causal maps. A CSAM is a graph that represents the cumulative
union of individual causal maps according to a node mapping scheme. The aim of a
structure aggregation model is to identify causal commonalties between independ-
ently developed maps that share the same domain. Consider the three causal maps
presented in Figure 3. All are used to estimate the total effort required to develop a
Web application. Since they all share the same domain, it is possible to assume that
the nodes in two different models portray the same factor. For example, nodes A1,
B1, and C1 all model the same factor - the number of developers required to develop
a Web application, and therefore, it is possible to map those three nodes into a single
factor.

270 S. Baker and E. Mendes

Fig. 3. Three Basic Examples of Causal Maps

Some nodes are more subjective in their definition, e.g., nodes B2 and C2 both at-
tempt to model the effort required to develop a Web application, but the exact details
of how to measure this effort might vary between the two companies. However, be-
cause both models share the same domain, both B2 and C2 are likely to portray the
same underlying concept. By performing this type of mapping between the three
models, we can produce the CSAM presented in Figure 4.

The left partition of a CSAM’s node represents a factor of interest, while the right
partition contains a list of nodes from the original models that map to this factor. All
the causal links from the original models are preserved in the CSAM, i.e., if there is a
link between two nodes in one of the original models (for example from A2 to A0),
then in the CSAM there must be an edge from every node that contains A2 in its

Model A:

Model B:

Model C:

B1 : Number of
Developers

B2 : Administration Effort

B3 : Number of
Webpages

B0 : Total Effort

B1 : Number of
Developers

B2 : Administration Effort

B3 : Number of
Webpages

B0 : Total Effort

A1 : Development Team
Size

A2 : Number of Web
Pages

A3 : Effort to produce
Requirement

Documentation

A0 : Total Effort

C1 : Number of
Developers

C2 : Project management
effort

C3 : Effort to Gather
Requirements

C0 : Total Effort

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 271

mapping to every node that contains A0 in its mapping. The numbers attached to the
edges in the CSAM represent the cardinality of their mapping. For example, the edge
from node (1) to node (0) has a cardinality of three; this is because there are three
original edges that map to it: A1 to A0, B1 to B0, and C1 to C0. The cardinality of a
node is the number of 'original' nodes that it maps to (i.e. the number of nodes listed
in its right partition). The example in Figure 4 has a simple one-to-one mapping be-
tween the CSAM factors and the nodes from the example causal maps. It is possible
to have a many-to-many mapping to resolve more ambiguous situations.

Fig. 4. Causal Structure Aggregation Model (CSAM) of the causal maps in Fig. 3

6 Methodology

The goal of this research was to build a CSAM by aggregating six different expert-driven
Web effort estimation causal maps. The methodology used to combine these maps com-
prised a six-step process (detailed below) combining both linear and iterative approaches
(see Figure 5).

1) Formatting of the companies’ causal maps
The companies’ maps were first formatted so they could be handled by the
aggregation algorithm (step 4). The formatting consisted of the following steps:

Each node in every map was given a unique Identifier. The identifiers chosen for
our research represented a concatenation between a company’s causal map identifier
and a unique natural number (a number only valid within the context of a single
causal map). Each causal map was represented in a parseable format, where the
format chosen herein was CSV (Comma Separated Values).

(0) Total Effort

A0: Total Effort
B0: Total Effort
C0: Total Effort

(1) Number of
Developers

A1: Development Team Size
B1: Number of Developers
C1: Number of Developers

(2) Number of Web
Pages

A2: Number of Web Pages
B3: Number of Web Pages

(3) Requirement
Documentation Effort

A2: Effort to produce
Requirement Documentation

(4) Project Administration
Effort

B2: Administration Effort
C2: Project Management Effort

(5) Requirement
Gathering Effort

C3: Effort to Gather
Requirements

3

2

2

Factor Mapping of Original Nodes

272 S. Baker and E. Mendes

Fig. 5. Process Flow Diagram for Producing a CSAM

The choice relating to the identifiers’ representation and parsing format to use was
informed by the tool implemented to help with this aggregation process.

2) Removal of Optimisation Nodes
Optimisation nodes are intermediate nodes that were inserted into a causal structure to
partition large CPTs in order to reduce their probability elicitation effort. In general,
such nodes are not part of the original map elicited with the domain experts; rather,
they are suggested by the Knowledge Engineer, and approved by the experts. The
purpose of our CSAM was to only aggregate the factors and causal relationships
originally modelled by the experts, and as such, the inclusion of optimisation nodes
was deemed inappropriate.

Optimisation nodes were first identified from the documentation available for each
of the companies' maps. To remove an optimisation node we connected all of its

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 273

incoming edges (coming from its parent nodes) directly to all of its child nodes,
followed by the removal of this optimisation node and all of its outgoing edges (see
Fig. 6):

Fig. 6. Removing an Optimization node

During this operation BNs' existing graph rules must always hold (note that each
casual map used was part of a larger model – a BN model). For example, only a single
edge could have the same source and destination nodes; therefore, if the removal of an
optimisation node resulted in adding an edge between two nodes that were already
directly linked, then the resultant edge had to be discarded.

3) Creation of an Input Table
Each node in our CSAM corresponded to a semantically equivalent node originating
from one of more of the causal maps used as input. Sometimes different causal maps
would contain the same node however named differently; when carrying out the map-
ping (as detailed below) we checked for the semantic equivalence between nodes
across causal maps. These mappings were documented using a Table, where each row
was used to map a CSAM node to all the other semantically equivalent nodes origi-
nating from causal maps. The table’s first column represented a CSAM node (factor),
identified by a unique ID; the remaining columns contained node identifiers associ-
ated with the nodes contained in the input causal maps.

Given a company’s input causal map, the first node to be mapped was the most-
posterior node, which within our context always happened to be the Total Effort. We
chose this node because it was part of all the participating companies’ causal maps,
and therefore we believed it to be the easiest node to identify and map. Once Total
Effort was mapped, the remaining nodes were mapped according to the following
steps:

1. Selection of a node (factor) from a company’s causal map that had not yet been
mapped.

2. Identification of the contextual meaning of the factor selected in (1), which usu-
ally involved interpreting the underlying concept that the DE employed when that
factor was elicited. We first identified the units and quantification used to measure
the factor, followed by looking at the supporting documentation from the elicita-
tion sessions, which contained examples and additional commentary about the
DEs’ beliefs. In the rare cases where a factor’s contextual meaning was still
ambiguous, the DEs were contacted for clarification.

A

Optimisation
Node

CB

X Y

A CB

X Y

274 S. Baker and E. Mendes

3. Attempt to map the factor identified in (1) () to a factor, or set of factors, already
present in our CSAM. Whenever there was no corresponding factor(s) clearly
mapping to , we created a new factor(s) within our CSAM to match that given
factor .

There were no strict rules as to whether an original node was mapped to one or more
factors within our CSAM; however, we always aimed to keep as much of the original
context as possible through the mapping. Thus the reason why our methodology is
iterative and not linear is because mappings often change as new factors are created
and old ones are revised.

In order to minimise the effort of constantly changing the mappings as the aggrega-
tion map was populated, we decided to map the original nodes in different iterations
rather than mapping all nodes at once. This gave us the opportunity to run the aggre-
gation algorithm (see step 4 below) and generate the CSAM several times, containing
incomplete aggregation maps, and then to look for faults and inconsistencies (e.g.
cycles). The first iteration involved mapping every prior node from all the companies’
causal maps. The second iteration involved mapping all the nodes from all the com-
panies’ maps that were directly pointed to by all prior nodes, and so on until the most
posterior (the Total Effort Node) was reached.

4) Aggregation Algorithm
The Table prepared in step 3 was used as input to an aggregation algorithm that pro-
duced a graphical representation of the CSAM. The algorithm worked by first merg-
ing the prior nodes according to the mapping specified in the Table, and continuing
until all nodes in all the companies’ maps were processed [39].

Whenever the Table from Step 3 did not include mappings for some of the nodes in
the inputted causal maps, then these nodes were represented in the CSAM by place-
holder nodes. The purpose of the placeholder node was so that we were aware of
which nodes still required mapping in the next iteration of this process (see Step 6).

5) Check if the Aggregation Graph Contains Cycles
The aggregation algorithm allowed for the occurrence of cycles since it simply fol-
lowed what was documented in the Table used as input. Therefore, when the gener-
ated CSAM graph contained cycles, the input Table needed to be modified so that all
of the documented cycles were broken. Cycles could be broken by changing the map-
ping of one or more nodes that made up the cycle, which could be achieved by either
removing or adding factors to the input Table. However, because all the companies'
maps were independent of one another and yet shared the same domain, it is theoreti-
cally possible, in theory, to have cycles occurring that may not be resolved. This
would occur whenever nodes in their original causal maps did not form cycles, but
ended up contributing to a cycle in the CSAM due to conflicting contexts.

6) Check if All Nodes are Mapped
The final step in the process was to check whether every node (except for optimisation
nodes) in all the companies’ causal maps had been mapped in the CSAM. For this we
looked for the existence of placeholder nodes in the CSAM outputted by the algorithm. If

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 275

found, we mapped the map’s nodes identified by the placeholder nodes by referring back
to Step 3; conversely, if there were no placeholder nodes, we considered that the CSAM
was complete according to our mapping.

7 Results

In this section, we present our results from aggregating six independently elicited singly-
company causal maps. The elicited models varied in their sizes; as summarised in the
following table:

Table 1. List of Causal maps and their sizes

Map Number of Nodes Number of Edges
Model A 30 32
Model B 16 20
Model C 15 14
Model D 26 27
Model E 26 29
Model F 19 18

The CSAM1 resulting from our 6-step methodology (presented in Section 5) en-
abled us to identify common factors and causal relations shared amongst the six inde-
pendent single-company BNs. This CSAM presented 67 nodes in total, encompassing
all the factors identified by all six participating companies via their BNs. This com-
bined list of factors brought us one step closer to determining all the factors in our
target domain (Web development effort estimation), and therefore closer to a unified
BN for Web effort estimation. Table 2 lists the Factors2 in our CSAM and their cardi-
nality, which corresponds to the number of input causal maps that contained that
factor. Therefore, a factor’s cardinality is an indication of how common this factor
was as a predictor amongst the six participating companies.

The most common factor in our CSAM, presenting the highest cardinality on the
list, was the ‘Number of New Web Pages’. This may perhaps be an expected result, as
the number of Web pages is often likely to be used to determine project scope [2].
This result provides even stronger supporting evidence that there is a causal relation-
ship between new Web pages developed and total development effort; however, given
that the sample used was not random we cannot generalise this trend to all remaining
Web companies. Another observation is that factors that perhaps may have higher
importance in conventional software development did not seem to be common
amongst the participating companies; for example, factors related to requirements
engineering and documentation. This is perhaps indicative of more agile software
development methodologies being employed by the participating companies.

1 The resultant CSAM is available here:
http://www.cs.auckland.ac.nz/~emilia/ASEA/CSAM.pdf

2 A description of all CSAM factors is given here:
http://www.cs.auckland.ac.nz/~emilia/ASEA/factors.pdf

276 S. Baker and E. Mendes

Table 2. List of CSAM Factors and their cardinality

Factor Description Cardinality Factor Description Cardinality
Number of new web pages 6 Effort producing animations using

software
1

Number of reused web pages 5 Effort programming animations 1
Number of features off the shelf 4 Is development process documented? 1
Project management effort 4 Means of supplying multimedia 1
Adaptation effort of features off the
shelf

3 Number of features off the shelf
adapted

1

Average project team experience
with technology

3 Number of images (new and reused) 1

Development effort of new features 3 Number of images per page 1
Client difficulty 2 Number of images requiring high

effort to manipulate
1

Development team size 2 Number of images requiring low
effort to manipulate

1

Number of features requiring high
effort to create

2 Number of images requiring medium
effort to manipulate

1

Number of features requiring high
effort to modify/adapt

2 Number of supplied multimedia 1

Number of features requiring low
effort to create

2 Pre-development documentation 1

Number of features requiring low
effort to modify/adapt

2 Requirements scope 1

Number of images reused 2 Server side language/framework 1
Number of new images 2 Subcontractor development team size 1
Number of web page templates 2 Type images preparation 1
Requirements clarity 2 Type of application 1
Template structure 2 Effort required to train clients 1
Type of project 2 Amount of text per application 1
Client web literacy 2 Quality of third party deliverables 1
Effort template look & feel 2 Number of key client's people 1
Effort to produce web pages 2 Web company's hosting control 1
Effort to produce template mock-up 2 Effort to reuse features off-the-shelf 1
Amount of text per page 1 Effort to adapt features off-the-shelf 1
Are metrics used throughout the
project?

1 Effort of graphical design 1

Are the look & feel requirements
provided by the client?

1 Effort research third party features 1

Average project team experience
(excluding technology)

1 Effort of search engine optimization 1

Average subcontractor development
team experience

1 Effort to produce requirements
documentation

1

Client location 1 Effort to produce development
documentation

1

Client professionalism 1 Effort to develop user interface 1
Technology (client side) language 1 Requirements complexity 1
Data persistence type 1 Effort to program features 1
Development process model 1 Effort to implement the web applica-

tion
1

Effort spent on images manipulation 1

Figure 7 shows the proportion of factors according to their equivalent nodal cardi-
nality. We can see that approximately 66% of all factors appeared in only a
single company’s map, and 34% of factors were common to at least two maps. The

 Aggregating

percentage of nodes decrea
number of factors available
being considered by individ
also rapidly decreases with
many causal relationships n

There were 101 causal
common causal relations b
that is, all causal edges wi
16% of all causal relations
lent causal relationship wa
Effort’ whereby 66.6% of t
their causal maps. Other co

• Relationship from Numb
• Relationship from 'Num

Effort'.
• Relationship from ‘Ave

influencing 'Total Effort

Fig. 7. Distribu

Fig. 8. Average

Each of the three abovem
nies’ maps. Edges with hig

g Expert-Driven Causal Maps for Web Effort Estimation

ased as the cardinality increased, suggesting that the to
e in the target domain significantly outnumbered the fact
dual companies. Likewise, the percentage of causal ed

h respect to edge cardinality, which suggests that there
not considered by individual companies.

edges our CSAM. We were able to determine the m
y selecting all the matched causal relations in the CSA
ith a cardinality of two or more. Our results showed t
were shared between at least two maps. The most pre

s between factors 'Project Management Effort' and ‘To
the participating companies included such relationship
mmon causal relationships identified were:

ber of New Web Pages' directly influencing 'Total Effort
mber of Reused Web Pages' directly influencing 'To

erage Project Team Experience with Technology' direc
t'.

ution of node and edge cardinalities in our CSAM

e Distance by edge cardinality to Total Effort node

mentioned causal relations appeared in 50% of the com
gher cardinality tended to be closer to the most poste

277

otal
tors

dges
are

most
AM,
that
eva-
otal
s in

t’.
otal

ctly

mpa-
erior

278 S. Baker and E. Mendes

node (‘Total Effort’). Figure 8 shows a falling trend in the mean and median average
distances to the Total Effort node. An average mean distance = 0.82 for edges with
cardinality of 1, and mean distance = 0.33 for edges with cardinality of 2. This is in
our view an important outcome because 'effort' is what all the causal maps used in this
research aim to predict; it is therefore advantageous to know which factors were likely
to have a direct effect upon effort, since this would be the focal point of any future
consensus-based causal map.

Figure 9 shows a sub-graph of the resultant CSAM with all edges having cardinali-
ty greater than two. Factors were grouped into higher level categories (grey boxes) in
order to aid readers understand it. This figure can be described as an aggregated inter-
section of all the causal edges in the inputted causal maps. The higher the weight
value of an edge the more common the causal relation is. This figure is therefore very
useful as it indicates likely relationships that exist between factors within the Web
development domain. We believe that as we further aggregate causal maps to our
resultant CSAM, a more informative and decisive consensus will emerge, thus also
strengthening the external validity of this model. In other words, a CSAM is a matur-
ing model, providing further certainty as further causal maps are aggregated.

Fig. 9. A sub-graph of the resultant CSAM with all edges having cardinality greater than two
(grouped by category)

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 279

8 Threats to Validity

There are a few threats to the validity of our work. One is the mapping of original
nodes (i.e. creating the aggregation map in third step in our methodology from
Section 5). The mapping was performed by the researchers (i.e. knowledge engi-
neers), not the domain experts; therefore, there is always the possibility of bias being
introduced. However, it is important to note that many steps were undertaken to miti-
gate this risk. All mappings were based on documentation provided by the experts,
and for cases where there was ambiguity, the experts were contacted directly for
further clarification.

Another threat is that our methodology does not in any way guarantee that the final
CSAM is free of cycles. Although for the six company maps, all potential cycles were
resolved by further investigation and remapping; this might not always be the case. It
is always possible to have intrinsically contradictory causal maps, rendering it impos-
sible to resolve cycles unless at least one edge is omitted from the CSAM.

Finally, for the CSAM to be fully comprehensive in terms of domain factors, it is
necessary to aggregate a large number of maps. For our case, the aggregation of six
maps is not enough to represent all factors and causal relations that impact effort
estimation in the Web development domain. However, we note that the resultant
CSAM is a maturing model, and we plan to aggregate further causal maps as part of
our future work.

9 Conclusions

The aim of this paper was to investigate further the important factors for Web effort
estimation and their cause and effect relationships by aggregated six single-company
Web effort estimation causal maps. To build such an aggregated model presents nu-
merous challenges, namely identifying common variables, resolving causal relation
conflicts, and company collaboration constraints.

We believe that one can overcome some of these challenges by applying an aggre-
gation process that can yield the most common patterns shared between single-
company causal maps. Our proposal for building an aggregated map was based on an
earlier proposition by Sagrado et al. [42], which attempted to combine BNs’ causal
maps using intersection/union of DAGs forming a consensus causal structure. Our
proposal improved upon this proposition in two ways: first by introducing a mapping
mechanism for grouping related variables from different single-company maps, and
secondly by using an aggregation of nodes and edges instead of a simple un-
ion/intersection, thus preserving all edges and nodes from the original maps. We
termed the aggregated causal map as a Causal Structure Aggregation Model (CSAM),
and its chief rationale was to identify structural commonalities (common factors and
causal relations) found in the original causal maps.

We have constructed a CSAM using six expert-driven single-company causal maps
(part of single-company BNs), all of which elicited from local Web development
companies in Auckland, NZ. This CSAM contained 67 factors and 101 causal edges.
The resultant CSAM revealed the following patterns: i) 34% of the CSAM factors
were shared between at least 2 single-company maps; ii) The most common factor
was 'Number of New Web Pages'; a size measure of Web applications, which supports

280 S. Baker and E. Mendes

the findings from earlier studies [2]; iii) The proportion of nodes rapidly decreased as
cardinality increased, implying that the total number of factors relevant in the Web
effort estimation domain significantly outnumbers the number of factors being con-
sidered by individual companies; iv) 16% of all causal relations found in the CSAM
were shared between at least two single-company maps; v) The most common causal
relationship in our CSAM was between factors 'Project Management Effort' and ‘To-
tal Effort’, included in 66.6% of the single-company maps; vi) Three other common
causal relationships which were evident were: ‘Number of New Web Pages', 'Number
of Reused Web Pages', and ‘Average Project Team Experience with Technology'’, all
of which directly influenced ‘Total Effort’; vii) Edges with higher cardinality tended
to be closer to the most posterior node, suggesting that most factors influenced total
effort directly.

The abovementioned points show that even with a small number of companies we
can already see reasonable commonality in terms of factors and causality. The CSAM
is a maturing model, which means that as more causal maps are aggregated; the more
common factors and causal links will emerge, hence providing an improved consen-
sus. The aggregation process presented herein can be used to aggregate other causal
maps. In addition, to our knowledge this is the first time that a study in either Web or
Software Engineering describes the creation of a large causal map for effort estima-
tion via the aggregation of several single-company causal maps. Our future work
involves the aggregation of other expert-driven single-company causal maps from
companies in NZ, and also overseas.

Acknowledgements

We thank Dr. Mosley* and Professor Jorgensen for their comments on an earlier ver-
sion of this paper, and also all the participating companies in this research. This work
was sponsored by the Royal Society of New Zealand (Marsden research grant
06-UOA-201).

References

1. Jensen, F.V., Nielsen, T.D.: Bayesian networks and decision graphs. Springer, Heidelberg
(2007)

2. Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost
Estimation. Journal of Systems and Software 77, 157–172 (2005)

3. Mendes, E., Counsell, S.: Web Development Effort Estimation using Analogy. In: Proc.
2000 Australian Software Engineering Conference, pp. 203–212 (2000)

4. Fewster, R., Mendes, E.: Empirical Evaluation and Prediction of Web Applications’ De-
velopment Effort. In: Proc. EASE 2000 (2000)

5. Fewster, R., Mendes, E.: Measurement, Prediction and Risk Analysis for Web Applica-
tions. In: Proceedings of IEEE Metrics Symposium, pp. 338–348 (2001)

6. Mendes, E., Kitchenham, B.A.: Further Comparison of Cross-company and Within-
company Effort Estimation Models for Web Applications. In: Proc. IEEE Metrics, pp.
348–357 (2004)

* http://www.metriq.biz

 Aggregating Expert-Driven Causal Maps for Web Effort Estimation 281

7. Mendes, E., Mosley, N.: Does the Linear Size Adjustment to Estimated Effort Improve
Web Applications Effort Estimation Accuracy? Special Issue of the Journal of Computa-
tional Methods in Science and Engineering 5(1), 171–184 (2005)

8. Mendes, E., Mosley, N.: Web Cost Estimation: principles and applications. In: Khosrow-
Pour, M., Travers, J. (eds.) Web Engineering – Principles and Techniques, pp. 182–202.
Idea Group, Inc., USA (2005)

9. Mendes, E., Mosley, N.: Further Investigation into the Use of CBR and Stepwise Regres-
sion to Predict Development Effort for Web Hypermedia Applications. In: Proc.
ACM/IEEE ISESE, Nara, Japan, pp. 79–90 (2002)

10. Mendes, E., Counsell, S., Mosley, N.: Web Hypermedia Cost Estimation: further assess-
ment and comparison of cost estimation modelling techniques. NRHM 8, 199–229 (2002)

11. Mendes, E., Counsell, S., Mosley, N.: Towards the Prediction of Development Effort for
Hypermedia Applications. In: Proc. Hypertext 2001, pp. 249–258 (2001)

12. Mendes, E., Mosley, N., Counsell, S.: Exploring case-based reasoning for Web hyperme-
dia project cost estimation. IJWET 2(1), 117–143 (2005)

13. Mendes, E., Mosley, N., Counsell, S.: A Replicated Assessment of the Use of Adaptation
Rules to Improve Web Cost Estimation. In: Proc. ISESE, pp. 100–109 (2003)

14. Mendes, E., Mosley, N., Counsell, S.: Early Web Size Measures and Effort Prediction for
Web Costimation. In: Proceedings of the IEEE Metrics Symposium, pp. 18–29 (2003)

15. Mendes, E., Mosley, N., Counsell, S.: Comparison of Length, complexity and functionality
as size measures for predicting Web design and authoring effort. IEE Proc. Soft-
ware 149(3), 86–92 (2002)

16. Mendes, E., Mosley, N., Counsell, S.: The Application of Case-Based Reasoning to Early
Web Project Cost Estimation. In: Proc. Compsac 2002, pp. 393–398 (2002)

17. Mendes, E., Mosley, N., Counsell, S.: Web metrics - Metrics for estimating effort to design
and author Web applications. IEEE MultiMedia, 50–57 (January-March 2001)

18. Mendes, E., Mosley, N., Counsell, S.: Using an Engineering Approach to Understanding
and Predicting Web authoring and Design. In: Proc. HICSC (2001)

19. Mendes, E., Mosley, N., Watson, I.: A Comparison of Case-Based reasoning Approaches
to Web Hypermedia Project Cost Estimation. In: Proc. WWW 2002 (2002)

20. Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell, S.: A Comparative Study of Cost
Estimation Models for Web Hypermedia Applications. ESE 8(2), 163–196 (2003)

21. Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E.: Comparing Size Measures for Pre-
dicting Web Application Development Effort: A Case Study. In: Proceedings ESEM 2007
(2007)

22. Reifer, D.J.: Web Development: Estimating Quick-to-Market Software. IEEE Software,
57–64 (November-December 2000)

23. Ruhe, M., Jeffery, R., Wieczorek, I.: Cost estimation for Web applications. In: Proceedings
ICSE 2003, pp. 285–294 (2003)

24. Baresi, L., Morasca, S., Paolini, P.: An empirical study on the design effort for Web appli-
cations. In: Proceedings of WISE 2002, pp. 345–354 (2002)

25. Baresi, L., Morasca, S., Paolini, P.: Estimating the design effort for Web applications. In:
Proceedings of Metrics 2003, pp. 62–72 (2003)

26. Mangia, L., Paiano, R.: MMWA: A Software Sizing Model for Web Applications. In:
Proc. Fourth International Conference on Web Information Systems Engineering, pp. 53–
63 (2003)

27. Mendes, E.: Predicting Web Development Effort Using a Bayesian Network. In: Proceed-
ings of EASE 2007, pp. 83–93 (2007)

282 S. Baker and E. Mendes

28. Mendes, E.: The Use of a Bayesian Network for Web Effort Estimation. In: Baresi, L.,
Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 90–104. Springer,
Heidelberg (2007)

29. Mendes, E., Polino, C., Mosley, N.: Building an Expert-based Web Effort Estimation
Model using Bayesian Networks. In: 13th International Conference on Evaluation & As-
sessment in Software Engineering (2009)

30. Rajabally, E., Sen, P., Whittle, S., Dalton, J.: Aids to Bayesian belief network construction.
In: Proceedings of 2004 2nd International IEEE Conference on Intelligent Systems, vol. 2,
pp. 457–461 (2004)

31. Mendes, E., Mosley, N.: Bayesian Network Models for Web Effort Prediction: A Compar-
ative Study. IEEE Trans. on Soft. Engineering 34(6), 723–737 (2008)

32. Mendes, E., Mosley, N., Counsell, S.: Investigating Web Size Metrics for Early Web Cost
Estimation. Jour. of Systems and Software 77(2), 157–172 (2005)

33. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E.: Applying Support Vec-
tor Regression for Web Effort Estimation using a Cross-Company Dataset. In: Proceedings
of the ACM/IEEE Symposium on Empirical Software Measurement and Metrics, pp. 191–
202 (2009)

34. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Mendes, E.: Using Support Vector
Regression for Web Development Effort Estimation. In: Abran, A., Braungarten, R.,
Dumke, R.R., Cuadrado-Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891,
pp. 255–271. Springer, Heidelberg (2009)

35. Ferrucci, F., Gravino, C., Oliveto, R., Sarro, F., Mendes, E.: Investigating Tabu Search for
Web Effort Estimation. In: Proceedings of Euromicro SEAA 2010 Conference (2010)

36. Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How the Choice
of the Fitness Function Impacts on the Use of Genetic Programming for Software Develop-
ment Effort Estimation? In: Proceedings of PROMISE 2010 (2010) (best paper award)

37. Brown, B.B.: Delphi process: A methodology used for the elicitation of opinions of ex-
perts, Santa Monica, CA, Rand Corporation (1968)

38. Woodberry, O., Nicholson, A., Korb, K., Pollino, C.: Parameterising Bayesian Networks.
In: Australian Conference on Artificial Intelligence, pp. 1101–1107 (2004)

39. Baker, S.: Towards the Construction of Large Bayesian Networks for Web Cost Estima-
tion. In: Department of Computer Science Auckland: University of Auckland (2009)

40. Montironi, R., Whimster, W.F., Collan, Y., Hamilton, P.W., Thompson, D., Bartels, P.H.:
How to develop and use a Bayesian Belief Network. Journal of Clinical Pathology 49, 194
(1996); Mendes, E.: A Comparison of Techniques for Web Effort Estimation. In: First In-
ternational Symposium on Empirical Software Engineering and Measurement, ESEM
2007, pp. 334–343 (2007)

41. Fink, A., Kosecoff, J., Chassin, M., Brook, R.H.: Consensus methods: characteristics and
guidelines for use. American Journal of Public Health 74, 979 (1984)

42. Sagrado, J.D., Moral, S.: Qualitative combination of bayesian networks. International
Journal of Intelligent Systems, 237–249 (2003)

43. Flesch, I., Lucas, P., Gamez, J.A., Salmeron, A.: Markov Equivalence in Bayesian Net-
works (2007)

44. Castillo, E., Gutiérrez, J.M., Hadi, A.S.: Combining multiple directed graphical representa-
tions into a single probabilistic model. In: Actas de la Séptima Conferencia Espanola para
la Inteligencia Artificial, CAEPIA, pp. 645–652 (1997)

45. Hu, X.-x., Wang, H., Wang, S.: Using Expert’s Knowledge to Build Bayesian Networks.
In: Proceedings of the 2007 International Conference on Computational Intelligence and
Security Workshops, pp. 220–223 (2007)

Bug Forecast:

A Method for Automatic Bug Prediction

Rudolf Ferenc

University of Szeged, Department of Software Engineering

H-6720 Szeged, Árpád tér 2, Hungary

ferenc@inf.u-szeged.hu

http://www.inf.u-szeged.hu/~ferenc

Abstract. In this paper we present an approach and a toolset for au-

tomatic bug prediction during software development and maintenance.

The toolset extends the Columbus source code quality framework, which

is able to integrate into the regular builds, analyze the source code, calcu-

late different quality attributes like product metrics and bad code smells;

and monitor the changes of these attributes. The new bug forecast toolset

connects to the bug tracking and version control systems and assigns the

reported and fixed bugs to the source code classes from the past. It

then applies machine learning methods to learn which values of which

quality attributes typically characterized buggy classes. Based on this

information it is able to predict bugs in current and future versions of

the classes.

The toolset was evaluated on an industrial software system developed

by a large software company called evosoft. We studied the behavior

of the toolset through a 1,5 year development period during which 128

snapshots of the software were analyzed. The toolset reached an average

bug prediction precision of 72%, reaching many times 100%. We concen-

trated on high precision, as the primary purpose of the toolset is to aid

software developers and testers in pointing out the classes which con-

tain bugs with a high probability and keep the number of false positives

relatively low.

Keywords: bug prediction, machine learning, software product metrics,

bad code smells.

1 Introduction

The aim of this project was to provide short term bug prediction on evosoft ’s,
a large software company’s commercial software system by using the results
of static source code analysis and assigning bug information from the past to
classes and code analysis results. The developed method and toolset forecast
the faulty classes and the tools make the monitoring of them easy and user
friendly. The motivation of the bug prediction is to make a toolset available
for the programmers by which they are able to point out possibly problematic
classes, which can contain bugs. By pointing out critical classes the testing and

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 283–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

284 R. Ferenc

code-reviewing phases could be planned easier, therefore the resource manage-
ment of programmers and testers gets more efficient. By using the described
bug prediction methods the cost and time planning of the maintenance and the
development of new features are getting more accurate.

For the research and evaluation purposes evosoft handed over its source code
and bug database. This dataset is a collection of a continuous industrial develop-
ment of a commercial software and it was collected for more than 1.5 years. More
than 128 former snapshots of the software code were analyzed. The snapshots
changed regularly on three to seven days periods. As the result of the static code
analysis, product metrics (e.g. LOC – Lines of Code, CBO – Coupling Between
Object Classes) [4] and the number of different bad code smells (e.g. DC – Data
Class, FE – Feature Envy) [8] were calculated for all the classes. Combining the
metrics with the bug number information, which was available for all the classes,
a correlation among product metrics and faultiness of classes could be set up.

During the research project a bug forecast toolset was developed. This toolset
extends the Columbus source code quality framework [7], which is able to in-
tegrate into the regular builds, analyze the source code, and calculate different
quality attributes like product metrics and bad code smells. The toolset extracts
the bug information (e.g. number of bugs, the date of opening and closing) by
connecting to the bug and version tracking systems. The information gets as-
signed to the particular source code class, which makes the tracking of the bugs’
life cycle available. The information is stored in the platform independent source
code quality assurance tool, called SourceInventory [2], which queries, moni-
tors and tracks system development life cycle attributes (e.g. product metrics).
Machine learning methods are performed on the dataset by the toolset.

As the toolset was developed only recently, the efficiency of the toolset was
evaluated by performing the following simulation: if the developers used the
toolset from the beginning of the development for 1.5 years, how accurate bug
prediction would they get.

Several machine learning algorithms were studied, and it turned out that the
tree-based models performed best. The best choice was the best-first decision
tree algorithm, which provided the best results for accuracy, precision and recall
(indicators). Experiments showed that to achieve the best indicator values the
learning dataset had to be constructed to hold 6 weeks of data before the chosen
date.

The machine learning process was done by learning on binary bug data, which
means that the classes were classified as having at least one bug or not having
bugs. Recall means the number of correctly identified classes having bug(s) di-
vided by the total number of classes having bug(s). On the other hand, the
dataset containing the number of bugs per a class was also available. Therefore
the completeness values were also calculated, which means the number of bugs
in the classes identified as buggy divided by the total number of bugs in the
current snapshot. The above results indicate that the true positive (found real
buggy classes) rate is high and the false positive (not buggy class identified as

Bug Forecast: A Method for Automatic Bug Prediction 285

buggy) rate is low. The goal of the research project was to help developers in
finding buggy classes. Having a high precision and a small false positive rate
provides valuable bug prediction data.

Related Work. For the purpose of bug prediction in software systems re-
searchers already used several approaches. Diverse machine learning algorithms,
and source code, version, and bug attributes were used to learn on one or more
versions of a software system covering small to large development time frames.
Bug prediction can successfully be done by extracting source code metrics and
assigning them to bug information [3]. The detection of design problems based
on metrics and data linking of the version control system was done by Marco
D’Ambros [5]. The bugs can be predicted for packages, files [11], classes [9] and
for procedures. Bug prediction methods could differ in large-scale open-source
software systems [6] covering long-term developments and small projects cover-
ing short-term development time. Effective bug prediction could also be done by
the evaluation of the bug tracking and version control system without analyzing
the source code [1]. Combining the bug tracking system’s information with the
source code change patterns can also lead to high precision results [10].

The following section describes the tools for extracting the metrics and as-
signing the bug numbers to the classes. Section 3 describes our experiment and
shows the detailed results on the predictions about the expected bug occurrences
in the classes. Finally, Section 4 concludes our paper and outlines some directions
for future work.

2 The Bug Forecast Toolset

The Columbus source code quality framework [7] was developed to accomplish
source code analysis. The tools in the framework are capable to analyze source
code written in programming languages such as C/C++, C#, Java, PL/SQL,
Transact SQL, Magic and Pyton. The analysis results contain data about source
code product metrics, coding rule violations, bad code smells [8], code duplica-
tions, etc. A system development life cycle attribute monitoring, querying and
analyzing software named SourceInventory [2] is also part of the framework.
SourceInventory provides statistics and tendencies in many forms of visualiza-
tion possibilities (e.g. bar chart, time line, histogram) about the source code’s
properties and changes. In the remaining part of this article the tools of the
Columbus framework, except SourceInventory, will be referred to as source code
analyzer tools.

The bug forecast toolset, containing three new tools (BugMiner, BugLearner
and BugPredictor), was developed for the purpose of extending the existing
framework with bug prediction capabilities (see Figure 1). The extension was
done in a two step process, as a result two new metrics – the BugNumber (the
number of fixed bugs for classes and methods) and the BugPrediction (the prob-
ability of containing bugs for classes) – were added to the old ones.

As a first step, a tool called BugMiner was suited into the process. This tool
can assign the number of bugs to each source code element that contains them

286 R. Ferenc

(i.e. to classes, methods and functions). The execution of this new tool is taking
place right after the source code analyzer tools have successfully ran and their
results get uploaded into the database of SourceInventory. By processing these
results the new metric called the BugNumber was gained.

During the second step, the other two new tools were added to the framework,
which are responsible for performing the bug prediction. BugLearner is a tool for
training a bug predictor model based on past metric values and BugNumber-s of
the classes. The BugPredictor tool’s task is to predict faulty classes by using the
created learning model and the recently calculated metric values (predictors).
The result of the prediction for all the classes is the new metric called BugPre-
diction. Its value resembles the information about a class’ faultiness based on
the prediction. Both tools are using the Weka data mining and machine learning
tool, which has a good reputation in this research area.

Fig. 1. N th analysis iteration of the Columbus framework

The analysis done by the Columbus framework extended with the bug toolset
is performed on a regular basis, typically during the nightly builds of the analyzed
and monitored software. The N th execution iteration of the analysis is presented
in Figure 1. Except the first execution (when learning data is not yet available
due to the lack of a previous analysis) the process requires the learning model
provided by the previous analysis iteration.

In the following, a detailed description is given step-by-step about the process.
The steps follow the way of the data-flow during one analysis iteration. The first
step of the process covers the extraction of the bug data and the execution
of the analysis with the help of the source code analyzer tools. The BugMiner
tool directly connects to the bug tracking and version control system of the
analyzed software (currently it is compatible with the well-known bug tracking
systems BugZilla and IssueZilla). In this work, BugMiner was modified to work
also with the evosoft company’s own proprietary bug tracking system. The data

Bug Forecast: A Method for Automatic Bug Prediction 287

was available in a textual file format, which contained the bug identifiers, bug
opening and closing dates, the patches correcting the bugs: patch release dates
and the changes made by the patches. These are the information needed for the
proper execution of the bug toolset.

The input of BugMiner is the bug data and the data generated by the source
code analyzer tools, which contains detailed position information of all the lan-
guage elements (i.e. file name with full path, starting and ending lines and
columns in the file). The data from the previous analysis iterations is also used.
After all the needed information is gathered and loaded, BugMiner examines all
the bugs, which had new patches since the last analysis. The bugs having new
patches and the source code affected by the patches are examined one-by-one.
It can be easily done, because the patch files contain the information about the
affected files and lines (deleted, inserted, replaced lines). By using this file and
line information the affected class(es) are identified and the bug IDs are assigned
to the classes and methods of the currently analyzed snapshot of the software.

As the bug reports are typically older than the bug fixing patches, the bug
IDs are assigned to the affected classes in all of the affected previous snapshots
as well as illustrated in Figure 2. It was assumed that the bug occurred in the
snapshot just before it was reported (unfortunately it was not known since when
the bug already existed in the source code without being noticed) and that it
existed in all snapshots right until it got fixed.

bug correctedbug reported

v1 v2 v39v38 v53 v54

in these versions we mark the bug to the class

.
v128

Fig. 2. Affected snapshots by a concrete bug

The BugMiner tool creates two types of outputs. The first output is basically
the same as the output of the source code analyzer tools, except that some non-
relevant technical information is added to it. The second type of output contains
the data which is needed for updating the BugNumber metric for all the affected
previously stored analysis iteration results in the database of SourceInventory
because of the newly fixed bugs. This data upload information is called BugUp-
date. This update is necessary because a bug’s life can be very long. That means
a bug turns out to be present in numerous previous analyses only delayed (after
it gets fixed) so the BugNumber-s of the affected classes have to be increased in
all of the previous snapshots covering the bug’s life cycle. Before the BugUpdate
output is created, handling of the possible overlaps between bugs and patches
must be done. E.g. if a class is marked twice because it was affected by two

288 R. Ferenc

patches, then the BugNumber for this class is 2 if the patches belonged to dif-
ferent bugs. If the BugNumber is 1, then the patches belonged to the same bug.

The next step is the uploading. During this step the first output of BugMiner
is taken and is being uploaded into the database of SourceInventory. After the
uploading is done all the BugNumber metrics in the database are getting updated
using the BugUpdate output of BugMiner.

After the analysis, the bug learning and predicting phase begins. The second
new tool called BugPredictor is invoked, which is a wrapper around Weka. As
a first step it transforms the metric data created by the source code analyzer
tools to a Weka compatible file format called arff. The transformed temporary
file becomes the input for the Weka tool, which uses the previous iteration’s
bug predictor model to calculate the BugPrediction metrical values for all of the
classes in the currently analyzed snapshot of the software. The BugPrediction
metrics are uploaded into the SourceInventory database, so the N th snapshot of
the analysis results will be completed.

The last step of the process is to gather predictor information from SourceIn-
ventory (based on the last K weeks’ analysis results, see Section 3) to create a
new bug predictor model including the results of the current analysis iteration
(this information is also saved into an arff file). As this dataset contains quite
a large amount of repeated lines, the non-faulty and unchanged classes through
all the involved snapshots are filtered out. This filtered dataset will be the input
for the third new tool, called BugLearner, which is also a wrapper for Weka. The
BugLearner creates a new bug predictor model based on the filtered dataset and
the chosen learning algorithm (see Section 3). This model is going to be used in
the next analysis iteration.

3 Case Study

The most important part of the validation of the extended framework was to
see how well it can predict bugs in an evolving system with the continuously
collected data. The goal was to tailor the framework to be used every day by
the developers, testers and QA managers. During the development, while the
source code is changing, they have to be able analyze the new snapshots and
predict the buggy classes based on the experience from the past. In other words,
a bug prediction on an N th snapshot of a software is needed, which is based on
learning results from the last K weeks. This aspect is different than most of the
other studies in this field, which used ten-fold cross validation for measuring the
efficiency of the prediction model which are built based on collected data from
typically larger development intervals. Compared to this, our experiment used
several snapshots of the analyzed software that usually changed just a little bit
between two snapshots.

3.1 The Simulation

Evosoft Ltd. uses the Columbus framework in the everyday development ac-
tivities, so all the analysis data were available from the software’s 1.5 year

Bug Forecast: A Method for Automatic Bug Prediction 289

development period. Additionally the database of their bug tracking system
was also available. The data used in our experiment included source code prod-
uct metrics, bad code smell metrics and bug reports, so all the information was
available to know which classes were buggy and when (see Section 2). In the first
3 months of the software development there were no usable bug reports, so the
collected data from this time interval could not be used. The same case was with
the last 10 snapshots of the software, since no bug reports were available for that
time frame. Hence, the available and usable learning dataset covered 128 former
snapshots. Because the bug toolset was developed only recently, it was decided
to test its efficiency by performing a simulation which showed the accuracy of
the bug prediction in the case if the toolset was used on a daily basis during the
examined 1.5 years.

.N-X-11 N-X N-2 N-1 N N+1 128. . .

.N-X-11 N-X N-2 N-1 N

 Start of
development

State of development
 at snapshot no. N

 Last state of
development

K weeks

Fig. 3. Simulation time line showing the N th iteration

For the machine learning tasks the well known Weka system was applied,
since it implements most of the important learning algorithms. The first step
was a ten-fold cross validation to find a good machine learning algorithm for
the next step. The second step was the real validation, the simulation of the
toolset’s functionality that is illustrated in Figure 3. The upper time line shows
the real-life dataset at a given moment in time (the N th snapshot). This dataset
contained only the bug information that was known at the given moment. The
lower time line shows the testing dataset, which contained all the bug information
that was known at the end of the 1.5 year period.

The figure shows that there were 128 snapshots of the analyzed software.
The validation process created a learning dataset for every N th snapshot (N ∈
{1 . . .128}) and ran a machine learning algorithm to create a model for bug
prediction. Then the simulation made a prediction for every snapshot of the test
dataset (lower time line). During the process, analysis and bug results from K
weeks before the N th date containing the snapshots from N -1 to N -X (see the
boxes with dark grey background) were taken and joined into a learning dataset.
The important case was to predict bugs precisely in the N th snapshot and in
the following few snapshots, but for research reasons the predictions were made
for all of the snapshots (including the past snapshots as well).

290 R. Ferenc

An important question arose: What is the best value for the K time interval?
To decide this, the simulation was ran with different K values and the best one
was chosen (see Section 3.4).

3.2 Definitions

For measuring the efficiency of the bug predictor models, the accuracy, precision,
recall and completeness values were calculated. The accuracy, precision and recall
are standard statistic quantities.

It is important to note that if there were no buggy class examples in a test
dataset then precision and recall was defined as 0.0 apart from some other studies
which define it as 1.0 (hit 0 bugs from 0 bugs). It is also explicable to define it
as 1.0, but if there would be several test datasets where bug numbers are 0 then
the results would be overrated.

The models were trained to provide binary predictions, which means that
they predict if a class is prone to be faulty or not (a class contains at least one
bug or not). But the developed bug toolset extracts exact bug numbers from
the bug tracking systems and this information is stored as well. By using this
information the completeness was also calculated. Completeness measures what
percentage of bugs the model reveals from all of the bugs in a current snapshot.

A predicator model’s best result is a balanced high value of both precision
and recall. However, this is generally not the case. In practice, developers and
testers use the bug prediction to reduce the time spent for testing. The less
code reviews and tests brings up the bugs, the better. Hence, the developed bug
predictor toolset has to be useful in practice, so the most important thing is to
reach a high precision value (resulting in few false positives).

3.3 Ten-Fold Cross Validation

The first experiment was to find a good machine learning algorithm for the vali-
dation. The ten-fold cross validation was used to choose between the algorithms.
It was running on all of the analyzed data. This is the dataset shown on the
lower time line in Figure 3 joined together. As can be seen on Figure 4, this vali-
dation gives a much better result opposed to the simulation. The statistics were

Used Algorithm Accuracy Precision Recall

Bayes Net 0.735 0.667 0.603

Naive Bayes 0.713 0.656 0.52

Logistic Regression 0.744 0.747 0.493

Voted Perceptron 0.591 0.470 0.596

Decision Tree 0.832 0.802 0.742

Conjunctive Rule 0.695 0.623 0.502

J48 0.879 0.876 0.795

Best-First Dec. Tree 0.875 0.856 0.809

Fig. 4. Ten-fold cross validation with some machine learning methods

Bug Forecast: A Method for Automatic Bug Prediction 291

very good, but this may not be true on the forecast tests. In this test several
algorithms were used which are implemented in Weka, like rule based, bayes,
function based methods and others. The best models were generally created by
the tree based algorithms. We chose the best-first decision tree algorithm as the
algorithm for predicting. This gave a high accuracy value of 87.5% and 85.6% of
precision with a 80.9% recall.

3.4 The Validation

As the first step of the validation, for every N th snapshot the learning data
included all the analysis results starting from the 1st snapshot. As the first at-
tempts showed, this method was not usable to effectively predict the bug occur-
rences. If major changes were made during a software’s development (these are
called drifts), it influences the prediction efficiency. The number of bugs during
the development is generally decreasing and apart from significant refactoring
phases in the source code, a class will not change much after a while. So in
later stages of the development, a group of some metric values, which previously
marked the class as faulty are not likely to correctly mark the classes faulty
again. As a summary it could be said that joining old and new learning data
could create an inconsistency in the predictions.

Fig. 5. Details about the measured software system

Figure 5 shows some details of the snapshots of the examined software: the
number of classes, the amount of classes containing bug(s) and the number of
bugs in the software. As can be seen in the figure, the software was probably
going through some refactoring phases and/or some major changes on some
dates. These changes are much likely to influence the quality of the prediction.

As for the next step the learning tasks were performed on K time intervals.
In this case the bug information data are those that were known till the selected

www.SoftGozar.Com

292 R. Ferenc

dates, not all the data available till the last development snapshot. With this
kind of learning data more actual rules for prediction could be obtained by not
letting the elder ones to influence the model. This is important since adequate
predictions for the future could not be made by using a full retrospective dataset.
The chosen time intervals for K were 4, 8, 12, 16 and 20 weeks in the first round.
After the experiments were done the tests pointed out that the interval having
the bests results is between 4 and 12 weeks. So the predictions were ran with
the dataset which was built from the results of the past 5, 6, 7, 9, 10 and 11
weeks (including 4, 8 and 12 from the previous run). To find the best precision,
recall and completeness values various statistical calculations were made. These
statistics were calculated for the next 4 snapshots from the actually selected
date as the prediction was planned to cover only the near future. These statistics
showed that the best value for K was 6 weeks.

Figure 6 shows the average, median, standard deviation, minimum and maxi-
mum values for the precision, recall, and completeness. E.g. an average precision
means that a learning task with 6-week retrospective data was made on every
snapshot available (128 pieces) and an average was calculated from the resulting
precision values. These values were calculated for 1, 2, 3 and 4 weeks forward
prediction.

As can be seen, the average and median precision were above 70% and the
deviation was around 25%. Unfortunately, the recall values could be considered
low. These values are presenting the percentage of the revealed buggy classes by
the prediction, compared to the number of all buggy classes. The observations
showed that as the learning time interval was raised, the recall values were

Precision 1 2 3 4

Average 0.7181 0.6963 0.6892 0.7022

Median 0.7417 0.7143 0.7000 0.7029

Deviation 0.2535 0.2671 0.2601 0.2499

Max. 1.0000 1.0000 1.0000 1.0000

Min. 0.0000 0.0000 0.0000 0.0000

Recall 1 2 3 4

Average 0.1204 0.1213 0.1231 0.1257

Median 0.1013 0.1013 0.1032 0.1053

Deviation 0.0833 0.0833 0.0841 0.0850

Max. 0.4200 0.4118 0.3889 0.3966

Min. 0.0000 0.0000 0.0000 0.0000

Completeness 1 2 3 4

Average 0.2331 0.2354 0.2331 0.2353

Median 0.2250 0.2250 0.2200 0.2100

Deviation 0.1400 0.1417 0.1402 0.1380

Max. 0.5800 0.5800 0.5900 0.5900

Min. 0.0000 0.0000 0.0000 0.0000

Fig. 6. 4-snapshot forward prediction statistics based on the 6-week interval learning

data

Bug Forecast: A Method for Automatic Bug Prediction 293

getting better but the precision values were falling at the same time. However,
a maximum recall value of 42% was reached. The average was around 12%.

The completeness values were calculated as well to check the rate of the found
bugs in a snapshot compared to all of the bugs in it. If a higher value could be
reached than the recall, it would mean that faultier classes were found. The
results showed that the completeness was higher than the recall with an av-
erage of 9.5% and the difference was about 20-30% many times. The average
completeness was 23-24%.

As can be noticed, the minimum values of the precision, recall and com-
pleteness were 0.0. The cause of these values were exceptional cases, where the
system was not able to predict, as the 6-weeks learning data did not contain
enough samples of buggy classes to perform a successful machine learning task.
(In the case of larger time intervals for learning, these cases were gone, but the
precision values were much lower.) There were many cases where the precision
reached a maximum of 100% (1.0 value) for all of the 4 predicted snapshots.
Figure 7 shows a histogram about the first, second, third and fourth snapshot’s
prediction’s precision results. As it is presented, the 1.0 precision result was the
most frequent case among the predictions.

Fig. 7. The 6-weeks interval’s learning precision histogram in the case of 4-snapshot

prediction

4 Conclusion

The Columbus source code quality framework was extended with a bug pre-
diction functionality, the bug forecast toolset. The toolset connects to the bug
tracking and version control system and assigns the reported and fixed bugs to
source code elements (classes, methods, functions). The Columbus framework
extracts among others product and bad code smell metrics from the source code

294 R. Ferenc

by using static code analysis methods. The toolset is capable to integrate into
the regular builds. Combining the metrics and bug information, a relation among
them could be set up, which serves as a basis for bug prediction. By the usage of
machine learning methods a trustful bug prediction became available predicting
for a future of 4 snapshots development time, with an average precision of 72%,
reaching 100% many times.

The toolset was evaluated in an industrial environment. Evosoft’s software
was analyzed for a 1.5 year development time, which covered 128 snapshots.
The research’s focus was to reach high precision values to aid developers and
testers with valid bug information by listing them the classes, which contain bugs
with a high probability. The bug prediction helps to focus resources on possibly
problematic code parts, therefore it helps increasing the software’s quality and
makes the resource management of developers and testers easier.

Acknowledgements

This research was supported by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences and the Hungarian national grants TECH 08-
A2/2-2008-0089, GOP-1.1.2/1-2008-0007, and OTKA K-73688.

References

1. Ayari, K., Meshkinfam, P., Antoniol, G., Di Penta, M.: Threats on Building Models

From CVS and Bugzilla Repositories: the Mozilla Case Study. In: Proceedings of

the 2007 Conference of the Center for Advanced Studies on Collaborative Research,

CASCON 2007, pp. 215–228 (2007)

2. Bakota, T., Beszédes, Á., Ferenc, R., Gyimóthy, T.: Continuous Software Quality

Supervision Using SourceInventory and Columbus. In: Research Demonstrations of

30th International Conference on Software Engineering (ICSE 2008), pp. 931–932

(May 2008)

3. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design

Metrics as Quality Indicators. IEEE Transactions on Software Engineering 22,

751–761 (1996)

4. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object-Oriented Design.

IEEE Transactions on Software Engineering 20(6), 476–493 (1994)

5. D’Ambros, M.: Supporting Software Evolution Analysis with Historical Depen-

dencies and Defect Information. In: IEEE International Conference on Software

Maintenance, pp. 412–415 (2008)

6. Ekanayake, J., Tappolet, J., Gall, H.C., Bernstein, A.: Tracking concept drift of

software projects using defect prediction quality. In: 6th IEEE International Work-

ing Conference on Mining Software Repositories, pp. 51–60 (2009)

7. Ferenc, R., Beszédes, Á., Tarkiainen, M., Gyimóthy, T.: Columbus – Reverse En-

gineering Tool and Schema for C++. In: Proceedings of the 18th International

Conference on Software Maintenance (ICSM 2002), pp. 172–181. IEEE Computer

Society, Los Alamitos (October 2002)

Bug Forecast: A Method for Automatic Bug Prediction 295

8. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving

the Design of Existing Code. Addison-Wesley Professional, Reading (1999)

9. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Met-

rics on Open Source Software for Fault Prediction. IEEE Transactions on Software

Engineering 31, 897–910 (2005)

10. Kim, S.: Adaptive bug prediction by analyzing project history. PhD thesis, Advisor-

E. James Whitehead, Jr. (2006)

11. Zimmermann, T., Premraj, R., Zeller, A.: Predicting Defects for Eclipse. In: Third

International Workshop on Predictor Models in Software Engineering (2007)

TCD: A Text-Based UML Class Diagram

Notation and Its Model Converters

Hironori Washizaki, Masayoshi Akimoto, Atsushi Hasebe,
Atsuto Kubo, and Yoshiaki Fukazawa

Department of Computer Science and Engineering,
School of Fundamental Science and Engineering, Waseda University,

3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan
washizaki@waseda.jp,

{aki12,a-hasebe,a.kubo}@fuka.info.waseda.ac.jp,
fukazawa@waseda.jp

http://www.washi.cs.waseda.ac.jp

http://www.fuka.info.waseda.ac.jp

Abstract. Among several diagrams defined in UML, the class diagram
is particularly useful through entire software development process, from
early domain analysis stages to later maintenance stages. However con-
ventional UML environments are often inappropriate for collaborative
modeling in physically remote locations, such as exchanging models on
a public mailing list via email. To overcome this issue, we propose a new
diagram notation, called “TCD” (Text-based uml Class Diagram), for
describing UML class diagrams using ASCII text. Since text files can
be easily created, modified and exchanged in anywhere by any comput-
ing platforms, TCD facilitates the collaborative modeling with a number
of unspecified people. Moreover, we implemented model converters for
converting in both directions between UML class diagrams described in
the XMI form and those in the TCD form. By using the converters,
the reusability of models can be significantly improved because many
of UML modeling tools support the XMI for importing and exporting
modeling data.

1 Introduction

Unified Modeling Language (UML[1]) is a standardized diagram-based modeling
language in the field of software/system engineering, especially object-oriented
software development. Among several diagram specifications defined in UML,
the class diagram is particularly useful through entire development process, from
early domain analysis stages to later deployment/maintenance stages. UML class
diagrams are used for expressing the static structure of some targets, such as
problem domains, systems, and software, by describing the internal structure
(attributes and operations) of classes and the interrelationships (e.g. generaliza-
tion and association) between each class.

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 296–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

TCD: A Text-Based UML Class Diagram Notation and Its Model Converters 297

The main description methods used for UML class diagrams are descriptions
made using UML modeling tools and handwritten notes. Modeling tools such
as astah*[2] and Rational Rose[3] enable intuitive and advanced model editing
using GUI, and provide advanced functions such as validation of descriptions
and source code generation. On the other hand, handwriting is a simple method
of description regardless of the situation.

However, there are some situations in which the above two description meth-
ods are difficult to use. One such situation is collaborative modeling with a
number of unspecified people in physically remote locations, such as exchang-
ing models on a public mailing list via email. Figure 1 shows an example of an
actual class diagram1 presented at a mailing list[6]. This class diagram is ex-
pressed using characters like “+” and “-,” and discussions are held by attaching
or describing class diagrams in e-mail messages; however this diagram has been
described in an ad-hoc manner.

+--------+ +-------+ +-------+

| Person |--------| ATM |<>---| State |

+--------+ +-------+ +-------+

A A

| |

| |

| |

+-------+ +-------+-------+

| | | | |

+----++--------+ +------++------++------+

|Crew||Customer| |Active|Stopped||Failed|

+----++--------+ +------++------++------+

Fig. 1. Actual class diagram taken from a discussion mailing list[6]

To describe, share, edit and reuse class diagrams in the discussions held on
mailing lists, a common format with a clear grammar is necessary for exchanging
class diagrams to enable those to be interpreted exactly in the same way under
any reader’s environment. Although most of modeling tools can output images
in common formats such as JPEG, the images cannot be imported or edited by
another user’s modeling tool.

Many modeling tools support the XML Metadata Interchange (XMI[4]) as a
common specification based on text format for saving data. XMI is a standard
specification for the exchange of models conforming to the MetaObject Facility
specification (MOF[5]) in the form of XML documents. XMI data is described in
the form of text, but it is described in a way that allows it to be understood easily
by computers (i.e. machine-readable); it is not easy for humans to understand
text in XMI (i.e. NOT human-readable), so users who do not have modeling
tools cannot utilize such modeling data. Thus, XMI is not well suited to work
environments where many people need to view and modify the data. Models
1 Texts in the diagram are originally described in Japanese.

298 H. Washizaki et al.

described in handwritten form are also inappropriate for collaborative modeling
because it is difficult to deliver and share models in this form.

To overcome the above-mentioned problems in conventional description meth-
ods, formats and specifications, we propose a new diagram notation, called
“TCD,” for expressing UML class diagrams using ASCII text format. Moreover,
we implemented model converters for converting in both directions between UML
class diagrams described in the XMI form and those in the TCD form.

The remainder of this paper is organized as follows. Next section introduces
the concept and feature of TCD. Section 3 describes our model converters. Sec-
tion 4 describes several related works. In the last section, we draw a conclusion
and state future works.

2 Text-Based UML Class Diagram

We defined TCD based on the following concepts to make it truly useful for
above-mentioned collaborative modeling situations.

– Conformity to UML class diagram specification: TCD conforms to most of
features defined in UML class diagram by using ASCII text format. In TCD,
each class definition is described as an independent text element. The spec-
ification of the class description is defined as an extension of a conventional
text-based notation called “U–Language”[7]; we have added several impor-
tant features that are not supported in U–Language such as static/final
members of a class, and an abstract class.

– Balancing machine-readable and human-readable: TCD supports the de-
scription of associations among classes by using mainly two characters: “|”
and “-”. Thus TCD can handle not only horizontal lines in association def-
initions, but also vertical lines, which enables association definitions to be
description in a way that makes overall structure easy to understand.

– Built-in conversion between TCD and XMI formats: we developed tools for
TCD to XMI data conversion, and for XMI to TCD conversion, to enable
the migration between TCD and modeling tools. By using the tools, users
can continue modeling activities started in a different format.

For example, the UML class diagram of the Abstract Factory design pattern[10]
shown in Figure 2 can be described by the combination of the class definitions
in the left side of Figure 3 and the association definitions in the right side of
Figure 3 in TCD.

By using the example, details of TCD descriptions are explained in below.

(1) Class Definition

The class definitions describe the details of the classes that appear in the class
diagram. For example, the left side of Figure 3 shows definitions of two classes:
AbstractFactory and ConcreteFactory1 taken from the Abstract Factory

TCD: A Text-Based UML Class Diagram Notation and Its Model Converters 299

Fig. 2. UML Class diagram describing the AbstractFactory pattern

pattern[10]. In the figure, two methods with precise signature definitions are
specified for each class.

As shown in Figure 3, each class is specified by writing it between upper
and lower boundary lines formed using “=” characters. Furthermore, two lines
formed using “-” characters are inserted between the boundary lines, to create
three compartments: class name, attributes and methods.

Since AbstractFactory is an abstract class, “&” is written before the class
name. And since it does not have any attributes, nothing is written in the sec-
ond compartment from the top. In the lowest compartment, two methods are
specified. To declare the method, “()” is added after the method name. Return
value type is specified by writing “:” after the method name and writing the
type name.

(2) Association Definition

Associations are expressed by specifying the two classes that are associated with
each other, and drawing lines with arrows to indicate the type of each association
between the classes.

For example, the right side of Figure 3 shows 10 classes and 13 associations.
Among them, the line emerging from the lower side of AbstractFactory is
described using the characters “^”, “-”, and “|”, indicating that the class gen-
eralizes the classes listed at the opposite end of the line; the next character is
“+”, and here the generalization line emerging from AbstractFactory branches.
“*” and “#” indicate the association’s rotation point and intersection point,
respectively.

300 H. Washizaki et al.

// Class definitions // Association definitions

============================= Client--->AbstractFactory

& AbstractFactory | ^

------------------------------ | -

------------------------------ | |

+ CreateProductA() : void | *---+--------------*

+ CreateProductB() : void | | |

============================== | ConcreteFactory1 ConcreteFactory2

| ^ ^

| : :

============================== | : :

ConcreteFactory1 | *..+...............* :

------------------------------ | : : :

------------------------------ | : *........#....+......*

+ CreateProductA() : void | : : : :

+ CreateProductB() : void | ProductA1 ProductA2 ProductB1 ProductB2

============================== | | | | |

| | | | |

| - - - -

============================== | v v v v

ConcreteFactory2 | AbstractProductA AbstractProductB

------------------------------ | ^ ^

------------------------------ | | |

+ CreateProductA() : void *---------+------------------*

+ CreateProductB() : void

==============================

Fig. 3. TCD description of the AbstractFactory pattern (left side: classes, right side:
associations)

Moreover, users can describe associations by simply listing up each asso-
ciation such as AbstractFactory <--- Client and AbstractFactory <|---
ConcreteFactory1. TCD enables users to select whether to emphasize ease of
description (like the above-mentioned listing up) or ease of understanding (like
Figure 3).

Multiplicities and roles (association ends) regarding associations can be spec-
ified for those described horizontally by using brackets (“(multiplicity)”)
and square brackets (“[role]”) for each end. For example, ClassA (1) --->
(*) ClassB denotes one-to-many relationship from ClassA to ClassB.

3 Model Converters

We developed tools for TCD to XMI data conversion, and for XMI to TCD con-
version, to enable the migration between TCD and modeling tools. By using the
converters, users can continue modeling activities started in a different format.

We implemented converters by using Java and JavaCC[11], shown in Figure 4.
Since these converters can be used on any system that can run Java programs,
it can be used very widely. Figure 2 shows an UML class diagram by inputting

TCD: A Text-Based UML Class Diagram Notation and Its Model Converters 301

XMI data

TCD descriptions UML modeling tool representation

TCD
to

XMI

XMI
to

TCD

Converters

Fig. 4. TCD converters and related formats

TCD descriptions in Figure 3 into the converter, and importing the XMI output
of the converter into a modeling tool astah*.

It is found that all of contents described in TCD are kept in standard UML
notation. The converters allow for easy collaboration between users of TCD and
modeling tools. For example, these converters allow work on a model that uses
class diagrams initially written in TCD to be continued using a modeling tool.
They also enable conversion of class diagrams created by a modeling tool into
TCD format for exchange in email-based discussions.

4 Related Work

Although not in mainstream use, there are several methods for describing UML
class diagrams based on text, such as U–Language[7] and Silvertejp[9]. These
methods enable user write class diagrams into text forms such as e-mail and
Wikis, where conventional description methods are difficult to apply.

However, existing description formats are equipped with on-way converters
to enable reutilization of described models; these converters are only capable of
converting from each text description format to other formats, or from other
formats to the text description form. For example, there is a converter that
outputs Java source code from descriptions in U–Language[8]; however there
is no support for converting Java source code into U–Language descriptions.
Furthermore, there is no compatibility between different description formats and
it is also difficult to make use of other converters, so the reusability of models is
low.

In addition, existing formats for text description-based class diagrams tend to
feature either very good ease of description or very good ease of understanding
(not both); it is hard to use one format adaptively for different situations such
as a case in which ease of description is most important or another case in which
ease of understanding is most important.

302 H. Washizaki et al.

5 Conclusion and Future Work

We formulated a new kind of text description-based method to express UML
class diagrams – Text-based Class Diagram (TCD) – to overcome the problems
with conventional description methods, and we developed converters to convert
between TCD and XMI formats.

TCD conforms in part to the description specifications of the existing de-
scription formats that offer good ease of description, and enables the expression
of vertical associations, which allows for layouts that are easy to understand.
These features enable users to select between description that emphasizes ease
of description and description that emphasizes ease of understanding, according
to the application. In addition, the converters make collaboration with users of
modeling tools easy and highly reliable, thereby improving model reusability.

As our future work, we have a plan to conduct real experiments for confirming
the usefulness of TCD and its converters compared with conventional environ-
ments. Moreover, since many large-scale class diagrams make use of package-
related notation, it is necessary to support package-related notation in order to
expand the range of class diagrams that can be handled using TCD.

Acknowledgements

This research has been partially supported by the Mizuho Foundation for the Pro-
motion of Sciences (2009-2010) and the JGC-S SCHOLARSHIP FOUNDATION
(2010-2011).

References

1. Object Management Group: Unified Modeling Language (UML),
http://www.uml.org

2. Change Vision, Inc.: astah* - UML and Mind Mapping Integrated Modeling Tool,
http://astah.change-vision.com/en/

3. IBM: Rational Rose,
http://www-306.ibm.com/software/awdtools/developer/rose/

4. Object Management Group: MOF 2.0/XMI Mapping Specification,
http://www.omg.org/technology/documents/formal/xmi.htm

5. Object Management Group: MetaObject Facility, http://www.omg.org/mof/
6. Ogis-RI: Object Square, http://www.ogis-ri.co.jp/otc/otc2/oosquare-ml/
7. Hiranabe, K.: U–Language – Human and machine readable UML text format, Ob-

jectClub (in Japanese), http://www.objectclub.jp/technicaldoc/uml/u_lang/
8. Hexagonta: U Language Parser, http://sourceforge.jp/projects/ulparser/
9. Wettin, K.: Silvertejp, http://silvertejp.tigris.org/

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1994)

11. Viswanadha, S.: Java Compiler Compiler (JavaCC),
https://javacc.dev.java.net/

SQL-Based Compound Object Comparators:
A Case Study of Images Stored in ICE

Dominik Ślęzak1,2 and Łukasz Sosnowski3,4

1 Institute of Mathematics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

2 Infobright Inc.
Krzywickiego 34 lok. 219, 02-078 Warsaw, Poland

3 Systems Research Institute, Polish Academy of Sciences
Newelska 6, 01-447 Warsaw, Poland

4 Dituel Sp. z o.o.
Wąwolnicka 4 lok. 22, 04-023 Warsaw, Poland

slezak@infobright.com, l.sosnowski@dituel.pl

Abstract. We introduce the framework for storing and comparing com-
pound objects. The implemented system is based on the RDBMS model,
which – unlike other approaches in this area – enables to access the most
detailed data about considered objects. It also contains ROLAP cubes
designed for specific object classes and appropriately abstracted modules
that compute object similarities, referred as comparators. In this paper,
we focus on the case study related to images. We show specific examples
of fuzzy logic comparators, together with their corresponding SQL state-
ments executed at the level of pixels. We examine several open source
database engines by means of their capabilities of storing and querying
large amounts of such represented image data. We conclude that the
performance of some of them is comparable to standard techniques of
image storage and processing, with far better flexibility in defining new
similarity criteria and analyzing larger image collections.

Keywords: Compound Objects, Similarity, Comparators, Image Analy-
sis, Fuzzy Logic, RDBMS Engines, Infobright Community Edition (ICE).

1 Introduction

There is a growing demand for systems that can retrieve compound objects
based on their mutual similarities, membership to certain groups, or satisfaction
of some criteria. Such systems need to identify objects quickly and accurately,
based on their comparison against some patterns or exclusion according to some
forbidden features. In some applications, such systems work mainly with various
types of objects’ indexes and metadata. In other applications, they may also
involve the objects’ storage, which raises additional challenges but, on the other
hand, opens new possibilities for the retrieval process improvements.

In this paper, we outline a framework that is able to retrieve objects basing
on similarities, including their classification and interpretation. Similarities can

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 303–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

304 D. Ślęzak and Ł. Sosnowski

be defined by a number of criteria and measures, varying with respect to the
object classes and application types [13,18]. However, from the system’s architec-
ture standpoint, their implementation can be kept within a universal structure,
referred here as a comparator. Actually, comparators occur in the literature in
various contexts, usually for the purposes of image analysis and processing [4,10].
In our approach, however, the comparator is an abstracted module responsible
for comparing collections of input objects (not necessarily images) and reporting
outputs in the form of, e.g., parameters of the most similar objects. The com-
parator may be thus regarded as analogous to a mathematical function, whose
values can be applied at further stages of analysis of objects.

An object is an entity that we want to measure, describe, classify or compare
with other objects. It may correspond to a physical phenomenon, situation, state,
process, signal, etc. It may have some features that are useful in classification
or similarity analysis. Our understanding of an object is close to the concept of
entity in relational databases or an object in information retrieval [7,15]. In this
paper, we refer to objects at a possibly abstracted level, although it is useful to
distinguish some specific classes of objects, such as images, texts or sequences.
Variety of possible object classes is not in contradiction with universality of
the proposed system’s architecture. It is important because analogous solutions
usually focus on implementation of algorithms dedicated to some particular types
of objects that are not so easily transferrable to other cases.

The systems aimed at compound object retrieval usually assume a sharp
distinction between the layers of storage and analysis. This means that the
analytical algorithms have direct access only to precalculated features, often
stored within an RDBMS framework, while the objects themselves are encoded
as BLOBs or stored in an independent repository [5,9]. Initial phases of pro-
cessing and segmentation in the image retrieval systems may be coupled with
computation of the values of a pre-defined set of attributes based on histogram
computation, edge detection, shape recognition, texture analysis, etc. Such an
approach is quite convenient and, actually, it satisfies our above-formulated uni-
versality assumptions. However, it does not provide opportunity to efficiently
refine and extend the set of features while applying new algorithms, as there is
no direct interface to quickly manipulate the detailed data.

We propose an alternative approach to representing compound objects in
relational data model. Namely, we put decoded information about objects into
ROLAP cubes. For example, we suggest basing the cubes for images on the data
table, where each pixel of each image is represented as a separate row. This way,
the whole system takes the form of an integrated data warehouse. It enables a
convenient access to arbitrary fragments of objects or collections of objects, as
well as their analysis using standard database operations. Furthermore, it gua-
rantees easiness of completing or modifying object descriptions in an arbitrary
moment, not only at the stage of supplying objects to the system. Surely, the
cubes and the underlying data need to be designed separately for different object
classes. On the other hand, the usage of ROLAP operations by other system’s
components can be similar for all types of compound objects.

SQL-Based Compound Object Comparators 305

Fig. 1. DFD for compound object comparison

The remainder of the paper is organized as follows: In Section 2, we describe
the proposed architecture with a special emphasis on the comparator aspects. In
Section 3, we discuss the database framework aspects – compound object repre-
sentation, the choice of appropriate technology and the underlying data schemas.
In Section 4, we introduce a more specific case study of image comparator based
on histogram analysis and fuzzy logic. In Section 5, we run some performance
tests and analyze their results. In Section 6, we conclude the paper.

The presented approach is a continuation of our research in [19,20], extended
here by a more complete study of the RDBMS layer. Thanks to pixel-based image
representation, histogram computations and image comparisons, such as those
in Sections 3 and 4, can be conducted using standard SQL syntax. Certainly, one
might look at the idea of representing compound objects in such a detailed way
as unrealistic, given the expected size of, e.g., large image databases. However,
the results reported in Section 5 prove that modern analytic database engines
provide fully satisfactory data compression and query performance.

2 Algorithmic Outline

In order to clearly present the proposed framework for compound object com-
parisons at a possibly universal level, we carefully follow the structural design
and modeling standards [2,14]. Figure 1 presents a general Data Flow Diagram
(DFD) for our solution. Table 1 provides more detailed information.

306 D. Ślęzak and Ł. Sosnowski

Table 1. Detailed description of components illustrated in Figure 1

Component name Description
Outer subject A user or a system that initializes and triggers

identification/classification of an object by its
comparison to the existing reference stores

Object class register Detailed information about the types of object classes
Initial object
identification

Recognizing the class of an object (e.g.: image, video,
sound, text) in order to choose an appropriate set of

comparison features and rules
Object store Temporary storage of the investigated object

Feature object
extraction

Using feature extraction techniques available for
a given object class (e.g.: for images, it includes

the edge detection, the histogram extraction, etc.)
Elements store Temporary storage of the extracted elements

(elements do not have a status of features yet)
Feature database Types of features – specialized functions used to

measure their values (e.g.: red color histogram)
Object-feature
interpretation

Interpreting membership of the investigated object
to the sets of elements with given major features

(it can be conducted by using, e.g., fuzzy rule sets)
Rule set Rules defining final classification of objects

Final object
classification

Analyzing similarities between the identified elements
of the investigated object and features in database;
it enables to reject fake features and better interpret
the remaining ones; final classification is designed to

be conducted by an ensemble of comparators
Similar objects

retrieval
Finding objects that are most similar to the
investigated one, basing on its classification

Figure 2 presents the main stages of comparator’s work. Comparing to
Figure 1, this is a more atomic level of the proposed solution. The algorithm
verifies similarity of an investigated object to the reference objects, including
their elements too. There is also a mechanism of similarity exception handling.
For each reference object b, we register its so called forbidden features. If the
investigated object a turns out to have one of such features, then b cannot be
reported as similar to a. Identification of forbidden features is based on the fuzzy
classifier [6,12]. This way, we can take an advantage of domain knowledge and
we obtain a convenient framework for the parameter tuning.

If b is not forbidden with respect to a, we compute the degree of similarity of
a to b. As in [19,20], we use fuzzy logic apparatus also at this stage. We com-
pute fuzzy membership of (a, b) to the similarity relation defined on compound
objects. Definition of membership can be adjusted to reflect a general similarity
within a given object class or, e.g., similarity of some specific aspects of objects.
Membership can be represented as a function µ : R × R → [0, 1], where 0 and 1
mean total dissimilarity and similarity, respectively.

SQL-Based Compound Object Comparators 307

Fig. 2. Activity diagram of comparator

The degree of similarity can be further treated as an input to an activation
function f : [0, 1] → {0, 1}, which assigns 1 to values greater than a threshold
p ∈ [0, 1] and 0 otherwise. One may adjust p according to the expert knowledge
or, e.g., as a result of evolutionary optimization process. Remember that various
ways of computing function µ are just approximations of an actual notion of
similarity between compound objects. Thus, one may search for p as the lowest
possible threshold yielding results expected by the users.

In the last phase, we check whether the value of µ is higher than those com-
puted so far. If it is, we memorize the corresponding reference object. Finally, we
can get: a) no output (because of forbidden features or not exceeding threshold
p), b) exactly one output, c) multiple outputs (if there are multiple objects b
with the maximum value of µ(a, b)). If we are interested only in a single output,
we can stop after finding the first b satisfying µ(a, b) > p.

308 D. Ślęzak and Ł. Sosnowski

3 RDBMS Framework

3.1 Compound Object Representation

The proposed design is based on defining different classes of compound objects
that are equipped with comparable functionality. Usually, objects are available
in various specific formats that are useful for storage but inconvenient for more
advanced processing, when direct access to decoded data is required. In our solu-
tion, we want to enable the users to extract information from objects on ongoing
basis, in order to provide better continuity of gathered knowledge, including
methods of its gathering themselves. Knowledge and rule bases related to object
classes should be allowed for evolving along with the users’ needs. Hence, we
decided to represent and store compound objects in their fully decoded form,
in a relational database. Let us emphasize that we do not use such data types
as BLOB, IMAGE, BYTE, as they do not address the above-mentioned issues.
Instead, we operate with data schemas at the semantically richer level of atomic
components of the compound objects.

For example, for collections of images, we suggest constructing data tables
with rows corresponding to pixels. Each pixel is assigned with its coordinates
within an image, as well as with its image identifier. Certainly, this means that
even for low-resolution images the corresponding data table will grow very fast.
In order to address this potential issue, we need to carefully select an underlying
relational database engine technology.

3.2 Infobright Community Edition (ICE)

ICE1 is an open source RDBMS engine integrated with MySQL. It may be
applied in data warehouse or analytical database scenarios [16,17]. From the
user perspective, it provides standard means for relational data modeling and
querying. Internally, it decomposes data both vertically and horizontally, onto
so called data packs, each of them storing values of up to 216 rows for one of
attributes. Data packs are compressed separately from each other. During load,
besides compression, the content of each data pack is automatically annotated
with its basic statistics that are stored in so called database knowledge grid. The
acquired statistics are used in various ways in query execution, with the main
goal of minimizing and optimizing an access to data packs.

ICE provides high compression ratio (reported as 10:1 on average) and high
speed of analytical SQL statements, for which the gathered statistics are espe-
cially useful. ICE can easily handle tens of terabytes of data on a single PC
machine. Also, it does not require maintenance of any additional database in-
dexes, on top of database knowledge grid which is relatively small (reported as
1% of the compressed data size on average) and generated transparently to the
users. Thus, given the challenges outlined in Subsection 3.1, we regard ICE as
potentially applicable as the RDBMS layer of our solution.

1 en.wikipedia.org/wiki/Infobright

SQL-Based Compound Object Comparators 309

3.3 Data Layout

Our solution is split onto two major parts: 1) OLTP (transactional layer) and
2) ROLAP (cubes dedicated to store information about objects). The OLTP
part contains objects’ metadata, their basic features, class membership, etc. It
simplifies object management but has no direct impact on analytical capabili-
ties. The ROLAP part resembles a data warehouse model. Cubes are created for
specific data within object classes. Cubes may have partially common dimen-
sions. This leads towards constellation schemas [1,7], which are convenient for
more advanced analytics. Furthermore, we assume that cubes can be built for
decoded objects, their specific elements or fragments, as well as for various types
of pre-aggregates or statistics. Our solution enables to create such cubes in an
arbitrary moment, depending on the users’ requirements.

3.4 Relationships

Let us focus on simple examples of the above-mentioned components. The OLTP
layer is displayed in Figure 3, by means of a standard Entity-Relationship Di-
agram (ERD). Table 2 describes particular entities. The data is stored in the
third normal form in order to assure easiness of extensions and modifications.
In the ERD diagrams, we use typical notation for foreign keys (FK) in order to
emphasize joins that we expect to occur in SQL statements. However, there are
no constraints / indexes assumed to be maintained.

In the ROLAP layer, each object class has its own star schema. Let us con-
centrate on the example of images, as illustrated by Figure 4 and Table 3. One
can see that pixels are stored as rows in the fact table. Dimensions refer to coor-
dinates X and Y, as well as to object identifiers. Such representation enables to
express a number of image processing operations in SQL. For other useful types
of operations we design specific stored procedures.

Figure 5 and Table 4 correspond to image histograms [3,11]. Histogram-based
comparators can be quite efficient, as reported in Section 5. Histogram cube
provides information about histograms of objects or their fragments. It can be
automatically appended for each image being loaded into the database or com-
puted at once by using, e.g., the following:

SELECT FK_OBJECTS_ID, 1 AS CHANNEL, RED AS
BRIGHTNESS, 1 AS IMG_AREA, COUNT(*) AS VALUE FROM
FACT_IMAGES GROUP BY FK_OBJECTS_ID, RED UNION ALL
SELECT FK_OBJECTS_ID, 2 AS CHANNEL, GREEN AS
BRIGHTNESS, 1 AS IMG_AREA, COUNT(*) AS VALUE FROM
FACT_IMAGES GROUP BY FK_OBJECTS_ID, GREEN UNION ALL
SELECT FK_OBJECTS_ID, 3 AS CHANNEL, BLUE AS
BRIGHTNESS, 1 AS IMG_AREA, COUNT(*) AS VALUE FROM
FACT_IMAGES GROUP BY FK_OBJECTS_ID, BLUE UNION ALL
SELECT FK_OBJECTS_ID, 4 AS CHANNEL, ALPHA AS
BRIGHTNESS, 1 AS IMG_AREA, COUNT(*) AS VALUE FROM
FACT_IMAGES GROUP BY FK_OBJECTS_ID, ALPHA

310 D. Ślęzak and Ł. Sosnowski

Fig. 3. ERD for OLTP layer

Fig. 4. ERD for image data

Fig. 5. ERD for image histograms

SQL-Based Compound Object Comparators 311

Table 2. Description of entities visible in Figure 3

Entity name Description

object_classes
Related to the meaning or context, such as people,
architecture, holiday photos etc.; independent from

categories of types or formats, such as text, image etc.
elements Dictionary of elements/features extracted from objects

object_class_objects Assignment of objects to (possibly multiple) classes

objects It includes information about objects’ types; on the
other hand, it serves as dimension for ROLAP cubes

object_types Dictionary of object types
extracted_elements Assignment of elements to objects

object_details Features that describe objects’ details
details Dictionary of possible objects’ details

Table 3. Description of entities visible in Figure 4

Entity name Description
position_horizontals Horizontal coordinates of pixels in their images
position_verticals Vertical coordinates of pixels in their images

objects Refers to "objects" in Table 2
fact_images Fact table – rows correspond to images’ pixels

Table 4. Description of entities visible in Figure 5

Entity name Description
color_channels Channel dimension (red R, green G, blue B, alpha A)

img_areas Dimension defining areas that the histogram refers to
(the whole image or, e.g., an object visible at an image)

brightness Dimension defining pixels’ brightness levels
objects Refers to "objects" in Table 2

fact_img_histograms Fact table for histogram-based ROLAP cube

The histogram cube contains up to 256 × 4 rows per image (256 brightness
levels, 4 channels). Histograms can be further quantized by rounding their values
to multiples of n. For instance, for n = 10, quantization can look as follows:

SELECT FIH.FK_OBJECTS_ID, CC.CODE, B.VALUE - (B.VALUE mod 10),
SUM(FIH.VALUE) FROM FACT_IMG_HISTOGRAMS FIH INNER JOIN BRIGHTNESS
B ON FIH.FK_BRIGHTNESS_ID = B.ID INNER JOIN COLOR_CHANNELS CC
ON FIH.FK_COLOR_CHANNELS_ID = CC.ID WHERE FIH.FK_IMG_AREAS_ID = 1
GROUP BY FIH.FK_OBJECTS_ID, CC.CODE, B.VALUE - (B.VALUE mod 10)

Quantization simplifies further steps of image comparison. If the histogram
cube is already in place, the above SQL runs in milliseconds. On the other hand,
we noticed that n = 10 does not lead to a significant decrease of accuracy.

312 D. Ślęzak and Ł. Sosnowski

Fig. 6. Images #1, #2, #3

4 Case Study

Consider images #1,#2,#3 presented in Figure 6. They have resolution 1024×
1408, which means 1441792 rows per image in the database. Table 5 shows
quantization results for n = 10. Each image yields at most 26 rows. Images #1
and #2 are almost white and black, respectively. This explains why the first row
for #1 and the last row for #2 have both very large values.

Consider comparators KR, KG and KB corresponding to the color channels
Red, Green and Blue, respectively.2 Each K computes similarity of an investi-
gated image to a reference image. Let us use the following function:

µ(a, b) = 1 −
∑26

j=1 |a[j] − b[j]|
2

(1)

where a[j] (b[j]) denotes the j-th index of the quantized and normalized his-
togram vector for the investigated (reference) image. The values of µ(a, b) are
then treated as degrees of membership in fuzzy rules applied to final interpreta-
tion of similarity. We use conjunctions of memberships related to RGB.

Assume that image #3 is the investigated object. Let us compare it with the
reference images #1 and #2 by following the approach outlined in Section 2. For
simplicity, assume that there are no forbidden features. Set up p = 0.999999. By
putting information from Table 5 into equation (1), for KR, we obtain:

µ(#3, #1) = 0.980630 µ(#3, #2) = 0.000006

Although image #3 is far more similar to #1 than to #2, the output of the
algorithm displayed in Figure 2 is empty, because the result of KR still needs to
be combined within a conjunction with those of KG and KB, with no chance to
exceed the threshold of 0.999999. One more time, we refer to [19,20] for details
on how to adjust parameters of the proposed comparator methodology.
2 Alpha can be omitted for jpg files. We plan to analyze other formats in the future.

SQL-Based Compound Object Comparators 313

Table 5. Quantized histograms for images #1 (top left), #2 (middle left) and #3

#1 R G B
40 1 1 1
70 1 1 1
160 3 3 3
190 0 0 2
200 2 2 5
210 5 5 9
220 14 16 14
230 25 26 34
240 332 331 387
250 1441409 1441407 1441336

#2 R G B
0 1441264 1441263 1441260
10 524 524 520
20 2 3 10
40 1 1 1
50 1 1 1

#3 R G B
10 4 1 1
20 34 1 1
30 337 39 24

#3 R G B
40 1006 251 166
50 1497 851 610
60 1800 1456 1208
70 1835 1804 1680
80 1292 1727 1344
90 934 1577 864
100 767 1114 655
110 702 829 625
120 699 746 567
130 705 753 639
140 606 627 714
150 672 650 865
160 664 643 1050
170 678 694 1148
180 765 775 1108
190 834 837 1018
200 800 777 911
210 972 948 925
220 1180 1097 1128
230 1772 1392 1394
240 7756 6060 7805
250 1413481 1416143 1415342

5 Performance Tests

We report the results obtained on a standard laptop, Intel Core Duo T9600,
8GB RAM, 500GB 5400 RPM, Windows 7 64 bit.

The first part of our tests refers to images in Figure 6. Table 6 shows the size
of their jpg files and the size of their corresponding sets of pixels stored in ICE.
Compression ratios in ICE are worse than in case of dedicated jpg format but the
difference is less than one might expect, especially for compression algorithms
that are by definition lossless and lossy, respectively.

The speed of decoding a jpg file into a csv file and then loading it into ICE
is on average 3,702 milliseconds. It may be improved in the future by avoiding
creation of intermediate files. We repeated the tests twice: 1) for initially empty
database and 2) for database containing initially around 300,000,000 rows, which
corresponds to around 2,000 images of the considered resolution. The ICE load
speed was approximately the same in both scenarios.

The last two columns in Table 6 reflect the speed of creating and quantizing
histograms in Java [11,19] and ICE (using SQL similar to those in Subsection 3.4
but referring to each image separately). ICE speed is reported for 300,000,000+-
row data. In case of Java, it means finding a required jpg among 2,000 of other
files and opening it to extract a quantized histogram.

314 D. Ślęzak and Ł. Sosnowski

Table 6. Image sizes (3 cases) and histogram creation + quantization speed (2 cases)

Size of jpg Size of csv Size in ICE Java Speed ICE Speed
1 13 KB 38,196 KB 91 KB 201 ms 1,035 ms
2 10 KB 29,750 KB 34 KB 214 ms 850 ms
3 78 KB 38,174 KB 770 KB 200 ms 1,170 ms

Table 7. Comparison of RDBMS engines for 3 × 1441792-row data. Results averaged
over images #1,#2,#3. Last column refers to histogram creation + quantization speed.

Load Speed Database Size Execution Speed
ICE 3.3 3,702 ms 298 KB 910 ms

MySQL 5.0 2,803 ms 40,832 KB 7,732 ms
PostgreSQL 8.4 17,803 ms 83,616 KB 20,755 ms

Table 8. Finding 10 out of 100/500/1,000 images. – Example of the search criterion.

Amount of Images Search Speed in Java Search Speed in ICE
100 19,310 ms 101 ms
500 89,349 ms 127 ms

1,000 181,474 ms 142 ms

Table 7 shows why we recommend ICE. Here, we consider only three images,
as we had problems with 300,000,000 rows in other engines. Recall that ICE
does not need indexes, as they are replaced by much lighter statistics that are,
actually, very helpful when executing the discussed queries. In case of MySQL3

and PostgreSQL4, for better performance, one might use indexes. However, they
would cause further increase of size and maintenance effort.

Going back to Table 6, one may claim that a standard approach is still faster
than the RDBMS-based methodology. However, it turns out quite opposite in
case of typical search processes – the subject of the second part of our tests.
Table 8 illustrates the performance of our overall solution when the task is to
find 10 out of 100, 500, or 1000 images that match to the highest degree some
pre-defined conditions. Precisely, we search for images with a large number of
pixels with the brightness = 250 for the blue channel, that is:

SELECT FK_OBJECTS_ID FROM FACT_IMG_HISTOGRAMS WHERE
FK_COLOR_CHANNELS_ID = 3 AND FK_BRIGHTNESS_ID = 250
ORDER BY VALUE DESC LIMIT 10

Surely, it is not as complicated as queries that we may encounter for advanced
comparators. However, it illustrates how to use SQL efficiently.
3 dev.mysql.com/doc/refman/5.0/en/index.html
4 www.postgresql.org/docs/8.4/static/index.html

SQL-Based Compound Object Comparators 315

6 Conclusions and Discussion

We proposed a novel approach to storing and analyzing compound objects, where
the object processing and comparison algorithms are able to run over complete,
atomic data in a relational database model. We discussed high-level ideas, as well
as technological details such as, e.g., the choice of Infobright Community Edition
(ICE) as the underlying RDBMS solution. Comparing to our previous research
[19,20], we focused on overall performance, paying less attention to analytical
accuracy. The main goal of this paper was to provide a data representation
framework that is flexible enough to tune advanced algorithms working efficiently
with large collections of objects.

The results presented in Section 5 may be insufficient to fully convince ev-
eryone that our approach is worth considering. For example, given Tables 6 and
8, one might take an advantage of both standard and RDBMS-based solution
by keeping images in their specific format and, as a complement, storing their
histogram information in a relational data schema. However, as discussed in the
earlier sections, the major reason for storing data about compound objects in
the decoded form is to achieve better flexibility in feature extraction and com-
parison strategies. The already-mentioned results are supposed to prove that
our solution should not be disqualified because of unacceptable compression or
execution of the most typical operations. On the other hand, it clearly leads
towards functionality that is beyond other methods.

In the nearest future, we will investigate opportunities that our framework
provides at the level of processing multiple compound objects. Consider an ex-
ample of images. Practically all the existing technologies assume that images are
processed separately. Surely, it enables to parallelize the most time-consuming in-
dex and feature extraction operations. However, all further stages of, e.g., image
comparisons need to be based on the extracted information instead of complete
data. Among applications that may suffer from such limitation, one may look
at, e.g., video analysis or 3D MRI brain segmentation [3,8]. More generally, the
data layout proposed in Section 3 enables to run arbitrary SQL statements over
atomic data related to an arbitrary subset of objects.

The knowledge about compound objects may be also employed to improve
the database engine efficiency and functionality. In this paper, we use com-
pound object hierarchies explicitly, at the data schema level. Alternatively, such
knowledge can be expressed internally, transparently to the users and modules
communicating with a database via SQL. Both strategies should be taken into
account depending on practical needs. They may lead to better domain-specific
compression, domain-specific statistics and also new ways of understanding SQL
(see e.g. [6,16] for further discussion and references).

Acknowledgment. The first author was partially supported by the grants
N N516 368334 and N N516 077837 from the Ministry of Science and Higher
Education of the Republic of Poland.

316 D. Ślęzak and Ł. Sosnowski

References

1. Agosta, L.: The Essential Guide to Data Warehousing. Prentice Hall PTR, Engle-
wood Cliffs (2000)

2. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide,
2nd edn. Addison-Wesley Professional, Reading (2005)

3. Bovik, A.C. (ed.): Handbook of Image and Video Processing, 2nd edn. Academic
Press, London (2005)

4. Cantu-Paz, E., Cheung, S.S., Kamath, C.: Retrieval of Similar Objects in Simu-
lation Data Using Machine Learning Techniques. In: Proc. of Image Processing:
Algorithms and Systems III, SPIE, vol. 5298, pp. 251–258 (2004)

5. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and
Trends of the New Age. ACM Comput. Surv. 40(2), 1–60 (2008)

6. Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in
Databases. Information Science Reference (2008)

7. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book, 2nd edn. Prentice Hall PTR, Englewood Cliffs (2008)

8. Khotanlou, H., Colliot, O., Atif, J., Bloch, I.: 3D brain tumor segmentation in MRI
using fuzzy classification, symmetry analysis and spatially constrained deformable
models. Fuzzy Sets Syst. 160(10), 1457–1473 (2009)

9. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based Multimedia Information
Retrieval: State of the Art and Challenges. ACM Trans. Multimedia Comput.
Commun. Appl. 2(1), 1–19 (2006)

10. Lorenz, A., Blüm, M., Ermert, H., Senge, T.: Comparison of Different Neuro-Fuzzy
Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images.
In: Proc. of Ultrasonics Symp., pp. 1201–1204. IEEE, Los Alamitos (1997)

11. Lyon, D.A.: Image Processing in Java. Prentice Hall PTR, Englewood Cliffs (1999)
12. Melin, P., Kacprzyk, J., Pedrycz, W. (eds.): Bio-Inspired Hybrid Intelligent Sys-

tems for Image Analysis and Pattern Recognition. Springer, Heidelberg (2010)
13. Pękalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recog-

nition: Foundations and Applications. World Scientific, Singapore (2005)
14. Rajan, S.D.: Introduction to Structural Analysis & Design. Wiley, Chichester

(2001)
15. Sarawagi, S.: Information Extraction. Foundations and Trends in Databases 1(3),

261–377 (2008)
16. Ślęzak, D.: Compound Analytics of Compound Data within RDBMS Framework –

Infobright’s Perspective. In: Proc. of FGIT. LNCS, vol. 6485, pp. 39–40. Springer,
Heidelberg (2010)

17. Ślęzak, D., Eastwood, V.: Data Warehouse Technology by Infobright. In: Proc. of
SIGMOD, pp. 841–845. ACM, New York (2009)

18. Smyth, B., Keane, M.T.: Adaptation-guided Retrieval: Questioning the Similarity
Assumption in Reasoning. Artif. Intell. 102(2), 249–293 (1998)

19. Sosnowski, Ł.: Intelligent Data Adjustment using Fuzzy Logic in Data Process-
ing Systems (in Polish). In: Hołubiec, J. (ed.) Systems Analysis in Finances and
Management, vol. 11, pp. 214–218 (2009)

20. Sosnowski, Ł.: Constructing Systems for Compound Object Comparisons (in Pol-
ish). In: Hołubiec, J. (ed.) Systems Analysis in Finances and Management, vol. 12,
pp. 144–162 (2010)

Intermediate Structure Reduction Algorithms

for Stack Based Query Languages

Marta Burzańska1, Krzysztof Stencel1,2, and Piotr Wísniewski1

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,

Toruń, Poland
2 Institute of Informatics, University of Warsaw, Warsaw, Poland

Abstract. Data processing often results in generation of a lot of tempo-

rary structures. They cause an increase in processing time and resources

consumption. This especially concerns databases since their temporary

data are huge and often they must be dumped to secondary storage. This

situation has a serious impact on the query engine. An interesting tech-

nique of program fusion has been proposed for functional programming

languages. Its goal is to reduce the size or entirely eliminate intermedi-

ate structures. In this paper we show how this technique can be used

to generate robust execution plans of aggregate and recursive queries of

query languages based on Stack Based Approach. We will use SBQL as

an exemplary language.

Keywords: Intermediate structures, optimization, rewriting algorithms,

SBQL, program fusion.

1 Introduction

Many implementations of data processing algorithms require creating temporary
structures, which are totally irrelevant from users’ point of view. When dealing
with huge amounts of data, as with database query languages, such intermediate
structures might consume much of systems resources since often they have to
be swapped to slow secondary storage. When dealing with query languages op-
erating on distributed databases, nowadays gaining more and more popularity,
there is also the issue of amount of data being transferred through the network.

In 1990 P. Wadler [1] presented an algorithm of elimination of such structures
in functional languages which he called the deforestation algorithm. This method
became also known as “program fusion” because the basic idea behind it is to
“fuse” together two functions of which one consumes an intermediate structure
generated by the other. Nowadays there are many variations of deforestation
algorithms. One of those version is known as the foldr-build rule (a.k.a. cheap
deforestation, shortcut fusion) [2,3]. It has been successfully implemented in
Glasgow Haskell Compiler [4] becoming the most universal and the simplest of
fusion algorithms. It will be described briefly in Section 2 (Cheap Deforestation).

Due to declarative nature of query languages the optimization techniques for
functional languages often became inspiration for query optimization. There are

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 317–326, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.SoftGozar.Com

318 M. Burzańska, K. Stencel, and P. Wísniewski

also papers on translation of object query language into a functional notation
with a strong emphasis on the usage of foldr/build form [5,6].

Our research focus centers around the Stack Based Query Language (SBQL),
which is a query language for object database systems [7]. Its main ideas are
presented in Section 4 (SBQL) while Section 3 (Stack Based Approach) presents
the main ideas behind the stack based approach to query languages. The fol-
lowing paper presents three techniques of intermediate structures elimination
designed for languages based on SBA. Section 5 (Simple SBQL Query Defor-
estation) shows how can we adapt cheap deforestation for simple SBQL queries.
Section 6 (Optimising Recursion) presents a new deforestation techniques for
SBQL recursive queries. Section 7 (Distributivity of algebraic functions over dot
operator) shows alternative technique of intermediate structures elimination de-
signed especially for SBQL. Section 8 (Conclusions) concludes.

2 Cheap Deforestation

Cheap deforestation algorithm was introduced in [2]. This algorithm is based
on an usage of a collection generating function (build) and a rule known as
foldr/build rule. The notations in this section are written in the Haskell language,
for which the algorithm was originally addressed. The meaning of the following
rules is that the left side can be rewritten into the right side. Also, in Haskell
language the notation g f n means that g is a function call with two arguments:
f and n. Let us start by defining the build, foldr and foldl functions:

build g = g : []
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

where colon is a list concatenation operator and [] is an empty list. The basic
functionality of the foldr (fold-right) function is presented by Example 1 while
Example 2 shows the usage of foldl (fold-left).

Example 1. foldr (/) 2 [18,12,24] results in: (18 / (12 / (24 / 2))) =18

Example 2. foldl (-) 2 [18,12,24] results in: (((18 - 12) - 24) - 2) = -20

Definition 1 (The foldr/build rule)

foldr f n (build g) = g f n

The assumption for functional languages is to translate all operators and func-
tions into their equivalent compositions of foldr and build functions. Having such
form one needs to apply interchangeably foldr/build rule with β-reduction (ap-
plication of arguments). When none of those transformations can be applied, the
outer foldr function should be rewritten using its definition and a proper collec-
tion constructor. Resulting function instead of applying subsequent operations

Intermediate Structure Reduction Algorithms 319

to collections of intermediate data, would perform all operations sequentially on
individual elements of the initial collection.

Many papers dealing with various languages and problems have shown that
the usage of the cheap deforestation has a positive effect on the speed of program
processing and the reduction of system resources consumption. The work [8]
proves the equivalence of the foldr/build and foldl/build rules. This equivalence
will be the basis of the deforestation algorithm described in Section 5.

3 Stack Based Approach

Stack Based Approach Stack based approach has been introduced by K. Subieta
in [9]. It is a general approach to construction of query languages for object and
semi-structural databases. SBA relies on the three basic elements: data model,
environment stack and non-algebraic operators. Subieta proposed a set of store
models that could be used in the Object DBMS. The basic model is called the
Abstract Data Model or the M0 Model.

In this model an object is a triple < i, n, v >, where i is an identifier, n – the
object’s name, and v is its value. The value of i should be unique. Depending
on a type of value of v we distinct three types of objects: atomic (when v is
an atomic value), pointer (when v is an identifier of another object from the
storage) and complex objects (when v is a collection of objects).

The M0 Model is a set of objects and a special set of identifiers of root objects.
A more detailed description of this model can be found in [7,10].

Example 3 (A simple M0 model database in a graphical form).

<i1, Emp,{ <i2, fname, "John">, <i3, sname, "Smith">,
<i4, dept, i20>, <i5, salary, 2000> }>

<i6, Emp,{ <i7, fname, "Bob">, <i8, sname, "Gordon">}
<i20, Dept,{ <i21, name, "IT">, <i22, employee, i1>,

<i23, employee, i2>, <i24, boss, i6 > }>
R=[i1,i6,i20]

The Environment Stack (ENVS) is a structure responsible for correct binding
of names with programming entities. The element that bindes a name with such
entity is a pair (n, v) called a binder. In such pair n is a name by which a given
programming entity exists in a given context, and v is a given programming
entity. Binders as grouped in multisets called sections. Sections form a stack
structure – the Environment Stack. An important feature that distincts ENVS
from programming languages’ environment stack (aka. call stack) is the lack of
uniqueness of binders name within a single section.

The non-algebraic operators are a special group of binary operators for data
manipulation. Their evaluation is highly dependent on the ENVS. Among the
non-algebraic operators are: selection, projection\navigation, dependent joins,
quantifiers and transitive closures. During evaluation of a non-algebraic operator
two special functions are called: the nested and the pop functions. Both operate

320 M. Burzańska, K. Stencel, and P. Wísniewski

on the Environment Stack. The nested function creates a new section on top of
the ENVS with binders to the contents of an object passed as an argument. The
pop function deletes the top section from the ENVS. The ENVS itself is used
to establish the context of a query. The detailed description of the evaluation
process of the non-algebraic operators and the full description of the nested
function may be found in [7].

Research on SBA has influenced the development of other scientific projects
such as PySBQL [11] and AOQL (Aspect Object Query Language) that has
been considered by OMG group as a proposal of standardization for object query
languages [10].

4 SBQL

SBQL language is an object query language based on SBA approach [7] and
a model language for all other projects influenced by SBA. The basic idea of
SBQL is to combine querying and programming capabilities in one language
that eliminates impedance mismatch. SBQL’s query semantics is based upon
recursive evaluation of the syntax tree and binding of names using environment
stack. Compositionality and clarity of the language’s definition resulting from
those assumptions are a good place to begin work on optimization, especially on
all kinds of query rewriting algorithms [12]. The key non-algebraic operators for
SBQL are the selection operator where and the dot operator used for navigation
and projection. Examples 4 and 5 show a sample usage of both operator.

Example 4 (For each employee working in the “IT” department return their per-
sonal data and salary).

(Emp where deptname==’IT’).(name+’ ’+surname, salary)

Example 5 (For each department return its name and the average salary paid
for its employees).

Dept.(name, avg(worksIn.Emp.salary))

The compositionality of SBQL’s structure allows also for easy and precise
introduction of transitive closure. The main recursive operator is close by [13],
unavailable in any form in OQL nor other popular object query language. The
Section 6 of the following work centers around this group of operators.

5 Simple SBQL Query Deforestation

During the execution of the SBQL queries a lot of intermediate structures is being
created. To reduce their sizes we propose a new algorithm that works on a level of
execution plans. The main idea is inspired by a similar work for OQL ([5]), but it
also addresses the problems of SBA. The execution plans in the following sections
are written using lambda expressions from Python language notation. Although

Intermediate Structure Reduction Algorithms 321

the same execution plans may be written using Haskell language notation the
authors of this paper believe that the Python language would be more accessible
for the broader audience because of its current popularity. The equivalent of
the Haskell’s foldl function in Python is the reduce function so in the following
sections we will use the name “reduce/build” in place of “foldr/build”.

Rule 1 (The reduce/build rule). Let us assume that during the analysis
of an execution plan the algorithm encounters two nested operations having the
same argument and between their calls no other nested nor pop function is called.
The inner nested call with corresponding pop function call and slice operation
may be removed.

Application of shortcut fusion to SBQL requires three steps. The first is to create
a proper definition of the build function without violation of the main concept.
The second is to create execution plan in the reduce/build notation for each
operator. While doing it we must include the operations on the Environment
Stack. The last step takes place during the creation of an execution plan for a
composite query. It consists of interchangeable application of reduce/build rule
with λ-calculus conversions until no more transformation can be used. Also,
additional rule is needed regarding the operations on the Environment Stack:

Rule 2 (Nested/pop elimination). Every occurrence of the function call:
reduce(f,(build g), n) may be replaced with g(f, n)

Just before running the execution plan one last step should be performed – the
replacement of the build function with its definition and final simplification of
the plan. Let us start by preparing a new set of execution plans:

Definition 2 (The execution plans for the SBQL’s operators)

def build(f): return f(struct.__add__, struct())
where = lambda q1,q2:build(lambda c,n:reduce((

lambda ys,y: (nested(y), (q2 and c(ys,y) or ys),
pop())[1]),q1,n))

dot = lambda q1,q2:build(lambda c,n:reduce((
lambda ys,y: (nested(y), reduce(c,q2,ys),
pop())[1]), q1,n))

join = lambda q1,q2:build(lambda c,n:reduce((
lambda ys,y: (nested(y), reduce(lambda e,es:

c(es,struct(y,e)),q2, ys), pop())[1]), q1,n))
all = lambda q1,q2:build(lambda c,n:reduce((

lambda ys,y: y and (nested(y), q2, pop())[1]), q1,True))
sum = lambda q1: reduce((lambda ys,y: __add__(ys,y)),q1,0)

The all operator can be used for expressing functions like forall, exists. Also,
the sum function may be used as a prototype for functions like count, min,
etc. Having the above definitions while modifying the execution plans for the
composition of operators the following steps should be undertaken: first the

322 M. Burzańska, K. Stencel, and P. Wísniewski

replacement of the operators with their execution plans. Secondly we should
search the query text to find a place for application of the reduce/build rule. Next
we should simplify the plan’s text using β-reduction and nested/pop elimination.
Those procedures should be repeated until no further modification is possible.
Finally we apply the build definition and execute the plan.

In order to explain how the algorithm operates let us consider an example
query:

(Emp where sname = "Smith").dept (1)

For the sake of shorter and clearer notation we will write P instead of (sname =
"Smith"). Evaluation of this predicate is irrelevant to the deforestation tech-
nique.

The first step of the algorithm is to translate the query (1) into the composi-
tion of the basic execution plans:

build(lambda c,n: reduce((lambda ys,y: (nested(y), reduce(c,
evaluate(’dept’),ys),pop())[1]), build(lambda c2,n2:

reduce((lambda zs,z: (nested(z), (evaluate(P) and
c2(zs,z) or zs),pop())[1]), evaluate(’Emp’),n2)),n))

For the inner reduce and build functions we apply the reduce/build rule:

build(lambda c,n:(lambda c2,n2: reduce((lambda zs,z:
(nested(z), (evaluate(P) and c2(zs,z) or zs), pop())[1]),
evaluate(’Emp’),n2)) ((lambda ys,y: (nested(y),

reduce(c, evaluate(’dept’),ys), pop())[1]),n))

After multiple application of the β-reduction and the nested/pop elimination
rule:

build(lambda c,n:reduce((lambda zs,z: (nested(z),
(evaluate(P) and reduce(c,evaluate(’dept’),zs) or zs,
pop())[1]), evaluate(’Emp’),n))

Because we cannot apply neither reduce/build transformation, nested/pop elim-
ination nor β-reduction we now have to apply the definition of the build function.
After one more β-reduction we acquire:

reduce((lambda zs,z: (nested(z), (evaluate(P) and
reduce(struct.__add__,evaluate(’dept’),zs) or zs,

pop())[1]), evaluate(’Emp’), struct()))

During the evaluation of the not-optimized input plan one intermediate list
would be created - a list of employees fulfilling the predicate P. In the deforested
version this intermediate structure is not being created. The output plan has the
following meaning: during its execution for each employee check if the surname
condition is met, and if so, add their department reference to the result collection.
Each employee is considered only once, what reduces resources consumption.

Intermediate Structure Reduction Algorithms 323

Another benefit of this method is that the evaluation of the output program is
at least as fast as evaluation of the input program in the worst case scenario,
and in a better one - can speed up the process. Additionally, after a new plan
for a specific composition of two operators has been generated it can be stored
for future usage.

6 Optimising Recursion

The previous section describes a proposition of optimization technique for SBQL
queries. However, this technique targets only non-recursive queries. This section
proposes a rewriting algorithm for elimination of intermediate structures occur-
ring during evaluation of a composition of the close by operator and an aggregate
function. The construction of this algorithm has been inspired by lightweight fu-
sion technique for functional languages described in [14].

Before describing the mentioned algorithm, we first need to introduce an ex-
ecution plan for the close by operator written using Python language notation.

Definition 3. The execution plan for the close by operator is represented with
the following recursive function definition and call:

def closeby (dotFunction, queryRes):
if isEmpty(queryRes): return bag()
else: return bag.__add__(queryRes,

closeby (dotFunction, dotFunction(queryRes))
closeby(makeDotF(leftQuery),eval(rightQuery))

Let Q be a close by query and A be an aggregate function that takes Q as
an argument. Our algorithm is composed out of three steps: firstly inline the A
function’s call into both return clauses of the close by’s execution plan function;
secondly simplify all calculation that can be computed without searching through
the database section; next generate a new execution plan function representing
the composition of the analyzed operators and replace the A(Q) call with this
execution plan. The newly generated execution plan function may be stored for
the commonly used compositions. Let us analyze this algorithm on a composition
of the count function with the close by operator.

count(Q1 close by Q2) (2)

Where Q1 and Q2 are general queries matching the limitations of the close by
operator. To optimize this composition we first should inline the count function
into the definition of the close by’s execution plan function:

if isEmpty(queryRes): return count(bag())
else: return count(bag.__add__(queryRes,

closeby (dotFunction,dotFunction(queryRes)))

After basic simplification, the last step is to generate a new execution plan
function for the query (2):

324 M. Burzańska, K. Stencel, and P. Wísniewski

def count_closeby (dotFunction, queryRes):
if isEmpty(queryRes): return 0
else: return count(queryRes) +

count_closeby (dotFunction, dotFunction(queryRes))
count_closeby(makeDotF(Q2),eval(Q1)) (2*)

This new function will calculate the same result as the initial query, but it
does not use an intermediate structure containing all of the database elements
that are retrieved during the evaluation. Instead it counts those elements at
each iteration of the recursion. For multilevel hierarchy it significantly reduces
the size of intermediate structures, because the maximum size of such structure
is equal to the sum of objects acquired in a given iteration. This technique can
be efficiently combined with reduce/build rules described in Section 5.

7 Distributivity of Algebraic Functions over Dot
Operator

This section presents alternative rewriting algorithm that may be used in SBQL
implementations not using a functional meta-language [11,15]. This algorithm
targets mostly distributed databases, however it may be used in a standalone
server especially one equipped with parallel query evaluation engine. Let us
consider a simple query:

sum(Dept.employs.Emp.salary) (3)

Using two techniques previously described this query may be folded into a
simple function that traverses the tree of employment and adds up every en-
countered salary. However, in a distributed database such approach may reduce
the network traffic, however based on the unique property of the dot operator
we have developed a new technique of deforestation that significantly reduces
the amount of data sent through the network. This algorithm is based on adap-
tation of distributivity of linear algebraic functions over the dot operator. Our
algorithm takes as an input a simple algebraic function like sum, min, max that
has a dot expression as an argument. On output it generates a query in which
after each occurrence of dot operator it inserted the initial function. The result
of processing query (3) with this algorithm is:

sum(Dept.sum(employs.sum(Emp.sum(salary)))) (4)

Now let us assume that in our hypothetical company we have 100 depart-
ments, each one employing at least 1000 employees. Without any optimization
we have to store more than 100 000 salary objects in an intermediate structure
and transfer most of them through the network. For the optimized query the size
of the biggest intermediate structure is reduced 100 times. Also, the distributed
servers with Emp objects stored on different servers may perform partial eval-
uation of this query hugely decreasing the network traffic – instead of sending
100 salary objects only one number would be sent to the main server.

Intermediate Structure Reduction Algorithms 325

The functions that can be distributed over the dot operator include sum, min,
max. The count function might seem troublesome for the use of this technique.
But when we translate count(query) into its equivalent sum(query.1) it becomes
apparent that the count function is also susceptible to distributiveness. One
other operator that is often used in database queries is avg (arithmetic average)
operator. This operator can also be translated into a composition of few functions
(we omit here the details of implementation of execution plans):

avg_p(x) = (sum(x), count(x))
avg_p_sum(plist) = (sum(first(plist)), sum(second(plist)))
avg_div(x,y) = if y!=0: x/y else: 0

The avg_p_sum function simultaneously increases the aggregate and the count
variable. The avg_p_sum function takes a list of pairs of numbers, and returns a
pair of numbers that represent the sum of respectively the first and the second
elements of pairs. This function is susceptible to distributiveness over the dot
operator Having those three functions we now can present a new definition of
the avg function:

avg x = avg_div(avg_p_sum(avg_p(x)))

On flat collections this transformation creates intermediate structures and it
worsens the speed of evaluation. But it is meant to deal with complex path
(dot) queries, and for them it has the advantage of reducing the intermediate
structures and increasing the speed of evaluation. Let us consider a query:

avg((Emp where position == "Manager").subordinate.Emp.salary)

Let us assume that each of the managers has 1000 subordinates, and there
are 100 managers. An intermediate structure of 100 000 database objects would
be created in order to calculate the result. Now let us consider the alternative
definition already in a distributed form:

avg_div(avg_p_sum((Emp where position == "Manager").
avg_p_sum(subordinate.avg_p_sum(Emp.avg_p(salary)))

During the evaluation of this query the outermost avg p sum reads from the
database those employees that match the filtering condition. For each one of them
it evaluates the inner avg p sum that would bind the name subordinate within
the context of a current employee, and so on. This way the biggest intermediate
structure will consist of 100 pair of numbers, which is a considerable storage
saving.

8 Conclusions

In this paper we have shown three optimization techniques for stack based query
languages. Their goal is to reduce the size of intermediate structures that are
created during the evaluation of queries. The application of those techniques has

326 M. Burzańska, K. Stencel, and P. Wísniewski

been presented using SBQL language as an example. Initial tests have shown
that without a big memory expenditure on the optimization algorithm, all three
methods significantly reduce the amount of memory resources needed to deal
with intermediate structures. One more advantage of the reduce/build notation
is that it integrates efficiently with imperative operators (like if then else). Also,
nearly all operators used to query a database can be defined using this notation.
This allows us to use the functional language notation as a form of meta-language
for a general query translation.

Deforestation techniques that translate SBQL into the functional notation are
stronger methods than the distributivity over the dot operator, and when used
together, distributivity will be overwritten. But it is not predetermined which
method is better. Depending on the context and the cost model one maybe
preferable or more efficient than the other.

References

1. Wadler, P.: Deforestation: Transforming programs to eliminate trees. Theor. Com-

put. Sci. 73(2), 231–248 (1990)

2. Gill, A.J., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In: FPCA,

pp. 223–232 (1993)

3. Johann, P.: Short cut fusion: Proved and improved. In: Taha, W. (ed.) SAIG 2001.

LNCS, vol. 2196, pp. 47–71. Springer, Heidelberg (2001)

4. Jones, S.P., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a practical

optimisation technique in GHC. In: Haskell Workshop, ACM SIGPLAN, pp. 203–

233 (2001)

5. Grust, T., Scholl, M.H.: Query deforestation. Technical report, Faculty of Mathe-

matics and Computer Science, Database Research Group, University of Konstanz

(1998)

6. Trigoni, A.: Semantic optimization of OQL queries. Technical Report UCAM-CL-

TR-547, University of Cambridge, Computer Laboratory (2002)

7. Subieta, K.: Theory and Construction of Object Query Languages [in Polish]. Pub-

lishers of the Polish-Japanese Institute of Information Technology (2004)

8. Gill, A.: Cheap deforestation for non-strict functional languages. PhD thesis, The

University of Glasgow (1996)

9. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.W.: A stack-based approach to

query languages. In: East/West Database Workshop, pp. 159–180 (1994)

10. OMG Object Database Technology Working Group: Next-generation object

database standarization. White Paper (2007)

11. Rogińska, M., Wísniewski, P.: Pysbql - python-like query language constructed

using stack base approach. In: Annales UMCS, Informatica, pp. 143–151 (2007)

12. P�lodzień, J.: Optimization Methods in Object Query Languages. PhD thesis, In-

stitute of Computer Science, Polish Academy of Science, Warsaw, Poland (2000)

13. Pieciukiewicz, T., Stencel, K., Subieta, K.: Recursive Query Processing in SBQL.

In: Proceedings of the First International Conference on Object Databases, pp.

56–76 (2008)

14. Ohori, A., Sasano, I.: Lightweight fusion by fixed point promotion. In: Hofmann,

M., Felleisen, M. (eds.) POPL, pp. 143–154. ACM, New York (2007)

15. Stencel, K., et al.: LoXiM database project (2010),

http://loxim.sourceforge.net/

T.-h. Kim et al. (Eds.): ASEA 2010, CCIS 117, pp. 327–336, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Service-Oriented Software Framework
for Network Management

Dongcheul Lee1 and Byungjoo Park2,*

1 Mobile R&D Laboratory, KT
17, Woomyeon-dong, Seoul, Korea

jackdclee@kt.com
2 Department of Multimedia Engineering, Hannam University

133 Ojeong-dong, Daeduk-gu, Daejeon, Korea
bjpark@hnu.kr

Abstract. A network management is important in managing network elements.
While hundreds of network-related new services have been created, the network
management functions should have been re-coded to adapt new business rules.
In addition, redundant information could be transferred repeatedly to the inter-
operating systems because they request similar information. This environment
brings unnecessary system development cost, and increases redundancy in the
inter-operating functions. To reduce the cost and the redundancy, we propose
the service-oriented software framework for network management. In order to
do so, we identified common services for network management, made service
specifications and service flows, and conducted service realization. Also, we
present four types of services as the case studies: authentication service, SMS
service, previous alarm inquiry service, and current alarm management service.
Furthermore, we implemented the framework in KT to manage IP backbone
networks. After adopting the framework, the system’s performance and
flexibility were improved, and duplicated functionalities of the systems were
reduced.

Keywords: Software Framework, Network Management, Service-oriented
Architecture.

1 Introduction

Over the last few years, Service-oriented Architecture (SOA) [1] has got much
attention, bringing a new era of software development and business agility. It
provides the ability to make loosely coupled links between business functions and
specific applications by isolating service definition and usage from each system’s
service implementation. An Enterprise Service Bus (ESB) is a core component of a
SOA and implements a SOA through middleware that offers connection and
integration management of an organization's IT infrastructure across many differing
systems.

* Corresponding author.

328 D. Lee and B. Park

Even though there had been many attempts to solve the enterprise’s IT problems
with a SOA, it is very hard to find the successful deploying cases of a SOA. Because
many IT decision makers try to solve the problems only by adopting an ESB product
without the full understanding of a SOA, leaving the previous functions and logics
unchanged. Meanwhile, IBM suggested best practices [2] for deploying a successful
SOA but it didn’t address concrete method for each specific business field. S. Glen
and J. Andexer [3] decomposed eTOM [4] operation level two and deduced services
for each operation. M. Brandner, M. Craes, F. Oellermann and O. Zimmermann [5]
featured the lessons learned during the implementation of SOA in the finance
industry.

However, we have not found the studies which addressed service-oriented network
management field in spite that the field is worth to challenge. A Network Management
System (NMS) plays an import role in managing and monitoring a network. Other
systems request the information which was produced by the NMS for analyzing
network faults, reporting customer’s traffic analysis, testing customers’ equipments, and
network engineering, etc. The NMS should be re-coded to adapt new business rules,
logic, and data access method while hundreds of network-related new businesses are
created. In addition, redundant information must be transferred between these systems
because, generally, they request similar information. This environment brings increased
system development cost, and increases redundancy in system development process.
Therefore, we present the service-oriented software framework for network
management to reduce the development cost and to eliminate the redundancy in the
NMS development process by deploying a SOA using an ESB.

The next section defines the problem of network management and suggests to-be
architecture which is a SOA. Section 3.1 explains how we identified network
management related services and gives some examples of them. In section 3.2, we
introduce document templates for specifying and realizing the services so that system
designers and software developers can communicate effectively through the
document. Section 4 presents best case studies which were conducted while we were
deploying a SOA to our framework. In section 5, we describe the process and the
result of the implementation and discuss the lesson learned. The paper concludes with
a short discussion.

2 Problem Definition

KT’s NMS and other interoperating systems have been used for monitoring and
managing various network elements. Each NMS has its own roll and other systems
which need the information collected from a NMS request a service for requiring the
information. Therefore, many complex interoperation functions had existed for
exchanging the information. These peer-to-peer connections made systems hard to
manage. Also, each system had communicated synchronously which made systems
tightly coupled. Therefore, if a system was turned down, other systems that had
communicated with the system made errors.

Fig. 1 shows that these complex peer-to-peer connections can be eliminated by
using an ESB. Because all the connections between systems are established through
an ESB, the interoperation structure becomes simple. Also, because an ESB has a

 Service-Oriented Software Framework for Network Management 329

message multicasting functionality, a service-providing system does not need to
develop similar services for each business process if the processes work similarly.
Furthermore, an ESB makes systems loosely coupled because if a service provider
does not reply for a request for some reasons, a service consumer would receive a
reply message which is the result of an ESB’s error handling. Also, if the Store And
Forward (SAF) functionality of an ESB is used, the data sender would not need to
care whether the data were sent successfully or not. This is because an ESB stores the
data in its own database and transmits the data repeatedly until the data will be sent
successfully.

core N M S

Prem ium N M S

D A IM S

iFO M S

TFM S

N TM S

m cast N M S

RTSM S

EP

ESB

core N M SPrem ium N M S

D A IM SiFO M S

TFM S

N TM S m cast N M S

RTSM S

EP

Fig. 1. After adopting an ESB, peer to peer connections are eliminated

F

C

A

P

S

core N M S

F’

C’

A’

P’

S’

F

C

A

P

S

Prem ium N M S

F’

C’

A’

P’

S’

ESB

Prem ium N M S core N M S

TFM S

D A IM S

iFO M S

D A IM S iFO M S

F C A P S F C A P S

F C A P S

Fig. 2. After adopting an ESB, redundant functions are reduced

Another problem of the NMS is their architecture. Each system had been
developed in ‘silo’ type so that the NMS had to develop its own fault, configuration,
accounting, performance, and security (FCAPS) [6] functionalities. Therefore,

330 D. Lee and B. Park

redundant functionalities were developed between the NMS. Also, the business rules
were hard-coded in each system so that if the rule had changed, the system had to be
re-coded in spite that understanding the legacy code which should be modified is
time-consuming and difficult job.

Fig. 2 shows that this ‘silo’ type system development method can be overcome by
adopting a SOA to the systems using an ESB. Once FCAPS services were published
on an ESB, each system which wants to use the service does not have to implement
the service on its own. Also, a service consumer does not need to know where a
service provider is located so that a location transparent service can be provided.
Furthermore, handling business process change is easy because the flows in the
service can be re-routed or modified without re-coding of an application. In addition,
an ESB provides various types of adapters for web services, transaction processing
(TP), TCP/IP, HTTP, FTP and DBMS. They interconnect an ESB with in-coming
requests so that diverse applications having different protocols can use the services of
an ESB.

3 Service Analysis and Design

To design the service-oriented NMS, we adopted IBM’s process of service-oriented
modeling and architecture [7]. As shown in Fig. 3, the process consists of three steps:
identification, specification and realization of services, components, and flows.

Identification Specification R ealization

• top-dow n

bottom -up

svc svc

svc svc

biz dom ain

legacy system s

& com ponents service specification

flow specification

ESB

legacy system s

com ponents

new services

ESB

Fig. 3. The process of service-oriented modeling is shown

3.1 Identification

In the identification step, we identified the group of services that the NMS should
provide commonly, and classified them into several categories. To identify the group,
we used a cross-sectional approach that combines the top-down and the bottom-up
approaches. The top-down approach analyzes business domains and decomposes
these domains into business processes, sub-processes and use cases. Whereas the
bottom-up approach analyzes legacy systems and components to realize the services
defined in the business domains and discover services that had not found in the top-
down approach.

 Service-Oriented Software Framework for Network Management 331

In the top-down approach, we classified the services into three levels as shown in
Table 1. In the first level, we identified general business processes of the NMS which
were network fault management, network resource collection management, network
resource performance management, network resource inventory management,
operation environment management, etc. In the second level, the business processes
defined in the first level were subdivided into specific categories. For example, the
network fault management process was subdivided into current network fault
management and previous network fault management, because operators usually
monitor current network’s faults in real time whereas they search previous network’s
faults when they need to analyze the cause of faults or to write a monthly network
fault report. In the final level, services were identified by decomposing the second
level categories and we affirmed uncovered services by using the bottom-up
approach. For example, the current network fault management category deduced
reporting current alarm service, identifying alarm service, and releasing alarm service.

As a result of the identification step, we identified 110 services which can be
commonly used at any NMS.

Table 1. Services were identified by using a cross-sectional approach

1st Level 2nd Level 3rd Level: Service

report current alarm

identify alarm current network fault

release alarm

network fault
management

previous network fault inquiry previous alarm

operation environment
management

send messages request SMS message sending

etc. authentication request authentication

3.2 Specification and Realization

For each service, which was defined in the identification step, we should specify the
details of the components that will implement the services in the specification step.
The definition of the messages and the events were made at this step. After the
specification step, we should decide whether the software should be re-used or re-
built. To do this, we made standard specification templates which address the flow
specification and the service specification. For each identified service, we made out
the documents. Both documents play an important role as a communication method
between service designers and developers.

The service specification document deals with end-to-end service specification
between the service provider and the service consumer. The specification has two
types depending on the service adapter type: web service type and TP type. The web
service type specification requires service ID, web service URL, service description,
operation name, WSDL, operation in/out elements, element type, element size,

332 D. Lee and B. Park

mandatory or optional constraint, and description. Because most KT’s NMS work on
the TP-monitor, we also made the TP type specification. The specification requires
service ID, service name, service description, and operation in/out elements.

The flow specification document deals with the flows in the service, or adapter
rules, and the mapping between the adapter rule and the message or the service in an
ESB. The service rule part describes in-coming messages and reply messages and
flows between the services. It requires service flow ID, service flow diagram, and
flow description. Fig. 4 (a) is the example of a service flow diagram. The adapter rule
part describes the rules applied to the inbound adapter. It requires adapter rule ID,
type, SAF flag, context path, operation name, message ID, operation in/out elements,
element type, element size, mandatory constraint, and description. The type of adapter
rule can be either web service type or TP type. The message ID, which can be found
in the service flow diagram, and the operation name have one to one relation. The
SAF flag is set when a request should be handled in SAF mechanism. The element
type can be string, int, long, short, float, or double. The element size field is needed
only if the type is a string. The mandatory constraint field is set when the element
must exist. The mapping part requires adapter rule ID, mapping diagram, message or
service ID, in/out elements, message or service field, and their mapping rule. Fig. 4
(b) shows the example of a mapping diagram. If the mapping rule has one to one
relation, which is a direct flow, the mapping part do not need to be described.

4 Best Case Studies

Among the services which were defined in the previous section, we present four
services as best case studies as shown in Fig. 5. They include authentication service,
SMS service, previous alarm inquiry service, and current alarm management service.

The EP system is KT’s enterprise authentication server and the HRM system
manages KT’s personnel information. Other systems had requested an authentication
service to the EP system and had inquired personnel information to the HRM system
directly. Other systems had combined information to manage their user’s accounts
after receiving information. After adopting an ESB, we made the authentication
service so that other systems do not need to combine authentication information and
personnel information on their own. Also, we made two kinds of adapters which
operate identically with different protocols.

The enterprise SMS server, RTSMS, provides a SMS web service. The service has
been published on an ESB with two kinds of adaptors so that other systems can use a
SMS service more efficiently.

The bNMS is a backbone network management system. It had provided network
fault related information to other systems directly with different services. After an
ESB has provided the alarm inquiry service, other systems only have to call one
integrated service because an ESB re-directs the requests to appropriate services for
each system. Therefore, even though the systems call the same service, they can
receive different domain data.

Many systems want to receive the current alarm status from the NMS. The current
alarm status is changed when following events occurred: detecting network faults,
identifying an alarm by an operator, and releasing network faults. Before adopting an

 Service-Oriented Software Framework for Network Management 333

(a)

(b)

Fig. 4. The example of a service flow diagram (a) and a mapping diagram (b) is shown

ESB

EP
RTSM S

fault

…

W S TP

authentication

service

W S
W S

W S TP

SM S

service

TP

W S

release fault

identify

alarm

W S W S TP

TPW S

TP

inquiry alarm

X

…

request

authentication
send SM S

W S

H R M

bN M S

TP

Fig. 5. Four services were derived as a result of service-oriented modeling

334 D. Lee and B. Park

ESB, each event should have been sent to other systems repeatedly having different
contexts: a system may only want the network link event, whereas another system
may want total network events. Because an ESB can multicast the events to other
systems while the contents of the events can be diverse, bNMS does not need to send
the events repeatedly. Therefore, the performance of bNMS is increased by using the
multicast functionality of an ESB.

5 Implementation

The service-oriented NMS has been implemented in KT’s bNMS with TMAX ProBus
[8] ESB. 11 NMS has changed their inter-operation target from the bNMS to an ESB.
As we mentioned in the previous section, the non-NMS services has been also
published in an ESB.

As a result, a redundant function or service development is reduced because
published services can be re-used by other systems. Also, the messages exchanged
between systems can flow across different transport protocols so that systems with
different platforms can communicate efficiently. Furthermore, system designers do
not need to analyze complex code to understand business process because an ESB
offers the service flow diagram.

However, we also have encountered some challenges after adopting an ESB. First,
because an ESB is a standalone server as other NMS, the system administrator should
manage more objects. Also, if an error occurred while using a service, it is hard to
identify the cause of the error because an ESB itself can be an additional error point.
Furthermore, an ESB engineer is needed whenever services are created or modified
because most system developers cannot handle ProBus studio which is a development
tool for an ESB.

The performance of an ESB server, especially average CPU usage, has not been
raised above seven percent while handling five hundred thousand transactions per
day. Among these transactions, three hundred thousand transactions were web service
type and two hundred thousand transactions were TP type. Also, the average CPU
usage of bNMS application server is lowered by two percent because repeated calls
were converted into multicast calls.

Since it is the initial stage of spreading the usage of an ESB across the NMS and
other legacy systems, gradual transition to the new architecture is needed. To do this, we
used the direct flow for previously existed services to minimize the re-coding of legacy
system’s interoperating functions. However, at least destination IP address should have
been changed from bNMS’s to the EBS’s in the case of an in-coming request to bNMS.
That is, other systems do not have to change anything for the out-going request from
bNMS. However, the dynamic message routing will be used for newly created services.
Furthermore, the legacy code and the service have been co-existed since various legacy
systems have different agenda to transit to the new architecture.

However, the business process change has not been occurred often in the field of
network management as the field of operation support so that the flow coordination
functionality has not been used frequently. In spite of this, the service-oriented NMS
is still attractive because the interoperation structure becomes simplified and the
services can be re-used.

 Service-Oriented Software Framework for Network Management 335

6 Conclusions and Future Works

We proposed and implemented a service-oriented network management system using
an ESB, especially to address the integration and agility problems of KT’s NMS. To
do that, we identified common services of the NMS and created document templates
for the specification and the realization of the services. Also, we presented best case
studies which were deduced while the implementation. As a future works, we will
spread a SOA to other systems and will apply dynamic message routing to legacy
services which would be implemented in the direct flow.

Acknowledgments. This work has been supported by the 2010 Hannam University
Research Fund.

References

1. Arsanjani, A.: Service-oriented modeling and architecture (2004),
http://www-128.ibm.com/developerworks/webservices/
library/ws-soa-design1/

2. IBM Global Services: Five best practices for deploying a successful service-oriented
architecture (2008)

3. Glen, S., Andexer, J.: A practical application of SOA (2007),
http://www.ibm.com/developerworks/webservices/
library/ws-soa-practical/

4. Kelly, M.B.: Report: The TeleManagement Forum’s Enhanced Telecom Operations Map
(eTOM). Journal of Network and Systems Management 11(1), 109–119 (2003)

5. Brandner, M., Craes, M., Oellermann, F., Zimmermann, O.: Web services-oriented
architecture in production in the finance industry. Informatik Spektrum 26, 136–145 (2004)

6. Audin, G., Lodge, F.: FCAPS: a Model for VOIP/IPT Management. Business
Communications Review (2006)

7. Arsanjani, A.: Service-oriented modeling and architecture: How to identify, specify, and
realize services for your SOA (2004),
http://www-128.ibm.com/developerworks/webservices/
library/ws-soa-design1/

8. ProBus,
http://us.tmaxsoft.com/jsp/product/
detailcontents.jsp?psCd=00PD13&menuCd=0PD SOPB

336 D. Lee and B. Park

Authors

Dongcheul Lee received the B.S. and M.S. degrees in

Computer Science and Engineering from Pohang University of

Science and Technology, Pohang, Korea in 2002 and 2004,

respectively. He is currently working towards a Ph.D. degree

with the Department of Information and Communication

Engineering of Hanyang University, Seoul, Rep. of Korea. He

has been a senior researcher in the KT Network Technology

Laboratory, Korea since 2004. His research interest includes

algorithm and application of mobile communications, workforce scheduling issues for

network service provisioning, and task scheduling algorithms for GRID environment.

Byungjoo Park received the B.S. degree in electronics
engineering from Yonsei University, Seoul, Rep. of Korea in
2002, and the M.S. and Ph.D. degrees (First-Class Honors) in
electrical and computer engineering from University of
Florida, Gainesville, USA, in 2004 and 2007, respectively.
From June 1, 2007 to February 28, 2009, he was a senior
researcher with the IP Network Research Department, KT
Network Technology Laboratory, Rep. of Korea. Since March
1, 2009, he has been a Professor in the Department of
Multimedia Engineering at Hannam University, Daejeon,
Korea. He is a member of the IEEE, IEICE, IEEK, KICS, and
KIISE. His primary research interests include theory and

application of mobile computing, including protocol design and performance analysis in
next generation wireless/mobile networks. He is an honor society member of Tau Beta
Pi and Eta Kappa Nu, USA. His email address is vero0625@hotmail.com,
bjpark@hnu.kr

www.SoftGozar.Com

Author Index

Abd. Rahman, Abdullah Sani 218

Abdullah-Al-Wadud, M. 151

Abdul Rahman, P.N.M. 218

Abidin, Siti Zaleha Zainal 218

Ahmad, Mahreen 195

Ahmad, Rizwan 174

Ahn, Jae Young 50

Akimoto, Masayoshi 296

Amiruzzaman, Md. 151

Arciniegas, Jose L. 38, 242

Areeprayolkij, Wantana 208

Aversano, Lerina 57

Badri, Linda 78

Badri, Mourad 78

Baker, Simon 264

Belli, Fevzi 130, 164

Bernardi, Mario Luca 67

Burzańska, Marta 317

Chung, Yoojin 151

Cuesta, Albeiro 103

Daoud, Amjad M. 1

Di Lucca, Giuseppe Antonio 67

Dueñas, Juan C. 38, 242

Ferenc, Rudolf 283

French, Tim 11

Fukazawa, Yoshiaki 296

Gansawat, Duangrat 208

Ghani, Abdul Azim Abd 141

Gökçe, Nida 130

Güler, Nevin 164

Hasebe, Atsushi 296

Hollmann, Axel 164

Hu, Gongzhu 254

Hwang, Dae-Joon 50

Joyanes, Luis 103

Jun, Yong-Kee 228

Kama, Nazri 11

Kim, Byung-Chul 228

Kim, Jong-Nam 237

Kim, Seoksoo 23, 50

Kim, Tai-hoon 174, 195

Kubo, Atsuto 296

Lee, Dongcheul 327

Liang, Jung-Chin 93

Limpiyakorn, Yachai 208

López, Marcelo 103

Masrom, Suraya 218

Mendes, Emilia 110, 120, 264

Nadeem, Aamer 174, 195

Ogiela, Lidia 188

Ogiela, Marek R. 188

Park, Byungjoo 327

Raju, G. 30

Reynolds, Mark 11

Riaz, Mehwish 110

Sahibuddin, Shamsul 141

Sheu, Tian-Wei 93

Śl ↪ezak, Dominik 303

Solemon, Badariah 141

Song, Jae-gu 50

Sosnowski, �Lukasz 303

Stencel, Krzysztof 317

Sulayman, Muhammad 120

Sun, Jing 254

Suna, Gökhan 164

Tempero, Ewan 110

Tortorella, Maria 57

Toure, Fadel 78

ur Rehman Khan, Saif 174

www.SoftGozar.Com

338 Author Index

Vijayan, Jaya 30

Wang, Ka 254

Washizaki, Hironori 296

Wen, Kun-Li 93

Wísniewski, Piotr 317

Yıldız, Esra 164

You, Mei-Li 93

Zhang, Houyong 254

Zhao, Huiqun 254

www.SoftGozar.Com

www.SoftGozar.Com

	Cover
	Communicationsin Computer and Information Science 117
	Advances inSoftware Engineering
	ISBN-13 9783642175770
	Preface
	Organization
	Table of Contents

	Effective Web and Desktop Retrieval with Enhanced Semantic Spaces
	Introduction
	The NETBOOK System
	Early Work
	The Context Vectors Model
	The Ebooks Collection
	The Retrieval Process

	Enhancing the Retrieval Process
	Reducing Dimensions Using Random Projection
	Scaling Context Vectors Model
	Incremental Updates

	Effectiveness Results
	SAS Tests

	Conclusions
	References

	Considering Patterns in Class Interactions Prediction
	Introduction
	Related Works
	A New Class Interactions Prediction Approach
	Step 1: Extract Significant Object from Requirement Artifacts
	Step 2: Reflect Significant Object Interactions to Class Interactions
	Step 3: Modify the Initial Class Interactions Prediction Based on Pattern Analysis

	Evaluation Strategy
	Case Study
	Evaluation Process
	Evaluation Metrics

	Evaluation Results
	Results Produced by the Proposed Approach (with Pattern Analysis)

	Analysis of Results
	Current Approaches Iteration 1 Results vs. New Approach Iteration 1 Results Analysis
	Current Approaches Iteration 2 Results vs. New Approach Iteration 2 Results Analysis

	Conclusion and Future Work
	References

	Design of an Unattended Monitoring System Using Context-Aware Technologies Based on 3 Screen
	Introduction
	Analysis of a Moving Object and Context Awareness
	Calculation of Directions by Prediction of Locations
	Calculation of Color Values
	Context-Aware Algorithm

	Design of Unattended Monitoring System Based on 3 Screen
	Processing Flow the Unattended Monitoring System
	Conclusion
	References

	Requirements Elicitation Using Paper Prototype
	Introduction
	Requirements Elicitation and Gathering
	Challenges in Requirements Elicitation and Analysis
	Requirements Engineering Some Guidelines

	Method Overview
	Domain Knowledge Acquisition
	System Understanding
	Requirements Elicitation
	Paper Prototype Validation
	Requirements Stabilization

	Case Study
	Performance Analysis of the Proposed Approach
	Advantages

	Conclusion
	References

	Quality-Driven Architecture Conformance
	Introduction
	QAC Conceptual Model
	QAC Workflow
	QAC Methods and Techniques
	Case Study
	Proposed Architecture
	QAC Analysis
	QAC Agreement

	Conclusions and Future Work
	References

	Trends in M2M Application Services Based on a Smart Phone
	Introduction
	Concept and Features
	Policies and Technical Trends
	Trends in M2M-Related Policies
	Trends in the M2M Technology

	Cases of M2M Technology Application
	M2M Technology and Application Cases
	Smart Phone M2M Technology and Application Cases

	Conclusion
	References

	Using ERP and WfM Systems for Implementing Business Processes: An Empirical Study
	Introduction
	Theoretical Background
	Design of the Study
	Results
	Conclusions
	References

	Mining Design Patterns in Object Oriented Systems by a Model-Driven Approach
	 Introduction
	A Meta-model to Represent Design Pattern Specifications
	The Mining Process
	The DPF Tool
	 Case Study
	 Related Work
	Conclusions and Future Work
	References

	Exploring Empirically the Relationship between Lack of Cohesion and Testability in Object-Oriented Systems
	Introduction
	Software Testability
	Cohesion Metrics
	Class Cohesion Measurement
	Experimental Design
	Selected Metrics
	Statistical Analysis

	The Case Studies
	Selected Systems
	Results
	Discussion

	Conclusions
	References

	The Study of Imperfection in Rough Set on the Field of Engineering and Education
	Introduction
	The Preview of Rough Set
	Real Case Analysis
	Attribute Factor-Muzzle Noise Suppressor
	Decision Factor- A Study of English Vocabulary Learning Strategies in Taiwan College Students

	The Design of Toolbox
	The Characteristics of Toolbox
	The Calculation of Toolbox

	Conclusions
	References

	The Software Industry in the Coffee Triangle of Colombia
	Introduction
	The Software Industry in the Coffee Triangle
	Products and Services
	Sectors for Which the Software Is Developed
	Market Types
	Annual Sales Range

	Academics in the Coffee Triangle
	Academic Training
	Graduates

	References

	Towards Maintainability Prediction for Relational Database-Driven Software Applications: Evidence from Software Practitioners
	Introduction
	Background
	Research Methodology
	Data Source
	Semi-structured Interviews and Interview Procedure
	Data Analysis

	Results Informed by Industrial Practice
	Perception of Maintainability
	Should Applications Be Maintainable?
	Practical Experience with Maintainability Prediction
	Benefits of Predicting Maintainability
	Is Maintainability Predicted in Practice?
	Maintainability Measures
	Is There a Difference between Maintainability for Relational Database-Driven Applications and Applications that Do Not Have Any Back-End Database?
	Factors That Should Be Considered When Predicting the Maintainability of Relational Database-Driven Software Applications

	Discussion
	Conclusions
	References

	Software and Web Process Improvement – Predicting SPI Success for Small and Medium Companies
	Introduction
	Literature Review Theoretical Model of SPI Success Factors
	Research Process
	Population and Subjects of the Research
	Variables and Measurement Scales
	Reliability of the Measurement Scales and Detailed Item Analysis
	Validity of the Measurement Scales and Statistical Data Analysis

	Empirical Findings
	Measurements for Success Factors
	Comparison of SPI Success Factors between Small and Medium Companies

	Discussion
	Conclusions
	References

	Test Prioritization at Different Modeling Levels
	Introduction and Related Works
	Background
	Event Sequence Graphs
	Test Cases Generation
	Test Cost
	Clustering
	Gustafson Kessel Clustering

	Model-Based Test Case Prioritization
	Importance Degree of Groups

	Case Study
	Modeling
	Clustering
	Testing
	Test Selection Strategies Based on Prioritization
	Results

	Conclusions, Limitations, Scalability Aspects, and Future Work
	References

	Adoption of Requirements Engineering Practices in Malaysian Software Development Companies
	Introduction
	Materials and Methods
	Results and Discussion
	Adoption of RE Practices
	Top and Lowest Ten RE Practices
	Findings

	Conclusion
	References

	Minimum Distortion Data Hiding
	Introduction
	Existing Methods
	F5 Method
	Model Based Steganographic Method
	OutGuess Method
	StegHide Method
	JP Hide and Seek Method

	Proposed Method
	Minimizing the Distortion
	Encoding
	Decoding

	Experimental Results and Comparisons
	Experimental Results
	Comparisons

	Conclusions

	Model-Based Higher-Order Mutation Analysis
	Introduction and Related Work
	Modeling with Event Sequence Graphs
	ESG-Based Mutation Analysis
	Basic Mutation Operators
	ESG-Based Mutation Analysis

	Case Study
	Modeling, Test Generation and Execution
	Results and Discussion

	Conclusions, Future Research
	References

	ISARE: An Integrated Software Architecture Reuse and Evaluation Framework
	Introduction
	Literature Review
	Quality Attributes (QA)
	Software Architecture (SA)
	Software Architecture with Respect to QoS
	Overview of Analysis Methods

	Proposed Framework
	ISARE Reuser
	ISARE Evaluator
	Working of ISARE

	Evaluating ISARE Framework
	Brief Description of SIHMS
	User Classes and Characteristics
	Quality Requirements
	ISARE Evaluation for SIHMS

	Conclusion and Future Work
	References

	Cognitive Informatics for New Classes of Economic and Financial Information Systems
	Introduction
	Cognitive Systems and Cognitive Informatics
	UBMSS as an Example of Class of Cognitive Systems
	Conclusion
	References

	An Automated Approach to Testing Polymorphic Features Using Object-Z
	Introduction
	Relevant Work
	Specification Based Testing of Polymorphism and Inheritance
	The Proposed Approach
	Class Flattening
	Extracting Message Call Sequences (MCS)
	Extracting Coupling Variables
	Identifying Def-Use Methods
	Identifying Coupling Sequences
	Generating Test Cases

	Evaluation
	Conclusion and Future Work
	References

	IDMS: A System to Verify Component Interface Completeness and Compatibility for Product Integration
	Introduction
	Product Integration Best Practices
	Approach Methodology
	Extraction of Interface Descriptions
	Construction of Component Dependency Graph
	Verification of Interface Compatibility of Components

	Interface Descriptions Management System
	Design
	Implementation
	Preliminary Results

	Conclusion
	References

	Software Framework for Flexible User Defined Metaheuristic Hybridization
	Introduction
	Metaheuristic Hybridization
	Software Frameworks for Metaheuristic
	iOPT
	HotFrame
	EasyLocal++
	ParadisEO
	HeuristicLab
	JCLEC

	Limitations of the Available Software Frameworks
	Scripting Language Paradigm
	Scripting Language for Metaheuristic

	Conclusion
	References

	Program Visualization for Debugging Deadlocks in Multithreaded Programs
	Introduction
	An Execution of Multithreaded Programs
	Program Visualization
	Lock-Pattern Causality Graph (LPCG)
	Debugging Deadlocks

	Demonstrations
	Related Work
	Conclusion and Future Works
	References

	A Fast PDE Algorithm Using Adaptive Scan and Search for Video Coding
	Introduction
	Proposed Algorithm
	Experimental Results
	Conclusions
	References

	Evolvability Characterization in the Context of SOA
	Introduction
	Relationship between SOA and Quality Characteristics
	Maintenance and Evolution (M&E) Model for SOA
	Experiences
	Conclusions
	References

	Design and Implementation of an Enterprise Internet of Things
	Introduction
	A Prototype System and Design of IoT
	A Brief Introduction of ZB Mall
	Design of ZB IoT

	Implementation of ZB's IoT
	Security
	Extensibility of ZB's IoT

	System Test
	Experiment of the Simplified Encrypt and Decrypt Algorithms
	Test Case of Parsing IP from Barcode

	Related Work
	Conclusion
	References

	Aggregating Expert-Driven Causal Maps for Web Effort Estimation
	Introduction
	Bayesian Networks
	Problems Relating to the Aggregation of Causal Maps
	Related Work
	Proposed Solution
	Methodology
	Results
	Threats to Validity
	Conclusions
	References

	Bug Forecast: A Method for Automatic Bug Prediction
	Introduction
	The Bug Forecast Toolset
	Case Study
	The Simulation
	Definitions
	Ten-Fold Cross Validation
	The Validation

	Conclusion
	References

	TCD: A Text-Based UML Class Diagram Notation and Its Model Converters
	Introduction
	Text-Based UML Class Diagram
	Model Converters
	Related Work
	Conclusion and Future Work
	References

	SQL-Based Compound Object Comparators: A Case Study of Images Stored in ICE
	Introduction
	Algorithmic Outline
	RDBMS Framework
	Compound Object Representation
	Infobright Community Edition (ICE)
	Data Layout
	Relationships

	Case Study
	Performance Tests
	Conclusions and Discussion
	References

	Intermediate Structure Reduction Algorithms for Stack Based Query Languages
	Introduction
	Cheap Deforestation
	Stack Based Approach
	SBQL
	Simple SBQL Query Deforestation
	Optimising Recursion
	Distributivity of Algebraic Functions over Dot Operator
	Conclusions
	References

	Service-Oriented Software Framework for Network Management
	Introduction
	Problem Definition
	Service Analysis and Design
	Identification
	Specification and Realization

	Best Case Studies
	Implementation
	Conclusions and Future Works
	References

	Author Index

